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Objective ML is a small practical extension to ML with ob-
jects and top level classes. It is fully compatible with ML;
its type system is based on ML polymorphism, record
types with polymorphic access, and a better treatment
of type abbreviations. Objective ML allows for most fea-
tures of object-oriented languages including multiple in-
heritance, methods returning self and binary methods as
well as parametric classes. This demonstrates that ob-
jects can be added to strongly typed languages based
on ML polymorphism. c© 1997 John Wiley & Sons

Introduction

We propose a simple extension to ML with class-based
objects. Objective MLis a fully conservative extension to
ML. A beginner may ignore the object extension. Moreover,
he would not notice any difference, even in the types inferred.
This is possible since the type inference algorithm of Objec-
tive ML, as in ML, is based on first-order unification and
let-binding polymorphism. Types are extended with object
types that are similar to record types for polymorphic access.
Both the status and the treatment of type abbreviations have
been improved in order to keep types readable.

When using object-oriented features, the user is never re-
quired to write interfaces of classes, although he might have
to include a few type annotations when defining paramet-
ric classes or coercing objects to their counterparts in super
classes.

Objective ML is a class-based system that provides most
features of object-oriented programming. This includes
methods returning self and binary methods, of course, but
also abstract classes and multiple inheritance. Coercion from
objects to their counterparts in super classes is also possible.
However, they must be explicit.

The ingredients used, except automatic abbreviations, are
not new. However, their incorporation into a practical lan-
guage, combining power, simplicity and compatibility with
ML, is new.

c© (1998) John Wiley & Sons, Inc.

Objective ML is formally defined, and its dynamic seman-
tics is proven correct with respect to the static semantics. The
language has not been designed to be a minimal calculus of
objects, but rather the core of a real programming language.
In particular, the semantics of classes is compatible with pro-
gramming in imperative style as well as in functional style
and it allows for efficient memory management (methods can
be shared between all the instances of a class).

This paper is organized as follows: the first section is
an overview of Objective ML. Objects and classes are in-
troduced in sections 2 and 3. Coercions are dealt with in
section 4. The semantics of the language is described in
section 5. Type inference is discussed in section 6. The
abbreviation mechanism is explained in sections 7 and 8.
Extensions to the core language are presented in sections 9
and 10. In section 11, we compare our proposal with other
work.

1. An overview of Objective ML

Objective MLis a core langage. An extended language
based on Objective ML has been implemented on top of the
Caml Special Light system [19]. This implementation is
calledObjective Caml. In this article, we completely for-
malize the core language,i.e. Objective ML. We also use the
name Objective Caml to refer to the implementation, espe-
cially when describing minor differences or extension to the
core language that have not been fully formalized. All ex-
amples show below have been process by Objective Caml1.
When useful, we display the output of the typechecker in a
slanted font. Toplevel definitions are implicitlet .. in ...
For each phrase, the typechecker outputs the binding that will
be generalized and added to the global environment before
starting to typecheck the next phrase.

The language Objective ML is class-based. That is, ob-
jects are usually created from classes, even though it is also
possible to create them directly (this is described in the next
section). Here is a straightforward example of a classpoint.

class point x0 = struct
field x = ref x0
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method move d = (x := !x + d; !x)
end;;
class point : int → sig

field x : int ref

method move : int → int

end

Class types are automatically inferred. Objects are usually
created as instances of classes. All objects of the same class
have the same type structure, reflecting the structure of the
class. It is important to name object types to avoid repeating
the whole nested, often recursive, structure of objects at each
occurrence of an object type. Thus, the above declaration
also automatically defines the abbreviation:

type point = 〈move : int → int〉
which is the type of objects with a methodmove of type
int → int. In practice, this is essential in order to report
readable types to the user. The following example shows that
these object abbreviations are introduced when the operator
new is applied to a class.

new point;;
− : int → point = 〈fun〉
let p = new point 3;;
value p : point = 〈obj〉
Classes can also be derived from other classes by adding
fields and methods. The following example shows how an
object sends messages to itself; for instance, if thescale
formula is overridden in a subclass, themove method will
use the new scale. Here, methods of the parent class are
bound by the super-class variableparent and are used in
the redefinition of themove method (the binary operator#
denotes method invocation in Objective ML).

class scaled point s0 = struct
inherit point 0 as parent
field s = s0
method scale = s
method move d =
parent#move (d * self#scale)

end;;
class scaled point : int → sig

field s : int

field x : int ref

method move : int → int

method scale : int

end

Scaled points have a richer interface than points. It is still
possible to consider scaled points as points. This might be
useful if one wants to mix different kinds of points with
incompatible attributes, ignoring anything but the interface
of points:

let points =
[(new scaled point 2 : scaled point 〈: point);
new point 1];;

value points : point list = [〈obj〉; 〈obj〉]

A few other examples are given in the paper, and an example
using binary methods can be found in the appendix 3.

Notation

A binding is a pair(k, t) of a keyk and an elementt. It
is writtenk = t whent is a term ork : t whent is a type.
Bindings may also be tagged. For instance, iffoo is a tag, we
write foo u = a or foo u : a. Tags are always redundant in
bindings and are only used to remind what kind of identifier
is bound.

Term sequences may contain several bindings of the same
key. We write@ for the concatenation of sequences (i.e. their
juxtaposition). On the contrary, linear sequences cannot bind
the same key several times. We write+ for the overriding
extension of a sequence with another one, and⊕ to enforce
that the two sequences must be compatible (i.e. they must
agree on the intersection of their domains). We write∅ for
the empty sequence.

A sequencecan be used as a function. More precisely,
the domainof a sequenceS is the union, writtendom (S),
of the first projection of the elements of the sequence. An
element of the domaink is mapped to the valuet so that
x : t is the rightmost element of the sequence whose first
projection isx, ignoring the tags. The sequenceS \ foo is
composed of all elements ofS but those tagged withfoo.
Finally, we writefoo (S) for {k : t | foo k : t ∈ S}, that
is, for the subsequence of the elements ofS tagged withfoo
but stripped of the tagfoo.

We write t̄ for a tuple of elements(tii∈I) when indexes
are implicit from the context.

2. Objects

We assume that a set of variablesx ∈ X and two sets of
namesu ∈ U andm ∈ M are given. Variables are used
to abstract other expressions;x is bound infun (x) a and
let x = a1 in a2. Programs are considered equal modulo
renaming of bound variables. Namesu andm are used to
name field and method components of objects, respectively.
Field names and method names are always free and not sub-
ject toα-conversion. The syntax of expressions is provided
below.

a ::= x | fun (x) a | a a | let x = a in a
| self | u | {〈u = a; . . . u = a〉} | a#m
| 〈field u = a ; . . . field u = a;

method m = a ; . . . method m = a〉

Operations on references could be included as constantsk
(the ellipsis in syntax definitions means that we are extending
the previous definition; “” marks the positions of arguments
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around prefix or infix constants):

a ::= . . . | k and k ::= ref | ( := ) | (! )

For the sake of simplicity, we omit them in the formalization,
although they are used in the examples. An object is com-
posed of a sequence offield bindings—the hidden internal
state—, and a sequence ofmethodbindings for accessing and
modifying these fields. Fields are also calledinstance vari-
ables. The type of an object is thus the type of the record of its
methods. In an object, a method may return the object itself
or expect to be applied to another object of the same kind.
Types might thus be recursive. We assume given two count-
able collections of type variables and row variables, written
α andρ, and a collection of type constructors writtenκ.

τ ::= α | τ → τ | (τ, . . . τ) κ | rec α.τ | 〈τ̃〉
τ̃ ::= (m : τ ; τ̃) | ρ | ∅
σ ::= ∀ ᾱ. τ

Object types ending with a row variable are namedopen
object types, while others are namedclosed object types. In
the examples, closed object types are simply written〈mi :
τi

i∈I〉, i.e. the∅ symbol is omitted. The row variables of
open object types are also left implicit in an ellipsis〈mi :
τi

i∈I ; ..〉 (abbreviations explained in section 8 can even be
used to share ellipsis). In the formal presentation, we keep
both∅ and row variables explicit. A label can only appear
once in an object type. This is easily ensured by sorting type
expressions [30]. The distinction betweenτ andτ̃ can also
be guaranteed by sorts. Thus, we omit the distinction and
simply writeτ below.

Type equality is defined by the following family of left-
commutativity axioms:

(m1 : τ1;m2 : τ2; τ) = (m2 : τ2;m1 : τ1; τ)

plus standard rules for recursive types [4]:

(Rec)
τ1 = τ2

rec α.τ1 = rec α.τ2

(Fold-Unfold)

rec α.τ = τ [rec α.τ/α]

(Contract)

τ1 = τ [τ1/α] ∧ τ2 = τ [τ2/α] rec α.τ well-formed

τ1 = τ2

Recursive typesrec α.τ are only well-formed ifτ is nei-
ther a variable nor of the formrec α′.τ ′ (this is not too
restrictive sincerec α.(rec α′.τ ′) can always be rewritten
rec α.τ ′[α/α′]). This guarantees thatτ is contractive inα,
and ensures thatrec α.τ effectively defines a regular tree.
Types, sorts, and type equality are a simplification of those
used in [31], which we refer to for details. Typing contexts
are sequences of bindings:

A ::= ∅ | A + x : σ | A + field u : τ | A + self : τ

Typing judgments are of the formA ` a : τ . The typing
rules for ML are recalled in appendix 1.

Typing rules for objects are given in figure 1.
A simple object is just a set of methods. Methods can

send messages to the object itself, which will be bound to
the special variableself. A simple object could be typed as
follows:

A + self : 〈mj : τj
j∈J〉 ` aj : τj

j∈J

A ` 〈method mj = aj
j∈J〉 : 〈mj : τj

j∈J 〉

However, an object can also have instance variables. In-
stance variables may only be used inside methods defined
in the same object. The typechecking of instance variables
(field ui = ai)i∈I of an object produces a typing envi-
ronment(field ui : τi)i∈I in which the methods are typed
(rulesObject andField).

Instance variables also provide the ability to clone an ob-
ject possibly overriding some of its instance variables (rule
Override). In this rule, typesτy and τi do not seem
to be connected. They are however, thanks to typing rule
Object which requires the typeτy of self and the typesτi

of instance variables to be related to the same object. This
is also ensured by typing the premises in the contextA?

equal toA \ {field, self}. As a result, the expression
〈field u = a ;method m = 〈method m = u〉〉 is ill-typed.
This is not a real restriction however, since one can still write
the less ambiguous expression〈field u = a ; method m =
let x = u in 〈method m = x〉〉.

The ruleSend for method invocation is similar to the rule
for polymorphic access in records: when sending a message
m to an objecta, the type ofa must be an object type with
methodm of typeτ ; the object may have other methods that
are captured in the row expressionτ ′. The type returned
by the invocation of the method isτ . The type of method
invocation may also be seen below:

let send m a = a#m;;
value send m : 〈 m : α; .. 〉 → α = 〈fun〉
The ellipsis stands for an anonymous row variableρ, which
means that any other method thanm may also be defined
in the objecta. Row variables provide parametric polymor-
phism for method invocation. Instead of using row variables,
many other languages use subtyping polymorphism. Since
subtyping polymorphism must be explicitly declared in Ob-
jective ML (see section 4), row variables are essential here
to keep type inference. Row variables also allow to express
some kind of matching [7] without F-bounded or higher-
order quantification [28, 2, 3]. Here is an example:

let min x y = if x#leq y then x else y;;
value min :
(〈 leq : α → bool; .. 〉 as α) →
α → α = 〈fun〉

The binder “as” makes it possible to deal with open object
types occurring several times in a type (this will be detailed
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(Field)

field u : τ ∈ A

A ` u : τ

(Override)

(field ui : τi ∈ A A ` ai : τi)i∈I self : τy ∈ A

A ` {〈ui : ai
i∈I〉} : τy

(Object)

A? ` ai : τi
i∈I A? + self : 〈mj : τj

j∈J 〉+ field ui : τi
i∈I ` aj : τj

j∈J

A ` 〈field ui = ai
i∈I ; method mj = aj

j∈J〉 : 〈mj : τj
j∈J〉

(This rule will be overridden by the more general rule of same name in figure 3.)

(Send)

A ` a : 〈m : τ ; τ ′〉
A ` a#m : τ

FIG. 1. Typing rules for objects

in section 8). An expanded version of this type is:

rec α.〈leq : α→ bool; ρ〉 →
rec α.〈leq : α→ bool; ρ〉 → rec α.〈leq : α→ bool; ρ〉

The functionmin can be used for any object of typeτ with a
methodleq : τ → bool, since the row variableρ can always
be instantiated to the remaining methods of typeτ .

3. Classes

The syntax for classes, introduced in section 1, is formally
given in figure 2. The body of a class is a sequenceb of
small definitionsd. We assume as given a collection of class
identifiersz ∈ Z, and a collection of super-class identifiers
writtens.

We have also enriched the syntax of objects so that it
reflects the syntax of classes. That is, objects can also be
built using inheritance, and fields need not precede methods.

In practice, classes will only appear at the top level. How-
ever, it is simpler to leave more freedom, and let them appear
anywhere except under abstraction. Technically, it would be
possible to make them first-class, that is to allow abstraction
of classes; however, class types should be provided explic-
itly in abstractions. The little gain in practice is probably not
worth the complication (a class can still be parameterized by
other classes using modules).

The type of a class structure,sig (τy) ϕ end, is composed
of the typeτy of self (i.e. the type an object of this class
would have), and the typeϕ of its field bindings and method
bindings. Class types are writtenγ. Type schemes are
extended with class types.

γ ::= sig (τ) ϕ end | τ → γ
ϕ ::= ∅ | ϕ ; field u : τ | ϕ ; method m : τ
| ϕ ; super s : ϕ

σ ::= . . . | ∀ ᾱ. γ

In the concrete syntax,τy and ϕ are combined: methods
that appear inτy but not isϕ are flaggedvirtual (as they are
not defined); other methods appear both inτy andϕ, with
the same type. When necessary, a type variable can also be
bound toτy. For instance, the concrete syntax

sig (α) virtual copy : α method x : int end

expands to

sig (rec α.〈copy : α; getx : int; ρ〉)
method getx : int

end.

Typing contexts are extended with class variable bindings
and superclass bindings:

A ::= . . . | A + z : σ | A + super s : ϕ

We add new typing judgmentsA ` b : ϕ andA ` d : ϕ
that are used to type class bodies. We also redefineA? to
beA where allfield, method, super, andself bindings
have been removed. Typing rules are given in figure 3. We
redefineA? to beA \ {field, self, super}, so that super-
class bindings are also removed. Generalization of class
typesGen(γ,A) is, as for regular types,∀ ᾱ. γ whereᾱ are
all variables ofγ that are not free inA.

Class bodies are typed by adding each component (inher-
itance clause, field, or method) one after the other. Fields
are typed inA?, since other fields, self, and super bind-
ings should not be visible in field expressions. On the con-
trary, methods may depend on all fields and super-classes
that were previously defined (ruleMethod). TheInherit
rule ensures thatself is assigned the same type in both the
superclass and the subclass; all bindings of the superclass
are discharged in the subclass, and the superclass variable
is given the type of the superclass. Superclass variables are
only visible while typechecking the body of the class but are
not exported in the type of the class itself, as shown by rule
Then. The ruleObject is more general than (and over-
rides) the one of figure 1; it corresponds to the combination
of ruleClass-Body and ruleNew.

When a value or method component is redefined, its type
cannot be changed, since previously defined methods might
have assumed the old type2. This is enforced by using in
rule Then the⊕ operator which requires that the two ar-
gument sequences be compatible on the intersection of their
domains. At first, this looks fairly restrictive. But it still
leaves enough freedom in practice. Indeed, the class type
can also be specialized by instantiating some type variables.
Methods returning objects of the same type as self are thus
correctly typed.

class duplicable () = struct
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a ::= . . . | 〈b〉 | class z = c in a | new c | s#m Expressions
c ::= z | fun (x) c | c a | struct b end Class expressions
b ::= ∅ | d ; b Class bodies
d ::= inherit c as s | field u = a | method m = a

FIG. 2. Core class syntax

(Field)

A? ` a : τ

A ` field u = a : (field u : τ)

(Method)

A ` self : 〈m : τ ; τ ′〉 A ` a : τ

A ` method m = a : (method m : τ)

(Inherit)

A? ` c : sig (τy) ϕ end A ` self : τy

A ` inherit c as s : ϕ + (super s : ϕ)

(Basic)

A ` ∅ : ∅

(Then)

A ` d : ϕ1 A + (ϕ1 \ method) ` b : ϕ2

A ` d ; b : (ϕ1 \ super)⊕ ϕ2

(Class-Body)

A? + self : τy ` b : ϕ

A ` struct b end : sig (τy) ϕ end

(New)

A ` c : sig (τy) ϕ end τy = 〈method (ϕ)〉
A ` new c : τy

(Super)

super s : ϕ ∈ A method m : τ ∈ ϕ

A ` s#m : τ

(Object)

A? + self : τy ` b : ϕ τy = 〈method (ϕ)〉
A ` 〈b〉 : τy

(Class-Inst)

z : ∀ ᾱ. γ ∈ A

A ` z : γ[τ̄ /ᾱ]

(Class-Fun)

A + x : τ ` c : γ

A ` fun (x) c : τ → γ

(Class-App)

A ` c : τ → γ A ` a′ : τ

A ` c a′ : γ

(Class-Let)

A ` c : γ A + z : Gen(γ, A) ` a : τ

A ` class z = c in a : τ

FIG. 3. Typing rules for classes

method copy = {〈 〉}
end;;
class duplicable : unit → sig (α)
method copy : α

end

In this class type,α is bound to the type of self. Thus,
objects of any subclass of this class have types that match
rec α.〈copy : α; ..〉. Classduplicable can then be
inherited, and methodcopy still have the expected type (that
is, the type of self).

class duplicable point x = struct
inherit duplicable () inherit point x

end;;
class duplicable point : int → sig (α)
field x : int ref

method copy : α
method move : int → int

end

Note that ancestors are ordered, which disambiguates possi-
ble method redefinitions: the final method body is the one
inherited from the ancestor appearing last.

Rule Class-Let, Class-Inst, Class-Fun and
Class-App are similar to the rulesLet, Inst, Fun

andApp for core ML (described in appendix 1). The two
rulesClass-Let andClass-Inst are essential since poly-
morphism of class types enables method specialization dur-
ing inheritance, as explained above.

As an illustration of the typechecking rules we give a
detailed derivation of the typing of the classscaled point
in the appendix 2.

4. Coercion

Polymorphism on row variables enables one to write a
parametric function that sends a messagem to any object
that has a methodm. Thus, subtyping polymorphism is
not required here. This is important since subtyping is not
inferred in Objective ML.

There is still a notion of explicit subtyping, that allows
explicit coercion of an expression of typeτ1 to an expression
of typeτ2 wheneverτ1 is a subtype ofτ2. As shown in the
last example of section 1, this enables one to see all kinds
of points just as simple points, and put them in the same
data-structure.

The language of expressions is extended with the follow-
ing construct:

a ::= . . . | (a : τ <: τ)
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The corresponding typing rule is:

(Coerce)

τ ≤ τ ′ A ` a : θ(τ)
A ` (a : τ <: τ ′) : θ(τ ′)

θ substitution

The premiseτ ≤ τ ′ means thatτ is a subtype ofτ ′. As far
as typechecking is concerned, we could have equivalently
introduced coercions as a family of constants( : τ <: τ ′)
of respective principal types∀ ᾱ. τ → τ ′ whereᾱ are free
variables ofτ andτ ′ indexed by all pairs of types(τ, τ ′) such
thatτ ≤ τ ′.

The subtyping relation≤ is standard [4]. We choose
the simpler (and algorithmically more efficient) presentation
of [16]. The constraintτ ≤ τ ′ is defined on regular trees as
the smallest transitive relation that obeys the following rules:

Closure rules

τ1 → τ2 ≤ τ ′1 → τ ′2 =⇒ τ ′1 ≤ τ1 ∧ τ2 ≤ τ ′2
〈τ〉 ≤ 〈τ ′〉 =⇒ τ ≤ τ ′

(m : τ1; τ2) ≤ (m : τ ′1; τ
′
2) =⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2

Consistency rules

τ ≤ τ1 → τ2 =⇒ τ is of the shapeτ ′1 → τ ′2
τ ≤ 〈τ0〉 =⇒ τ is of the shape〈τ ′0〉

τ ≤ (m : τ1; τ2) =⇒ τ is of the shape(m : τ ′1; τ
′
2)

τ ≤ ∅ =⇒ τ = ∅
τ ≤ α =⇒ τ = α,

Our subtyping relation does not enhance subtyping assump-
tions on variables, and it is thus weaker than the subtyping
relation used in [12], except on ground types.

For instance, the expressionfun (x) x has type∀α, α′ |
α ≤ α′. α→ α′ in [12], while we can only type the equiva-
lent expressionfun (x) (x : τ <: τ ′) for particular instances
(τ, τ ′) of (α, α′) such thatτ ≤ τ ′.

5. Semantics

We give a small step reduction semantics to our language.
Values are of two kinds: regular expression values are either
functions or object values. Class values are either class
functions or reduced class structures. Object values and
reduced class structures are composed of methods and fields
which are themselves values; fields must precede methods
and neither can be overridden in values. Values, evaluation
contexts, and reduction rules are given in figure 4.

The first reduction rule shows that objects are just a re-
stricted view of classes where instance variables have been
hidden.

We have chosen to reduce inheritance in objects rather
than classes. It would also be possible to reduce inheritance
inside classes, and reorder methods and fields as well. Our

choice is simpler and more general, since classes can also be
inherited in objects.

The reduction of object expressions to values is performed
in two steps, described by the four rules for objects: in-
heritance and evaluation of value components are reduced
top-down (first rule, we remind that the meta-notation@
stands for the concatenation of sequences); the components
are then re-ordered (last rule) and redundant components
removed bottom-up (two middle rules).

The invocation of a method〈w〉#m evaluates the cor-
responding expressionw(m) after replacing self, instance
variables, and overriding by their current values. That is, the
following substitutions are successively applied:

1. [〈w〉/self] replacesself by 〈w〉,
2. [w(u)/u]u∈dom (w) replaces each outer instance variable

u by its actual value. Inner instances ofu, i.e. those
appearing inside an object〈w′〉, are not replaced since
they are related to the inner object. Note thatw(u) is a
value and does not contain free fields.

3. [〈w @ (field u = au
u∈V )〉/{〈u = au

u∈V 〉}]V⊂U re-
places each outer occurrence of an overriding{〈u =
au

u∈V 〉} by a new object built fromw by overriding
fields u ∈ V by (field u = au)u∈V . Inner occur-
rences,i.e. those appearing inside an object〈w′〉, are not
replaced since they are related to the inner object. Note
thatau is not necessarily a value, and may contain other
outer overriding of fields, that should be replaced simul-
taneously, or equivalently in a bottom-up fashion (deeper
occurrences being replaced first).

Coercion behaves as the identity function: the coercion
of a value reduces to the value itself. Subject reduction can
then only be proved by extending the type system with an
implicit subtyping rule:

A ` a : τ τ ≤ τ ′ (Sub)
A ` a : τ ′

This means that a well-typed expression that has been re-
duced may not always be typable without ruleSub. This is
not surprising since explicit subtyping may disappear during
reduction. Thus, implicit subtyping may be required after
reduction. It is possible however to keep explicit subtyping
information during reduction, and avoid the need for rule
Sub. This would be obtained by replacing the rule

(a : τ <: τ ′) −→ a

by the following rules

(v : 〈mi : τi
i∈I〉 <: 〈mi : τ ′i

i∈J〉)
−→ 〈mi = (v#mi : τi <: τ ′i)

i∈J〉
(fun (x) a : τ1 → τ2 <: τ ′1 → τ ′2)

−→ fun (x) (a[(x : τ ′1 <: τ1)/x] : τ2 <: τ ′2)

The counterpart is that types, although not actively partici-
pating, would be kept during reduction. The formulation we
have chosen has a simpler semantics and makes it clearer
that the reduction is actually untyped.
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Values

v ::= . . . | fun (x) a | 〈w〉
vc ::= fun (x) c | struct w end
w ::= ∅ | wd ; w field components preceedmethod components, no overridings

wd ::= method m = a | field u = v

Evaluation contexts

E ::= [] | let x = E in a | E a | v E | E#m | 〈F 〉 | new E | class z = Ec in a
Ec ::= [] | Ec a | vc E | struct F end
F ::= [] | Fd ; b | wd ; F
Fd ::= inherit Ec as s | field u = E

From classes to objects

new (struct w end) −→ 〈w〉
Reduction of objects

inherit (struct w end) as s ; b −→ w @ (b [w(m)/s#m]m∈dom (w))
field u = v ; w −→ w if u ∈ dom (w)

method m = a ; w −→ w if m ∈ dom (w)
method m = a ; (field u = v ; w) −→ field u = v ; (method m = a ; w)

Reduction of method invocation (U = dom (w))
〈w〉#m −→ w(m)[〈w〉/self][w(u)/u]u∈U [〈w @ (field u = au

u∈V )〉/{〈u = au
u∈V 〉}]V⊂U

Reduction of coercions

(a : τ <: τ ′) −→ a

Reduction of other expressions

let x = v in a −→ a[v/x] class z = v in a −→ a[v/z]
(fun (x) a) v −→ a[v/x] (fun (x) c) v −→ c[v/x]

Context reduction

E[a] −→ E[a′] if a −→ a′ E[b] −→ E[b′] if b −→ b′

E[c] −→ E[c′] if c −→ c′

FIG. 4. Semantics of Objective ML

The soundness of the language is stated by the two fol-
lowing theorems.

Theorem 1 (Subject Reduction)Reduction preserves typ-
ings (i.e. for anyA, if A? ` a : τ and a −→ a′ then
A? ` a′ : τ .)

Theorem 2 (Normal forms) Well-typed irreducible normal
forms are values(i.e. if ∅ ` a : τ anda cannot be reduced,
thena is a value.)

See appendix 4 for proofs of these theorems.

These results easily extend to cope with constants, as in
core ML, providedδ-rules for constants are consistent with
their principal types.

6. Type inference

Types of Objective ML are a restriction of record types.
First-order unification for record types is decidable, and solv-
able unification problems admit principal solutions, even in
the presence of recursion [31].

The unification algorithm is a simplification of the one
used in ML-ART [31]. It is described in figure 5 as a rewrit-
ing process over unification problems. This formalism was
introduced in [15] and has already been used for record types
in [30]. A unification problem also called aunificand, is a
multi-set of multi-equations preceded by a list of existentially
quantified variables. It is written∃α1, . . . αp. e1 ∧ . . . eq. A
multi-equatione is a multi-set of types writtenτ1=̇ . . . τn.
The algorithm assumes that recursive typesµα.τ have been
encoded using equations∃α. α=̇τ .

A substitution is a solution of a multi-equation if it makes
all its types equal. A solution of a unificand is the restriction
of a common solution to all its multi-equations outside of the
existentially quantified variables.
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(Fuse)

α=̇e ∧ α=̇e′

α=̇e=̇e′

(Decompose (1))

f(αi
i∈I)=̇f(α′i

i∈I)=̇e

f(αi
i∈I)=̇e ∧ (αi=̇α′i)

i∈I

(Generalize (2))

e[τ/α] α /∈ τ

∃α. e ∧ α=̇τ

(Mutate)

(m1 : α1;α′1)=̇(m2 : α2;α′2)=̇e

∃α′. (m2 : α2; α′2)=̇e ∧ α′1=̇(m2 : α2; α′) ∧ α′2=̇(m1 : α1; α′)

(1) In RuleDecompose, f is any type symbol, including(m : ; ) as well.
(2) To ensure termination, ruleGeneralize must be restricted to the case whereτ is not a variable andα appears in

e but not as a term variable ofe.

FIG. 5. Unification as solving multi-sets of multi-equations

Unificands can be simplified by applying the rewriting
rules given in figure 5. Structural rules have been omitted:
they include associativity and commutativity of both∧ and
=̇ and the extrusion and renaming of existential variables.
RulesFuse, Decompose andGeneralize are standard.
Rule Fuse merges two multi-equations that have a vari-
able in common. RuleDecompose decomposes terms of a
multi-equations into smaller ones. RuleGeneralize splits
terms into smaller terms. Thus, unificands can always be
rewritten so that terms are of depth at most one. This permits
maximal sharing during unification. It also ensures termina-
tion of rewriting in the presence of recursive types. The only
difference with unification in a free algebra is the mutation
rule Mute for left-commutativity. It identifies two terms
(m1 : τ1; τ ′1) and(m2 : τ2; τ ′2) with different top symbols
(m1 : ; ) and (m2 : ; ) provided their equality can be
established by the application of an axiom at the root.

The algorithm proceeds by rewriting multi-sets of multi-
equations according to the above rules. Each step preserves
the set of solutions. Moreover, the process always terminates,
reducing any unificand to a canonical form.

A unificand is in a solved form if all of its multi-equations
are merged and each of them is fully decomposed (i.e. it con-
tains at most one non-variable term). Principal unifiers can
be read directly from solved forms. A canonical unificand
that is not in a solved formed contains a clash (two incom-
patible types that should be identified) and is not solvable.

The framework and the meta-theory of unificands are stan-
dard. The equational theory of object types is a sub-case of
the more general algebra of records types; for details and
proofs, the reader is referred to [30].

Objective ML does not allow classes as first-class values.
Indeed, in the expressionfun (x) a, variablex cannot be
bound to a class (or a value containing a class). Thus, class
types never need to be guessed. Polymorphism is only intro-
duced atLet bindings of classes or values. This ensures that
type inference reduces to first-order unification, as it is the
case in ML. Consequently, Objective ML has the principal
type property. Type inference for classes is straightforward.
The links between first-order unification, type inference and
principal types are described in a more general setting in [29].

Theorem 3 (Principal types)For any typing contextA and
any programa that is typable in the contextA, there exists a
typeτ such thatA ` a : τ and for any other typeτ ′ such that
A ` a : τ ′ there exists a substitutionθ whose domain does
not intersect the free variables ofA and such thatτ ′ = θ(τ).

7. Abbreviation enhancements

Object types tend to be very large. Indeed, the type of an
object lists all its methods with their types, which can them-
selves contain other object types. This quickly becomes
unmanageable [31, 11]. Introducing abbreviations is thus
of crucial importance. This section presents the general ab-
breviation mechanism of Objective ML and the next section
focuses on abbreviating object types. The simple type ab-
breviation mechanism of ML is not sufficiently powerful:
abbreviations are expanded and lost during unification and
they do not interact well with recursive types. Several im-
provements have thus been made to the abbreviation mech-
anism. First, abbreviations are kept during unification and
propagated as much as possible. Second, a larger class of
abbreviations are accepted: abbreviations can be recursive
and their arguments can be constrained to be instances of
some given types.

In our implementation, types are considered as graphs. In
particular, when two types are unified, they become identical
rather than two separate, equal types. A construct has been
added to the syntax to express type graphs: the construct
(τ as α) is used to bindα to τ , similarly to the notation
rec α.τ . However, a main difference is that with aliasesα
is also bound outside ofτ . As an example, the two types
(〈m : α〉 as α′)→ α′ and〈m : α〉 → 〈m : α〉 are different
graphs, that represent the same regular tree. There are two
reasons for considering types as graphs. First, unification
rolls types. For instance, unifying typesτ = α andτ ′ =
〈m : α〉 results in typeτ = τ ′ = (〈m : α〉 as α), rather
than instantiatingα to 〈m : α′〉 as α′ in both types (in the
later case,τ ′ would become〈m : 〈m : α′〉 as α′〉). Second,
unification propagates abbreviations. Abbreviations can be
considered as names for nodes. Unifying an abbreviated
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type with another type makes both types abbreviated. For
instance, unifying the argument of a functional type to an
abbreviated type may propagate the abbreviation to the result
type. This is demonstrated in the following example.

let bump x = x#move 1; x;;
value bump :
(〈 move : int → β; .. 〉 as α) → α =
〈fun〉

Nodes are shared between the argument type and the re-
sult type. The ellipsis stands for an anonymous row
variable. When typing the expressionbump p below,
type(〈move : int → β; ..〉 as α) and typepoint are
identified. The type ofbump p is thus also abbreviated to
point.

let p = new point 7;;
value p : point = 〈obj〉
bump p;;
− : point = 〈obj〉

Not all the sharing is exposed to the user : sharing re-
veals too much useless information. So, only aliasing of
open object types (thus row variables can be printed as el-
lipses) and aliasing defining recursive types are printed. It
would be possible to remove some aliasing during type gen-
eralization, so that printed types would exactly reflect their
internal representations. However, this would complicate
the implementation needlessly.

Abbreviations can be recursive. That is, in the definition
of the abbreviationtype (ᾱ) κ = τ , the type constructor
κ may occur in the bodyτ , as long as all occurrences have
the same parameters̄α. This restriction is extended to mu-
tually recursive abbreviations. It ensures that abbreviations
expand to regular trees. In the implementation, any type con-
structor standing for an abbreviation caches the expansions
of abbreviations it appears in. Thus, when an abbreviation
is expanded several times during the traversal of a type, it
expands each time to the same type.

Type abbreviations are generalized to allow constraints on
the type parameters of the abbreviations. This is an extension
to the abbreviations of LCS [5], that were also used in [31]. In
an abbreviation definition, parameters are types rather than
type variables:type (τ̄) κ = τ0. All free variables ofτ
must be bound in̄τ . Actual arguments of an abbreviation
must always be instancesθ(τ̄) (for some substitutionθ) of
the parameters̄τ . Then, the abbreviation can expand to type
θ(τ0). For instance, if the type constructorκ is defined as
type (α∗α′) κ = α→ α′, then(int∗bool) κ will expand
to int → bool. To expand an abbreviation, the arguments
are usually substituted for the parameters. Instead, we choose
to unify the arguments with the corresponding parameters.
The constraints need only to be enforced when parsing a
type given by the user. Then, expansion is guaranteed to
succeed. Indeed, a substitutionθ can always be applied to an

abbreviation(τ̄) κ. The expansion ofθ((τ̄) κ) is equal to the
result of applying the substitutionθ to the expansion of(τ̄) κ.
In particular, constraints are preserved by substitution.

8. Abbreviating object types

We will now describe how the abbreviation mechanism
presented in the previous section is used to generate abbrevi-
ations for objects. This mechanism is used to automatically
abbreviate object constructors: the expressionnew z will
have typeτ1 → . . . → τn → (τ ′i) κz, whereκz is the
abbreviation associated with classz.

General type abbreviations, introduced in the previous
section, can be used to simplify object types. Rather than
sorting types to ensure that object types are well-formed, we
require the stronger condition that any two object types that
share the same row variable must be equal. This eliminates
incorrect types such as〈ρ〉 → 〈m : τ ; ρ〉. Types such as
〈m : τ1; ρ〉 → 〈m : τ2; ρ〉, at the basis of record extension,
are also rejected. However, no primitive operation on ob-
jects exhibits such a type. These types can thus be ruled
out without seriously restricting the language. Moreover, all
programs keep the same principal types. This restriction was
implemented to avoid explaining sorts to the user. It also
makes the syntax for types somewhat clearer, as row vari-
ables can then always be replaced by ellipsis. Furthermore,
sharing can still be described with aliasing. For instance,
〈m : τ ; ρ〉 → 〈m : τ ; ρ〉 is written(〈m : τ ; ..〉 as α)→ α.

A class definitionclass z = c in . . . automatically
generates an abbreviation for the type of its instances. For
specifying it, one actually needs to add type parameters to
the class definitions, corresponding to the one of the abbre-
viation. That is, we should write

class (ᾱ) z = c in . . . (1)

where the parameters̄α must appear inc.
In fact, abbreviations are generated from classtypes. It

follows from type inference that the class definitionc has a
principal class typeτ ′0 → . . . → τ ′n → sig (τy) ϕ end.
Here,τy is the type matched by objects in all subclasses. It
is always of the form〈mi : τi

i∈I ; τ〉 wheremethod (ϕ) is
a subsequence of(mi : τi)i∈I and τ is either∅ (this is a
pathological case, where the class cannot be extended with
new methods) or a row variableρ. If method (ϕ) is exactly
(mi : τi)i∈I , then it is possible to create objects of that class;
they will have typeτy[∅/ρ]. Otherwise, the class is virtual
and can only be inherited in other class definitions. If all free
type variables ofτy exceptρ are listed in̄α, we automatically
define two abbreviations:

type (ᾱ, ρ) #κz = τy type (ᾱ) κz = (ᾱ, ∅) #κz

The former matches all objects of subclasses ofc. The latter
is a special case of the former, and abbreviates any objects
of classc.

Let us consider an example. Classpoint has typeint→
sig (〈move : int → int; ρ〉) ϕ end for someϕ whose
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only method ismove : int → int. Thus, class point is not
virtual. The two following abbreviations are generated for
this class:

type ρ #point = 〈move : int→ int; ρ〉

type point = 〈move : int→ int〉
One can check that the typepoint is indeed an abbreviation
for the type of objects of the classpoint, and that the type
of an object of any subclass of the classpoint is an instance
of the typeρ #point.

In the concrete syntax, the row variableρ is treated anony-
mously (as an ellipsis) and is omitted. The former abbrevi-
ation#κz is given a lower priority than the regular ones in
case of a clash. It also vanishes as soon as the row variable
is instantiated, so as to reveal the value taken by the row
variable.

In fact, we allowκz and#κz to occur in the definition
of b. The previous definitions can be rewritten to handle the
general case correctly.

Constrained abbreviations are natural for abbreviating ob-
jects, as, for instance, a sorted list of comparable objects
should be parameterized by the type of its elements, which
in turn is not a type variable. Moreover this extension makes
it possible to avoid row variables as type parameters (as the
whole object type can appear as a parameter).

Constrained type abbreviations are also convenient since,
in a class definitionclass (ᾱ) z = c in . . ., class type para-
metersᾱ may have been instantiated to some typesτ̄α while
inferring the class typeτ ′0 → . . . → τ ′n → sig (τy) ϕ end.
The two abbreviations generated by the class definition are
thus:

type (τα, ρ) #κz = τy type (ᾱ) κz = (ᾱ, ∅) #κz

The latter is unchanged except that the constraints of the first
ones are implicit in the second one.

Class types are shown to the user stripped of their type
parameters. The parameters that constraint the type abbrevi-
ations are described by constraint clauses:

class α circle (p : α) = struct
field point = p
method center = point
method move m =
if m = 0 then 0 else
point#move (1 + Random.int m)

end;;
class α circle : α → sig

constraint α = 〈 move : int → int; .. 〉
field point : α
method center : α
method move : int → int

end

This class defines the abbreviation

type (〈move : int→ int; ρ〉 as α) circle =
〈center : α; move : int→ int〉

As a result of the abbreviation mechanisms, type inference
may reject some class definitions whose principal types have
free variables. For instance, the following variant of class
point is rejected, since the methodgetx is polymorphic and
therefore the class should be parametric.

class point x0 = struct
field x = x0
method getx = x

end;;

Of course, one could choose an arbitrary ground class type,
for instance:

class point : int → sig
field x : int
method getx : int

end

Any other ground type could be used instead ofint. We
decide to reject those programs. This preserves the property
that any typable program has a principal type —and all other
useful properties of the type system.

This phenomenon is not new. It already appeared in
several extensions of ML. Imperative constructs limit poly-
morphism. Thus, some variables that are not generaliz-
able may occur in the type of a top level expression. In
such a case, most languages would reject the program. For
instance, the extension to ML with dynamics [20] rejects
fun x → dynamics x, since the dynamic type ofx in
dynamics x is statically unknown.

All the examples above would have principal types as
long as type inference is concerned. We can argue that
some programs have been rejected for sake of simplicity and
uniformity of the language, but not because of a failure of
type inference: For instance, in Objective ML we could just
omit the corresponding abbreviation whenever some type
parameter is missing, and print a warning message instead
of an error message.

9. Extensions

This section lists other useful features of Objective ML
that have been added to the implementation. Imperative fea-
tures have been ignored in the formal presentation since their
addition is theoretically well-understood and independent of
the presence of objects and classes. Other features are less
important in theory, but still very useful in practice: private
instance variables, coercion primitives.

Before we explore these extensions, let us consider an
interesting restriction of the language. If recursive types are
only allowed when the recursion traverses an object type, Ob-
jective ML becomes a conservative extension of ML, which
we claimed in the introduction. Of course, all ML programs
can be defined, and behave similarly. Moreover, programs
that are syntactically ML programs are now well-typed ML
programs if and only if they are well-typed in Objective
ML. However, in the implementation Objective Caml, the
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presence of modules requires the use of recursive abstract
types as well. This is because recursive object types may
be abstracted. Thus, Objective Caml is not strictly speaking
a conservative extension of ML. Still, it is a conservative
extension of ML with recursive types.

9.1. Imperative features

We have intentionally used references in the very first
example. We did not formalize references in the presentation
of Objective ML, since we preferred to keep the presentation
simple and put emphasis on objects and classes. The addition
of imperative features to Objective ML is theoretically as
simple and as useful practically as their addition to ML. Both
the semantics and the properties of reduction with respect to
typing extend to operations on the store without any problem.
The formalization copies the one for core ML.

In fact, the implementation Objective Caml also allows
fields to be mutable in a similar way mutable record fields are
treated in Caml [21]. For instance, we could have written:

class point x0 = struct
field mutable x = x0
method move d = (x ← x + d; x)

end;;
class point : int → sig

field mutable x : int

method move : int → int

end

Objective Caml only allows generalization of values (ac-
tually, a slightly more general class of non expansive ex-
pressions). The creation of an object from a classc is not
considered as a value (as it is the application of function
new c to some arguments). Mutable fields in classes are
typed as any other fields, except that mutability properties
are also checked during typechecking.

9.2. Local bindings

As shown by the evaluation rules for objects, both value
and method components are bound to their rightmost defi-
nitions. All value components must still be evaluated even
though they are to be discarded.

Object-oriented languages often offer more security
through private instance variables. The scope of a field can
be restricted so that the field is no more visible in subclasses.

This section presents local bindings, that are only visi-
ble in the body of the class they appear in. This is weaker
than what one usually expects from private fields, as a class
cannot, for instance, inherit a field and hide it from its sub-
classes (see section 10.1).

The syntax is extended as follows:

d ::= . . . | local x = a in b
Fd ::= . . . | local x = E in b

with the corresponding typing rule:

A? ` a : τ A + x : τ ` b : ϕ (Local)
A ` local x = a in b : ϕ

Local bindings are reduced top-down, like inheritance:

local x = v in b; b′ −→ b[v/x] + b′

In practice, however, local bindings would rather be com-
piled as anonymous fields. This would make methods inde-
pendent of local bindings.

Initialization parameters could also be seen as local bind-
ings in the whole class body, and could also be compiled as
anonymous instance variables. For instance, the definition

class point y = struct method x = y end;;

could be automatically transformed into the equivalent pro-
gram:

class point y = struct
local y = y in method x = y

end;;

That way, the methodx becomes independent of the initial-
ization parametery. Then, classes can be reduced to class
values: inheritance is reduced to local bindings, local bind-
ings are flattened, and method overriding is resolved.

9.3. Coercion primitives

Explicit coercions require both the domain and co-domain
to be specified. This eliminates the need for subtype infer-
ence. In practice, however, it is often sufficient to indicate the
co-domain of the coercion only, the domain of the coercion
being a functionS of its co-domain.

For convenience, we introduce a collection of coercion
primitives:

( <: τ) : ∀ ᾱ. S(τ)→ τ

whereᾱ are free variables ofS(τ) andτ , andS(τ) is defined
as follows:

• We call positive the occurrences of a term that can be
reached without traversing an arrow from the left hand
side. (This is more restrictive than the usual definition,
where the arrow is treated contravariantly).

• For non recursive terms, we defineS0(τ) to beτ where
every closed object type that occurs positively is opened
by adding a fresh row variable.

• Terms with aliases are viewed as graphs, or equivalently
as pairs of a termτ0 and a list of constraintsαi = τi.
Let θ be a renaming of variablesαi into fresh variables.
Let τ ′i be τi in which every positive occurrence of each
αi is replaced byθ(αi).
We return(S0(τ

′
0), {θ(αi) = S0(τ

′
i), i ∈ I} ∪ {αi =

τi, i ∈ I}) for S(τ).
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For example,

S(〈m1 : 〈m2 : int〉 → 〈m3 : bool〉〉) =
〈m1 : 〈m2 : int〉 → 〈m3 : bool; ρ3〉; ρ1〉

S(〈m : α〉 as α) = 〈m : α′; ρ〉 as α′

S(〈m : α→ α〉 as α) =
〈m : (〈m : α→ α〉 as α)→ α′; ρ〉 as α′

The operatorS has the two following properties:

(1) S(τ) ≤ τ (2) ∃θ (θ(S(τ)) = τ ∧ θ(τ) = τ)

The former gives the correctness of the reduction step(a <:
τ) −→ (a : S(τ) <: τ). The latter shows that ifa has type
τ then(a <: τ) also has typeτ .

There is no principal solution for an operatorS satisfy-
ing (1). Considerτ to be 〈m : int〉 → int. There are
only two solutions,〈m : int〉 → int and 〈〉 → int and
none is an instance of the other. This counter-example shows
the weakness of the simulation of subtyping with row vari-
ables, especially on negative occurrences. There are other
examples of failure on positive occurrences, but only using
recursive types. For instance, ifτ is 〈x : α〉 as α, then both
〈x : τ ; ρ〉 and〈x : β; ρ′〉 as β are solutions forS(τ), but no
solution is more general than both of these. Our choice ofS
(and correspondingly, our choice of coercion primitives) is
somehow arbitrary, but works well in practice. This justifies
the exclusion of semi-explicit coercions from the core lan-
guage, but leave them as a collection of primitives. In fact,
most coercions are of the form(a : S(τ) <: τ). Thus, the
domain of a coercion rarely needs to be given.

10. Future work

This short section describes three possible extensions of
importance to Objective ML. Each extension requires fur-
ther theoretical and design investigation before it can be
integrated within Objective Caml.

10.1. Restriction of class interfaces

In section 9.2 we have shown that field components can
be declared local to a class. However, this does not enable
class components to be hiddena posteriori. Assume, for
instance, that a library provides an implementation of a class
z with two fieldsx andx′ and two methodsm andm′. A
module may define a classz′′ that inherits from an imported
classz′ whose interface is a restriction of the one of the class
z to the fieldx and the methodm only. Can classz be used
as an import to the module? This problem corresponds to a
common situation of interface restriction when reusing code.
However, interface restriction is not currently possible.

Private fields would actually not be difficult to hide. How-
ever, hiding methods in subclasses conflicts with late binding
and a flat method name space. For instance, assume, method

m′ is implicitly hidden when inherited in classz′′, and that
classz′′ defines a methodm′, possibly with another type!

Clearly, when a methodm is hidden in a classz, self-
invocations ofm in all other methods ofz should be replaced
by calls to a function representing the methodm. This is a
complex operation that is difficult to compile.

Another problem is that methodm′ appears in the type of
self. Hiding the method thus requires to modifya posteriori
the type ofself. This would not be correct if, for instance,
this type is the type of a method argument.

A partial solution is to give each method a different view
of self inside classes. This is usually the case when classes
are treated as a collection of pre-methods. Another choice,
weaker but still useful, is to split the input and output view
of self. The former lists the methods that are required
while the latter enumerates methods that are provided. How-
ever, in the presence of type inference, such solutions tend
to increase the size of a class to a point that may become
unreadable [31]. The gain in expressiveness is also weak-
ened by a later detection of errors. Clearly, it is an error if a
method has incompatible required and provided types. How-
ever, this would only be detected when the object is created.
In the design of Objective ML, we have deliberately lim-
ited the expressiveness of class types to keep them readable.
Many variations are theoretically possible, but very few of
them seem to improve expressiveness significantly without
sacrificing simplicity.

Another possibility is to introduce private methods. They
would not appear in the type ofself, consequently, they
should be invoked differently. Private methods could have
the same scope as fields. In particular, they could be hidden
a posteriorias well.

The addition offinal classes could also resolve the prob-
lem. These classes could not be inherited. Then, a class
could be soundly matched against a final class interface that
omits some of its methods.

10.2. Polymorphic methods

In a classical programming style, functions and data are
clearly separated. Functions are often polymorphic and thus
can be applied uniformly to different kinds of data. Data
may be structured. It very rarely carries functions, and is
usually monomorphic. In objects, data and methods are
jointly defined and stored or passed as arguments together —
at least from a theoretical point of view.

Let-bound top level functions often become methods of
λ-bound first-class objects. Unfortunately, polymorphism is
lost during this transformation. For instance, a class imple-
menting sets, would naturally provide a fold method. The
inferred class type would be of the form:

class α set = struct ...
method fold : (α → β → β) → β → β

end
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However, this is rejected, since variableβ is unbound in
α set. An attempt to fix the problem would be to parame-
terize the classset overβ as well, that is, to replaceα set
in the definition above by(α, β) set. However, this is
not very intuitive, since the object stays parametric inβ even
when all its fields have a ground type. Moreover, the method
fold becomes monomorphic and thus can only be applied to
functions of the same type, whenever the object isλ-bound.

The intuition is of course that the methodfold should
be polymorphic. That is, the classset should have the
following class type:

class α set = struct ...
method fold : All β. (α → β → β) → β → β

end

The addition of polymorphic methods could also be used
to reduce the number of explicit coercions. In a class de-
finition methods may have types more polymorphic than
expected. For instance, assume that class point has type:

class point (int) = struct
field x : int method getx : int

end;;

Then, the following subclass ofpoint will not typecheck:

class eq point x = struct
inherit point x
method eq p = p#getx = self#getx

end;;

The parameterp of the methodeq does not need to be a point
but an object with methodgetx of typeint. Thus, its type
〈getx : int; ..〉 → bool has a free row variable. As
for the case ofset, the row variable in the type ofp can be
bound in in a constraint type parameter as follows:

class α eq point x = struct
inherit point x
method eq (p:α) = p#getx = self#getx
end;;
class α eq point : int → sig

constraint α = 〈 getx : int; .. 〉
field x : int

method getx : int

method eq : α → bool

end

Again, this is not very intuitive and one might prefer to add
a stronger type constraint. One choice is to requirep to
be of the same type asself. However, this unnecessarily
makeseq a binary method and so restricts its further use
with arguments of typeeq point only. Constrainingp to
be apoint in the definition of the methodeq is another
possibility:

class eq point x = struct
inherit point x
method eq (p:point) = p#getx = self#getx
end;;

class eq point : int → sig

field x : int

method getx : int

method eq : point → bool

end

This solution is more general, although it usually requires
explicit coercion when invoking the methodeq:

let p = eq point 1 in p#eq (p 〈: point);;

Polymorphic methods would allow a more natural class type
for theeq point (first definition):

class eq point : int → sig
field x : int
method getx : int
method eq p :

All (〈getx : int; ..〉 as α). α → bool
end;;

Moreover, thanks to the polymorphic (anonymous) row vari-
able, messages could then be sent to the methodeq with an
argument of type eitherpoint or eq point.

We consider that the lack of polymorphic methods is a
weakness of Objective ML. We believe that polymorphic
methods would make most explicit coercions unnecessary.

Some solutions to extend ML with first class-
polymorphism already exist in the literature. Simple but
rudimentary proposals can be found in [31, 24] and better
integration of first-class polymorphism inside Objective ML
has recently been studied in [14].

10.3. Integrating classes and modules

Objects and classes of Objective ML are orthogonal to
the other extensions of ML. In particular, the module sys-
tem of ML extends directly to classes and objects [18]. In-
deed, the implementation of Objective ML, called Objec-
tive Caml [19], offers a rich language of both modules and
classes. Classes and modules share a lot of properties: they
offer some form of abstraction; they also help structuring
large applications; and they facilitate reusability of code. In
fact, they are quite different. Modules are a very general
and powerful abstraction. However, it is difficult to allow
recursion between several modules or to give a meaning to
self inside modules. On the other hand, classes are a much
more specialized paradigm that has proved extremely con-
venient for some applications. Objects find their limitation
with multiple dispatch. Hiding components also remains a
difficult task.

For historical reasons, libraries of Objective Caml are
implemented as modules. In practice, many of these libraries
could be rewritten as classes. Choosing one style or another
is not insignificant, since it is a global commitment to the
architecture of the application. The class version and the
module version of the same libraries are very similar, but
their code cannot currently be shared. This is, of course,
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unsatisfactory. We hope that more work will allow a better
integration of modules and classes.

11. Comparison to other works

The work closest to Objective ML is ML-ART [31]. Here,
object types are also based on record types and have similar
expressiveness. State abstraction is based on explicit exis-
tential types in ML-ART; in Objective ML, it is obtained by
scope hiding, but it could also be explained with a simple
form of type abstraction. No coercion at all is permitted in
ML-ART between objects with different interfaces. Unfortu-
nately, ML-ART has no type-abbreviation mechanism. This
was a major drawback, which motivated the design of Ob-
jective ML. On the other hand, classes are first class values
in ML-ART. We, however, do not think this is a major advan-
tage. The restriction is a deliberate choice in the design of
Objective ML, to keep the language simpler. In theory, most
features of ML-ART could have been kept in Objective ML.
In practice, however, it would have changed the language
significantly.

Another simplification in Objective ML is that in classes
all methods view self with the same type. This is not required
by the semantics, and could technically be relaxed by making
method types more detailed in classes (see [31]). We found
that this extra flexibility is not worth the complication of
class types.

Our object types are a simplification of those used in [32].
The simplification is possible since object types are similar
to record types for polymorphic access, and do not require
the counterpart of record extension. Moreover, as discussed
above, our implementation assumes the stronger condition
that two object types sharing the same row variable are
always identical. With this restriction, object types seem
to be equivalent to kinded record types introduced in [25].
Ohori also proposed an efficient compilation of polymor-
phic records (which does not scale up to extensible records)
in [26]. However, his approach, based on the correspondence
between types and domains of records cannot be applied to
the compilation of objects with code-free coercions.

Objects have been widely studied in languages with
higher-order types [9, 23, 7, 2, 28, 6]. These proposals sig-
nificantly differ from Objective ML. Types are not inferred
but explicitly given by the user. Type abbreviations are also
the user’s responsibility. On the contrary, all these proposals
allow for implicit subtyping.

Our calculus differs significantly from Abadi’s and
Cardelli’s primitive calculus of objects mostly as a result
of design choices. We have chosen primitive classes be-
cause inferred types of sets of pre-methods would be too
complex to be readable (see [31] for instance). We have em-
phasized the role of row variables because we have chosen
not to infer subtyping, therefore avoiding the more compli-
cated framework of constraint types. On the other hand we
have included other features such as instance variables, to

avoid their encoding as methods not involving self, and to
keep with the more simple state-abstraction mechanism by
scope hiding. Technically a major difference, Objective ML
does not allow method overriding.

Open record types are connected to the notion of matching
introduced by Kim Bruce [7, 8]. Matching seems to be at
least as important as subtyping in object-oriented languages.
Row variables in object types express matching in a very
natural way. While explicit matching may require too much
type information, type inference makes object matching very
practical.

Palsberg has proposed type inference [27] for a first-order
version of Abadi and Cardelli’s calculus of primitive ob-
jects [1]. However, that language is missing important fea-
tures from the higher-order version [2]. Type inference is
based on subtyping constraints and the technique is simi-
lar to the one used in [11]. This latter proposal [11, 12]
is closer to a real programming language, and more suited
for comparison. Here, the authors use a subtyping relation
that is more expressive than ours, as they can prove subtyp-
ing under some assumptions. They can also infer coercions.
However, the types they infer tend to be too large. Indeed,
they do not have an abbreviation mechanism. Their inheri-
tance is weaker than ours since they must explicitly list all
inherited methods in subclasses. We think the two proposals
are complementary and could benefit from one another. In
particular, it would be interesting to adapt automatic type
abbreviations to constraint types. The problem is still non-
trivial since inferred type-constraints are hard to read even
in the absence of objects.

The remainder of this section is dedicated to the com-
parison with three other proposals for adding objects to ML.
They all use implicit subtyping, which is, however, restricted
to atomic structural subtyping [22, 13]. As a result, they all
have the same difficulty with parameterized classes, making
it impossible to relate objects created from classes with a dif-
ferent number of parameters, even when the objects have the
same interface. For instance, objects of a classstring are
of incompatible type with objects of a parameterized class
vector when the parameter type is character. In Objective
ML, such objects could be mixed.

In [6], Bourdoncle and Metz propose a language based on
some restricted form of type constraints [12]. However, they
do not provide type inference.

The two following proposals include type inference; how-
ever, fully polymorphic method invocation cannot be typed.
Two different solutions are proposed; they both amount to
providing some explicit type information at method invoca-
tion.

More precisely, in Duggan’s proposal [10], methods must
be predeclared with a particular type scheme. Thus meth-
ods carry type information like data-type constructors in
ML. For instance,move would be assigned type scheme
∀αy. αy → int. Type schemes that are assigned to meth-
ods are polymorphic inαy: they are arrow types whose
domain is always a variableαy, standing for the type of
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self. Object types only list the methods that objects of that
type must accept. For instance,point would be given type
〈move〉. The user must provide more type information that
in Objective ML. The same method name cannot be used
in two different objects with unrelated types. Objects of
parameterized classes are treated especially, using construc-
tor kinds. As mentioned above, objects of a parameter-
ized class reveal forever that they are parameterized. For
instance, let us consider a class of vectors parameterized
over the typeα. All methods of that class must be given a
type scheme of the form:∀ακ

Type→Type. ∀α. α ακ→ τ ,
where variableακ range over type constructors. That is,
instead of the typeτy of self, only the type constructor
κ of the typeτy is hidden. This reveals the dependence
of τy on its parameters, and the parameters themselves.
As explained above, methods of parameterized classes are
incompatible with methods of non-parameterized classes.
Conversely, Objective ML does not currently allow poly-
morphic methods while Duggan’s proposal does. A poly-
morphic methodmap could be declared with type scheme:
∀ακ

Type→Type. ∀α. ∀α1. α ακ→ (α → α1) → α1 ακ.
Intuitively, map carries implicit universal intros and elims,
like data constructors carry arguments of existentially or
universally quantified types in [17, 31, 24]. Recursive kinds
actually allow some form of polymorphism that is different
from polymorphic methods discussed in section 10.

In Object ML [34], Reppy and Riecke treat objects as a
generalized form of concrete data-types. Types are also in-
ferred in Object ML, but the authors do not claim a principal
type property. Also, method invocation must always mention
the class of the object to which the method belongs. Each
object is actually tagged with a constructor that carries the
class the object originated from. Therefore, objects can be
tested for membership to some arbitrary class in some inher-
itance relationship. Only single inheritance is allowed. The
subtyping relationship between objects is declared and corre-
sponds to the inheritance forest. Classes are generative, that
is, objects of different classes have different types. Although
these types can be related by subtyping, they are never in an
instance relationship. Some object coercions, but apparently
not all, are implicit. On the contrary in Objective ML, classes
are transparent, that is, objects types are structural and only
describe the interface of objects: two objects with exactly the
same interface have equal types. Two objects of classes in
a subclass relationship are not necessarily related, but when
they are, one type is simply an instance of the other. Object
ML does not provide any inheritance mechanism, except by
means of encodings [33]. Typing of binary methods is also
a problem, which is solved via runtime class-type tests.

Conclusion

Objective ML has been designed to be the core of a real
programming language. Indeed, the constructs presented
here have been implemented in Objective Caml. We chose
class-based objects since this approach is now well under-
stood in a type framework and it does not require higher-order
types.

The original part of the design is automatic abbreviation
of object types. Although this is not difficult, it is essential
for making the language practical. It has been demonstrated
before that fully inferred object types are unreadable [31, 11].
On the contrary, types of Objective ML are clear and still
require extremely little type information from the user. To
our knowledge, all other existing approaches require more
type declarations.

Objective ML is also interesting theoretically for the use
of row variables [35, 32]. Row variables are very close to
matching and seem more helpful than subtyping for the most
common operations on objects. Message passing and inher-
itance are entirely based on row variables, which relegates
subtyping to a lower level.

Another interesting aspect of our proposal is its simplicity.
This is certainly due to the fact that Objective ML is very
close to ML. Specifically, most features rely only on ML
polymorphism. This leads to very simple typing rules for
objects and inheritance. Coercions, based on subtyping, can
be explained later. Data abstraction is guaranteed by scope
hiding rather than by type abstraction; this is a less powerful
but simpler concept.

The main drawback of Objective ML is the need for ex-
plicit coercions. Coercions are necessary. However, we
think they occur in few places. Thus, explicit coercions
should not be a burden. Furthermore, coercions could in the-
ory be made implicit using constraint-based type inference.

In our implementation of Objective ML, classes and mod-
ules are fully compatible, but orthogonal. That should be
particularly interesting to compare these two styles of large-
scale programming, and help us to better integrate them. This
is an important direction for future work.
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Notes

1. The syntax has been slightly modified here in order to keep the concrete
syntax and the abstract syntax closer.

2. One may imagine relaxing this constraint, and allow the type of the
redefined method to be a subtype of the original method. One would,
however, lose a property we believe important: ruleInherit shows
that the type a class gives to self is a common instance of the different
types of self in its ancestors; as a consequence, the type of self in a class
unifies with the type of any object of a subclass of this class.
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[14] Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit
higher-order polymorphism. InInternational Symposium on Theoreti-
cal Aspects of Computer Software, Japan, September 1997.

[15] Claude Kirchner and Jean-Pierre Jouannaud. Solving equations in
abstract algebras: a rule-based survey of unification. Research Report
561, Universit́e de Paris Sud, Orsay, France, April 1990.

[16] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
recursive subtyping. InProc. 20th symp. Principles of Programming
Languages, pages 419–428. ACM press, 1993.

[17] Konstantin L̈aufer and Martin Odersky. An extension of ML with first-
class abstract types. InProceedings of the ACM SIGPLAN Workshop
on ML and its Applications, 1992.

[18] Xavier Leroy. A modular module system. Research report 2866,
INRIA, April 1996.

[19] Xavier Leroy. The Objective Caml system. Software and docu-
mentation available on the Web,http://pauillac.inria.fr/
ocaml/ , 1996.

[20] Xavier Leroy and Michel Mauny. Dynamics in ML.Journal of Func-
tional Programming, 3(4):431–463, 1993.

[21] Xavier Leroy and Pierre Weis.Manuel de ŕef́erence du langage Caml.
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Appendices

1. Typing rules for core ML

(Inst)

x : ∀ ᾱ. τ ∈ A

A ` x : τ [τ̄ /ᾱ]

(Fun)

A + x : τ ` a : τ ′

A ` fun (x) a : τ → τ ′

(App)

A ` a : τ ′ → τ A ` a′ : τ ′

A ` a a′ : τ

(Let)

A ` a′ : τ ′ A + x : Gen(τ ′, A) ` a : τ

A ` let x = a′ in a : τ

GeneralizationGen(τ,A) is ∀ ᾱ. τ whereᾱ are all vari-
ables ofτ that are not free inA.

2. An example of typing derivation

In this section, we give the typing derivation for class
scaled point. Our focus here is not to explain type infer-
ence, but simply to illustrate the typing rules.

We assume that the classpoint has already been typed,
that is, we typescaled point in the environmentA0 con-
taining the following class-type (we use#point as an ab-
breviation for〈move : int→ int; ..〉):

int→
sig (#point)

field x : int ref
method move : int→ int

end

We remind the definition of classscaled point:

fun (s0)
struct

inherit point 0 as parent ;
field s = s0;
method scale = s;
method move =

fun (d) parent#move(d ∗ self#scale)
end

The remainder of this section is a proof that class
scaled point has the following class type (we use
#scaled point is an abbreviation for〈move : int →

int; scale : int; ..〉):
int→

sig (#scaled point)
field x : int;
field s : int;
method move : int→ int;
method scale : int

end

LetA1 for A0 extended withs0 : int andA2 beA1 extended
with self : #scaled point. The body of the inheritance
clause must be typed inA?

2 which is equal toA1. By rule
Class-Inst we have:

A1 ` point :
int→

sig (#scaled point)
field x : int ref
method move : int→ int

end

Note that we have chosen an instance of the type of class
point where self type is#scaled point (an instance of
type#point). Thus, by ruleClass-App, we have:

A1 ` point 0 :
sig (#scaled point)

field x : int ref
method move : int→ int

end

Applying ruleInherits we get:

A2 ` inherit point 0 as parent :
(field x : int;
method move : int→ int;
super parent :

(field x : int;
method move : int→ int)) (1)

The rest of the class body must be typed in environmentA3

equal toA2 extended with

field x : int; super parent :
(field x : int; method move : int→ int)

SinceA?
3 is A1, we haveA?

3 ` s0 : int, and by ruleField,

A3 ` field s = s0 : field s : int. (2)

The rest of the class body must be typed inA4 equal toA3

extended withfield s : int. SinceA4 ` s : int, we have
by ruleMethod

A4 ` method scale = s : method scale : int. (3)

Using rulesSend andSuper, we also haveA4 ` a : int→
int where

a
def
== fun (d) parent#move(d ∗ self#scale)
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Thus,

A4 ` method move = a : method move : int→ int.

By ruleThen applied to (3) and the previous judgment, we
have

A4 ` (method scale = s; method move = a) :
(method scale : int;
method move : int→ int)

By rule Then gain, applied to (2) and the previous judge-
ment, we have

A3 ` (field s = s0; method scale = s;
method move = a) :

(field s : int; method scale : int;
method move : int→ int)

Hence, by ruleThen again applied to (1) and the previous
judgement, we haveA2 ` b : ϕ where

b
def
== (inherit point 0 as parent ;

field s = s0; method scale = s;
method move = a)

ϕ
def
== (field x : int; method move : int→ int;

field s : int; method scale : int)

Since A2 ` self : #scaled point, applying rule
Class-Body leads to:

A1 ` struct b end : sig (#scaled point) ϕ end

Finally, by ruleClass-Fun, we get:

A0 ` fun (s0) struct b end :
int→ sig (#scaled point) ϕ end

3. Binary methods

In Objective ML, it is possible to define binary methods,
that is, methods that receive as a parameter an object of
the same type as self. Furthermore, a class that has binary
methods can be freely extended by inheritance. Of course,
binary methods remains binary in a subclass.

The virtual classcomparable is a template for classes
with a binary methodleq. The componentvirtual leq is
a type constraint on the type of self. This method must be
applied to an object of the same type as self.

class comparable () = struct virtual (α)

virtual leq : α → bool
end;;
class comparable : unit → sig virtual (α)
virtual leq : α → bool

end

Classint comparable inherits from classcomparable. It
implements methodleq and adds a methodgetx.

class int comparable (x : int) = struct
inherit comparable ()
field x = ref x
method getx = !x
method leq o = !x ≤ o#getx

end;;
class int comparable : int → sig (α)
field x : int ref

method leq : α → bool

method getx : int

end

Method leq still expects to be applied to an object of
the same type as self. So, typeint comparable = rec
α.〈leq : α → bool; getx : int〉 is not a subtype of type
comparable = rec α.〈leq : α → bool〉: inheritance is
not subtyping. Indeed, a methodleq of an object of the
former type expects to be applied to an object that has a
methodgetx; this is not ensured by the latter type. How-
ever,int comparable is an instance ofρ #comparable,
which is by definitionrec α.〈leq : α → bool; ρ〉. Binary
methods are correctly handled since the type of self is kept
open while typing classes: adding the methodgetx to class
comparable simply amounts to instantiating the row vari-
able in the type of self, to(getx : int; ..). Thus, the
type of self in the subclass has a methodgetx and is still
open.

As a test, the functionminwill return the minimum of any
two objects whose type is an instance of type#comparable.

let min (x : #comparable) y =
if x#leq y then x else y;;

value min : (#comparable as α) → α → α =
〈fun〉

This function can thus be applied to objects of type
int comparable.

let p = min (new int comparable 7)
(new int comparable 11)

in (p, p#getx);;
− : int comparable * int = 〈obj〉, 7

4. Proofs of type soundness theorems

Subject reduction is a straightforward combination of redex contraction (lemma 13) and context replacement (lemma 8).
Since we have multiple syntactic categories for expressions, contexts, and types, it is convenient to introduce the following

meta-notations:

ǎ ::= a | b | c | d Ě ::= E | F | Ec | Fd τ̌ ::= τ | ϕ | γ
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These meta-letters are used consistently. For instance, when writingA ` ǎ : τ̌ , (ǎ, τ̌) means(a, τ), (b, ϕ), etc, but not(b, τ).
The following propositions are used several times in the proof.

Proposition 4 (Stability by substitution) If A ` ǎ : τ̌ , then for any substitutionθ, θ(A) ` ǎ : θ(τ̌).

Proposition 5 (Extension of environment)If type environmentsA andB are identical on free variables of expressiona and
A ` ǎ : τ̌ , thenB ` ǎ : τ̌ . If type environmentB extends type environmentA (that isB |̀dom (A) is A) andA ` ǎ : τ̌ , then
B ` ǎ : τ̌ .

We say thatσ is an instance ofσ′ if any instance ofσ is an instance ofσ′. We say that type environmentA is an instance
of type environmentA′ if both type environments have the same domain and for any elementh of their domainA(h) is an
instance ofA′(h).

Proposition 6 (Strengthening of context)If type environmentA is an instance of type environmentB andA ` a : τ , then
B ` a : τ .

The following lemma somewhat simplifies the proofs.

Lemma 7 (Derivation simplification) When proving that for allτ , A0 ` a0 : τ impliesA ` a : τ (for someA0, a0, A and
a), one can restrict oneself to the case where a derivation ofA0 ` a0 : τ does not end with ruleSub. The general case
follows.

Proof. This is done by induction on the size of derivations. Let us assume that a derivation ofA0 ` a0 : τ ends as

A0 ` a0 : τ ′ τ ′ ≤ τ (Sub)
A0 ` a0 : τ

By induction hypothesis,A ` a : τ ′. Hence

A ` a : τ ′ τ ′ ≤ τ (Sub)
A ` a : τ

We writea1 ⊂ a2 if for any environmentA such thatA? = A and any typeτ such thatA ` a1 : τ , A ` a2 : τ . Likewise,
we writeb1 ⊂ b2 (resp.c1 ⊂ c2) if for any environmentsA and any class body typeϕ such thatA ` b1 : ϕ (resp. any class
typeγ such thatA ` c1 : γ), thenA ` b2 : ϕ (resp. A ` c2 : γ). Subject reduction theorem can be restated as follows: if
a1 −→ a2, thena1 ⊂ a2.

Lemma 8 (Context replacement)For any contextE, if ǎ1 ⊂ ǎ2 thenE[ǎ1] ⊂ E[ǎ2].

Proof. The property can be proved independently for each arbitrary one-node contextĚ. Then, the lemma follows by a
trivial induction on the size of the context.

Let Ě be a one-node context. LetA be a type environment anďτ a type such thatA ` Ě[ǎ1] : τ̌ (1). We show that
A ` Ě[ǎ2] : τ̌ . Using lemma 7, one can assume that a derivation of (1) does not end with ruleSub.

All cases are simple and similar. We show one case for example:

CaseE is let x = [] in a: A derivation of (1) ends as:

A ` a1 : τ ′ A + x : Gen(τ ′, A) ` a : τ (Let)
A ` let x = a1 in a : τ

By induction hypothesis applied to the first premise,A ` a2 : τ ′. HenceA ` let x = a2 in a : τ

The following lemmas (9 thru 12) are used to simplify the proof of redex contraction.

Lemma 9 (Append) Let A be a typing environment containing nosuper bindings. IfA ` b1 : ϕ1, A + (ϕ1 \ method) `
b2 : ϕ2, andϕ1 andϕ2 are compatible (that is,ϕ1 ⊕ ϕ2 is correct), thenA ` b1 @ b2 : ϕ1 ⊕ ϕ2.

Proof. We actually prove a more general property. Letϕ0 be a sequence ofsuper bindings. IfA + ϕ0 ` b1 : ϕ1,
A + (ϕ1 \ method) ` b2 : ϕ2, andϕ1 andϕ2 are compatible (that is,ϕ1 ⊕ ϕ2 is correct), thenA + ϕ0 ` b1 @ b2 : ϕ1 ⊕ ϕ2.

This is easily proved by induction onb1.

Lemma 10 (Term replacement (variables))Let A be a type environment,̌a anda′ be term expressions,̌τ and τ ′ be type
expressions. IfA? ` a′ : τ ′ (2) andA + x : Gen(τ ′, A) ` ǎ : τ̌ (3) and bound variables of̌a are not free ina′, then
A ` ǎ[a′/x] : τ̌ is provable(4).
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Proof. The proof is by induction on the structure ofǎ (i.e. a, c, b andd). Using lemma 7, we can assume that a derivation
of (3) does not end with ruleSub.

In each case, we consider a derivation of (3). By using a renaming substitution on (2) if necessary (proposition 4), we can
assume that free variables ofτ ′ that are not inA? do not appear free in this derivation (5). We writeAx for A+x : Gen(τ ′, A?).

We only show the more complicated cases. Other cases are either similar or simple.

Casea is let x1 = a1 in a2: A derivation of (3) ends as:

(6) Ax ` a1 : τ1 Ax + x1 : Gen(τ1, Ax) ` a2 : τ (7) (Let)
Ax ` let x1 = a1 in a2 : τ

By induction hypothesis applied to (6), we getA ` a1[a′/x] : τ1 (8).
If x1 = x, (7) becomesA + x : Gen(τ1, Ax) ` a2 : τ . By strengthening of environment (proposition 6), we have

A + x : Gen(τ1, A) ` a2 : τ sinceA is a subsequence ofAx. We conclude by ruleLet.
Otherwise, letA1 beA+x1 : Gen(τ1, A). Re-ordering hypotheses in (7), we haveA+x1 : Gen(τ1, Ax)+x : Gen(τ ′, A) `

a2 : τ . By strengthening of environment, we can replaceAx by A. Since free type variables ofA1 are the same as free type
variables ofA, we can replaceA by A1 in Gen(τ ′, A). Thus, we haveA1 + x : Gen(τ ′, A1) ` a2 : τ . On the other hand,
sincex1 is not bound ina′, andA?

1 extendsA?, we deduceA?
1 ` a′ : τ ′ from (2) by extension of environment (proposition 5).

Thus, we can apply the induction hypothesis withA1 for A. We getA1 ` a2[a′/x] : τ . Combining with (8) in a Let rule,
we finally haveA ` (let x1 = a1 in a2)[a′/x] : τ .

Casea is fun (x1) a2: A derivation of (3) ends as:

Ax + x1 : τ1 ` a2 : τ2 (Fun)
Ax ` fun (x1) a2 : τ1 → τ2

Let A1 beA+x1 : τ1. Re-ordering type environment of the premise, we haveA+x1 : τ1 +x : Gen(τ ′, A) ` a2 : τ2. By (5),
the generalizationGen(τ ′, A) is equal toGen(τ ′, A+x1 : τ1), that is,Gen(τ ′, A1). So, we haveA1+x : Gen(τ ′, A1) ` a2 : τ2.
Sincex1 is not bound ina′ andA?

1 extendsA? , we deduceA?
1 ` a′ : τ ′ from (2). Thus, we can apply the induction hypothesis

with A1 for A. We getA1 ` a2[a′/x] : τ2. We conclude with ruleFun

Casea is 〈b〉: A derivation of (3) ends as:

A?
x + self : τy ` b : ϕ τy = 〈method (ϕ)〉 (Object)

Ax ` 〈b〉 : τy

Let Ay beA? + self : τy. Re-ordering type environment of the premise, we haveA? + self : τy + x : Gen(τ ′, A) ` b : ϕ.
We can replaceGen(τ ′, A) by Gen(τ ′, A?) by strengthening of environment. By (5), the generalizationGen(τ ′, A?) is equal
to Gen(τ ′, A? + self : τy), that is,Gen(τ ′, Ay). Thus, we haveAy + x : Gen(τ ′, Ay) ` b : ϕ. SinceA?

y is justA?, we have
A?

y ` a′ : τ ′ (3). Thus, we can apply the induction hypothesis withAy for A. We getAy ` b[a′/x] : ϕ. We conclude with
ruleObject.

Lemma 11 (Term replacement (instance variables andself)) Let A be an environment anďa be either an expressiona
or a class expressionc. Letw be an object body andϕ be an object body type. We definesU as the restriction ofdom (w) to
fields. We writeτy for 〈method (ϕ)〉. We assume thatA? is A, bound variables of̌a are not be free in〈w〉 andw(u), and the
following three judgments hold:

A + self : τy ` w : ϕ, (A ` w(u) : τu)u∈U , A + self : τy + (ϕ \ method) ` ǎ : τ̌(9).

Then,A ` ǎ[〈w〉/self][w(u)/u]u∈U [〈w @ (field u = au
u∈V )〉/{〈u = au

u∈V 〉}]V⊂U : τ̌ .

Proof. The proof is by induction on the structure ofǎ. For any expressiona, we writea+ for

a[〈w〉/self][w(u)/u]u∈U [〈w @ (field u = au
u∈V )〉/{〈u = au

u∈V 〉}]V⊂U

Class expressionc+ is defined likewise. We writeAy for A + self : τy + (ϕ \ method). Using lemma 7, we can assume
that a derivation of (9) does not end with ruleSub.

We only show the more complicated cases. Other cases are easy.
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Casea is self: Hypothesis (9) is A + self : τy + (ϕ \ method) ` self : τ . So,τ andτy are equal. On the other hand,
a+ is equal to〈w〉. We conclude by ruleObject:

A + self : τ ` w : ϕ τ = 〈method (ϕ)〉 (Object)
A ` 〈w〉 : τ

Casea is {〈u = au
u∈V 〉}: A derivation of (9) ends as:

((10) field u : τu ∈ Ay (11) Ay ` au : τu)u∈V

(Override)
Ay ` {〈u : au

u∈V 〉} : τy

So, from (10), ϕ ⊕ field u : τu
u∈V = ϕ. By induction hypothesis applied to (11), we getA ` a+

u : τu (12). Hence
A ` (field u = a+

u )u∈V : (field u : τu)u∈V . Then, the append lemma 9 applied to the hypothesisA + self : τy ` w : ϕ
and the last judgment yieldsA + self : τy ` w @ (field u = a+

u )u∈V : ϕ. Hence the following derivation :

A + self : τy ` w @ (field u = a+
u )u∈V : ϕ τy = 〈method (ϕ)〉 (Object)

A ` 〈w @ (field u = a+
u )u∈V 〉 : τy

Lemma 12 (Term replacement (super)) If A ` b1 : ϕ1, A + super: ϕ ` b2 : ϕ2 and bound variables ofb2 are not free in
b1, thenA ` b′2 : ϕ2 whereb′2 is [a/s#m]methodm=a∈b1 , i.e. b2 where all invocations of methods to supers#m have been
replaced by the bodya of the corresponding methodm in b1.

Proof. The proof is similar to the one of lemma 10. It is in fact simpler, assuper is not substituted across class and
object boundaries, nor across instance variable definitions.

Lemma 13 (Redex contraction)We write−→ε for a one-step reduction in an empty context. Ifǎ1 −→ε ǎ2 thenǎ1 ⊂ ǎ2.

Proof. The proof is done independently for each redex. All cases are easy now that we have proven the right lemmas.
Let us assumeA ` a1 : τ (13) andA equalsA? (resp.A ` b1 : ϕ (14) for anyA). We show thatA ` a2 : τ (15) (resp.

A ` b2 : ϕ) by cases on the redexa1 (resp. b1). Each case is shown independently. Using lemma 7, we can assume that a
derivation of (13) does not end with ruleSub.

Casea1 is (fun (x) a) v: A derivation of (13) ends either as:

A + x : τ ′ ` a : τ0 (Fun)
A ` fun (x) a : τ ′ → τ0 τ ′ → τ0 ≤ τ ′0 → τ (Sub)

A ` fun (x) a : τ ′0 → τ A ` v : τ ′0 (App)
A ` (fun (x) a) v : τ

or as:
(16) A + x : τ ′ ` a : τ (Fun)

A ` fun (x) a : τ ′ → τ (17) A ` v : τ ′ (App)
A ` (fun (x) a) v : τ

The end of the first derivation can be rewritten as:

A + x : τ ′ ` a : τ0 τ0 ≤ τ (Sub)
(16) A + x : τ ′ ` a : τ (Fun)

A ` fun (x) a : τ ′ → τ

A ` v : τ ′0 τ ′0 ≤ τ ′ (Sub)
(17) A ` v : τ ′ (App)

A ` (fun (x) a) v : τ

In both cases, the term replacement lemma 10 applied to (17) and (16) shows the conclusion.

Casec1 is (fun (x) c) v: Similar to previous case.

Casea1 is let x = v in a: A derivation of (13) ends as

(18) A ` v : τ ′ (19) A + x : Gen(τ ′, A) ` a : τ (Let)
A ` let x = v in a : τ

The term replacement lemma 10 applied to (18) and (19) shows the conclusion.
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Casea1 is class z = v in a: Similar to previous case.

Casea1 is new (struct w end): A derivation of (13) ends as

A? + self : τy ` w : ϕ (Class-Body)
A ` struct w end : sig (τy) ϕ end τy = 〈method (ϕ)〉 (New)

(20) A ` new (struct w end) : τy

Hence,
A? + self : τy ` w : ϕ τy = 〈method (ϕ)〉 (Object)

A ` 〈w〉 : τy

Casea1 is 〈w〉#m: We must remember thatA? is A. A derivation of (13) ends either as

A + self : τy ` w : ϕ τy = 〈method (ϕ)〉 (Object)
A ` 〈w〉 : τy τy ≤ τy

′
(Sub)

A ` 〈w〉 : τy
′ τy

′ = 〈m : τ ′k; τ ′〉 (Send)
A ` 〈w〉#m : τ ′k

or as

(21) A + self : τy ` w : ϕ (22) τy = 〈method (ϕ)〉 (Object)
A ` 〈w〉 : τy (23) τy = 〈m : τk; τ〉 (Send)

A ` 〈w〉#m : τk

The end of the first derivation can be rewritten

A + self : τy ` w : ϕ τy = 〈method (ϕ)〉 (Object)
A ` 〈w〉 : τy τy = 〈m : τk; τ〉 (Send)

A ` 〈w〉#m : τk τk ≤ τ ′k (Sub)
A ` 〈w〉#m : τ ′k

It has been seen at the beginning of the proof that ruleSub at the end of a derivation could be ignored. Thus, only the second
case need to be considered.

The result is then proved using the term replacement lemma 11.
We first show that the hypotheses of lemma 11 are satisfied. As the fields of an object are typed in the same environment

as the object, forfield u : τu ∈ ϕ, A ` vu : τu (24) wherefield u = vu ∈ w. From (22) and (23), method m : τk ∈ ϕ.
Then, from (21), an easy induction onw using rulesThen, Field, andMethod yields:

A + self : τy + ϕ1 ` w(m) : τk for someϕ1 ⊂ (ϕ \ method)

As A contains nofield bindings, the environment can be extended to includeϕ \ method:

(25) A + self : τy + (ϕ \ method) ` w(m) : τk

Finally, the term replacement lemma 11 applied to (21), (24), (25) yields

A ` w(m)[〈w〉/self][w(u)/u]u∈U [〈w @ (field u = au
u∈V )〉/{〈u = au

u∈V 〉}]V⊂U : τk

Caseb1 is inherit (struct w end) as s ; b: A derivation of (14) ends as

...
A ` inherit (struct w end) as s : ϕ (26) A + (ϕ \ method) ` b : ϕ2 (Then)

A ` inherit (struct w end) as s ; b : ϕ1 ⊕ ϕ2

whereϕ = ϕ1 + (super s : ϕ1), continued by

(27) A ` self : τy

(28) A? + self : τy ` w : ϕ1 (Class-Body)
A ` struct w end : sig (τy) ϕ1 end (Inherit)

A ` inherit (struct w end) as s : ϕ1 + (super s : ϕ1)
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According to (27), self : τy ∈ A. Judgment (28) can thus be rewrittenA ` w : ϕ1 (29).
Applying the term replacement lemma 12 onA + (ϕ1 \ method) ` w : ϕ1 (the environment has been extended) and (26)

yieldsA + (ϕ1 \ method) ` b[a/s#m]methodm=a∈w : ϕ2. Then, the append lemma applied on (29) and this last judgment
gives the result:

A ` w @ b[a/s#m]methodm=a∈w : ϕ1 ⊕ ϕ2

Caseb1 is field u = v ; b: A derivation of (14) ends as

A? ` v : τ (Field)
A ` field u = v : (field u : τ) (30) A + (field u : τ) ` w : ϕ (Then)

A ` field u = v ; w : ϕ⊕ (field u : τ)

From (30), sinceu ∈ dom (w) and fields appear before methods inw, an easy induction shows thatA ` w : ϕ. Indeed,
fields are typed in environmentA?, and methods are typed in an environment in which(field u : τ) has been added anyway
after the typing of the fieldu appearing inw.

Caseb1 is method m = a ; b: A derivation of (14) ends as

A ` self : 〈m : τ ; τ ′〉 A ` a : τ (Method)
A ` method m = a : (method m : τ) (31) A ` w : ϕ (Then)

A ` method m = a ; w : (method m : τ)⊕ ϕ

Sincem ∈ dom (w), m ∈ dom (ϕ), thenϕ and(method m : τ) ⊕ ϕ are equal. Therefore, judgment (31) can be rewritten
A ` w : (method m : τ)⊕ ϕ.

Casea1 is (v : τ <: τ ′): A derivation of (13) ends as

A ` v : θ(τ) τ ≤ τ ′ (Coerce)
A ` (v : τ <: τ ′) : θ(τ ′)

Hence,
A ` v : θ(τ) θ(τ) ≤ θ(τ ′) (Sub)

A ` v : θ(τ ′)

The normal-form theorem is proved by structural induction on values, using the following lemma.

Lemma 14 Letv be a value. We assume∅ ` v : τ (32).

• If τ is a functional type, thenv is a function.
• If τ is an object type, thenv is an object.

Letvc be a value. We assume∅ ` vc : γ.

• If γ is a functional type, thenv is a function.
• Otherwise,v is an object.

Proof. We prove that ifv is a function, thenτ is a functional type and that ifv is an object, thenτ is an object type. Then,
since a value is either a function or an object and functional types and object types are incompatible, this proves the lemma.

We can ignore ruleSub at the end of a derivation, as it does not change the shape of a type.

Casea is fun (x) a1: A derivation of (32) ends as

A + x : τ1 ` a1 : τ2 (Fun)
A ` fun (x) a1 : τ1 → τ2

So,τ is τ1 → τ2.

Casea is 〈w〉: A derivation of (32) ends as

A? + self : τy ` w : ϕ τy = 〈method (ϕ)〉 (Object)
A ` 〈w〉 : τy

So,τ is 〈method (ϕ)〉.
The proof is similar for class values.
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Theorem 2 (Normal forms) Well-typed irreducible normal forms are values(i.e. if ∅ ` a : τ anda cannot be reduced, then
a is a value.)

Proof. The proof is by structural induction simultaneously on expressionsa and class bodiesb. Let us assume
∅ ` a : τ (33) (resp.∅ ` c : γ (34), A ` b : ϕ (35) or A ` d : ϕ, whereA contains onlyfield andmethod bindings), and
thata (resp.c, b or d) cannot be reduced.

Casea is x: This expression cannot be typed in the empty environment.

Casea is a1 a2: It is not possible. A derivation of (33) shows that there exists a typeτ1 such that∅ ` a1 : τ1 → τ . The
induction hypothesis applied to expressiona1 shows that it is a value. Since it has a functional type, it must be a function
fun (x) a0. But then expressiona could be reduced.

Casea is let x = a1 in a2: It is not possible. The induction hypothesis applied to expressiona1 shows that it is a value.
But then expressiona could be reduced.

Casea is a1#m or class z = c in a1: Similar to previous cases.

Casea is fun (x) a1: By definition, expressiona is a value.

Casea is s#m: It is not possible : expressions#m is not typable in the empty environment.

Casea is self or u or {〈u = au
u∈V 〉}: Same as previous case.

Casea is (a1 : τ <: τ ′): It is not possible:a can be reduced.

Casea is 〈b〉: The induction hypothesis shows that object bodyb is a value. Then, expressiona is also a value.

Casea is new c: It is not possible. A derivation of (33) shows that∅ ` c : sig (τy) ϕ end. The induction hypothesis
applied toc shows that it is a value. According to its type, it is a structure. But thena can be reduced

Casec is z: This expression is not typable in the empty environment.

Casec is c1 a: It is not possible. A derivation of (34) shows that there exists a typeτ such that∅ ` c1 : τ → γ. The
induction hypothesis applied to expressionc1 shows that it is a class value. Since it has a functional type, it must be a function
fun (x) c0. But then expressionc could be reduced.

Casec is fun (x) c1: By definition, expressionc is a value.

Casec is struct b end: The induction hypothesis shows that class bodyb is a value. Then, expressionc is also a value.

Caseb is d; b1: The induction hypothesis shows that object componentd and object bodyb1 are in normal forms.d is thus
a field or method definition, and it is not overridden byb1 (otherwise,b could be reduced.)

Caseb is ∅: By definition, object bodyb is a value.

Cased is inherit c as s: It is not possible. A derivation of (35) ends as:

A ` self : τy (36) A ` c : sig (τy) ϕ1 end (Inherit)
A ` inherit c as s : ϕ1 + (super s : ϕ1)

The induction hypothesis applied toc shows that it is a class value. According to its type, it is of the formstruct w end.
But then, the inheritance clause could be reduced.

Cased is method m = a: By definition, expressiond is in normal form.

Cased is field u = a: If A ` d : field u : τ , then∅ ` a : τ , asA contains onlyfield andmethod bindings. By
induction hypothesis, expressiona is in normal form. Then, so is object componentd.
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