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Objective ML is a small practical extension to ML with ob- Objective ML is formally defined, and its dynamic seman-
j?CtS and tOFt) level Céasseds- It ii/l ftJ”y cl:ompatihble with MLc;i tics is proven correct with respect to the static semantics. The
't;pgpsvitsg Spgln;ﬁ']f)rpﬁff ac%';SS, T thoa ot language has not been designed to be a minimal calculus of
of type abbreviations. Objective ML allows for most fea- objects, but rather the core of a real programming language.
tures of object-oriented languages including multiple in- In particular, the semantics of classes is compatible with pro-
heritance, methods returning self and binary methods as gramming in imperative style as well as in functional style

well as parametric classes. This demonstrates that ob- - . .
jects caﬁ be added to strongly typed languages based and it allows for efficient memory management (methods can

on ML polymorphism. (© 1997 John Wiley & Sons be shared between all the instances of a class).
This paper is organized as follows: the first section is
) an overview of Objective ML. Objects and classes are in-
Introduction troduced in sections 2 and 3. Coercions are dealt with in
section 4. The semantics of the language is described in
We propose a simple extension to ML with class-basedection 5. Type inference is discussed in section 6. The
objects. Objective MLis a fully conservative extension to abbreviation mechanism is explained in sections 7 and 8.
ML. A beginner may ignore the object extension. Moreover,Extensions to the core language are presented in sections ¢
he would not notice any difference, even in the types inferredand 10. In section 11, we compare our proposal with other
This is possible since the type inference algorithm of Objecwork.
tive ML, as in ML, is based on first-order unification and
let-binding polymorphism. Types are extended with object; an overview of Objective ML
types that are similar to record types for polymorphic access.

Both the status and the treatment of type abbreviations have Objective MLis a core langage. An extended language
been improved in order to keep types readable. based on Objective ML has been implemented on top of the
When using object-oriented features, the user is never reeaml Special Light system [19]. This implementation is
quired to write interfaces of classes, although he might havealled Objective Caml In this article, we completely for-
to include a few type annotations when defining parametmalize the core languages. Objective ML. We also use the
ric classes or coercing objects to their counterparts in supgrame Objective Caml to refer to the implementation, espe-
classes. cially when describing minor differences or extension to the

Objective ML is a class-based system that provides mosgore language that have not been fully formalized. All ex-
features of object-oriented programming. This includes®Mples show below have been process by Objective Cgml
methods returning self and binary methods, of course, buf/hen useful, we display the output of the_typechgcker na
also abstract classes and multiple inheritance. Coercion frorfanted font. Toplevel definitions are 'mp“d]ét, o M
objects to their counterparts in super classes is also possibl'épr each phrase, the typechecker outputs the.blndmg that will
However, they must be explicit, be ggnerallzed and added to the global environment before
The ingredients used, except automatic abbreviations arsetartmg 0 typecheck thg next phrase. :

’ ’ The language Objective ML is class-based. That is, ob-

not new. Hoyvgver, their mgorppr-atmn into a prallc-u.cal I‘f’m'jects are usually created from classes, even though it is also
guage, combining power, simplicity and compatibility with \ossiple to create them directly (this is described in the next

ML, is new. section). Here is a straightforward example of a gjagisit.
class point x0 = struct
© (1998) John Wiley & Sons, Inc. field x = ref x0
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method move d = (x := !x + d; !x) value points : point list = [{obj); (obj)]
end;;

class point : int — sig A few other examples are given in the paper, and an example
field x : int ref using binary methods can be found in the appendix 3.
method move : int — int

end Notation

Class types are automatically inferred. Objects are usually o )

created as instances of classes. All objects of the same class” bindingis a pair(k, ?) of a keyk and an element |t
have the same type structure, reflecting the structure of thi§ Writtenk = ¢ whent is a term ork : ¢ whent is a type.
class. Itis important to name object types to avoid repeatin§indings may also be tagged. Forinstanceoif is a tag, we
the whole nested, often recursive, structure of objects at eadffit€ foo u = a 0rfoo u : a. Tags are always redundant in
occurrence of an object type. Thus, the above decIaratio_H'nd'”gs and are only used to remind what kind of identifier

also automatically defines the abbreviation: is bound. _ o
Term sequences may contain several bindings of the same
type point = (move : int — int) key. We write@ for the concatenation of sequences (i.e. their

juxtaposition). On the contrary, linear sequences cannot bind
the same key several times. We writefor the overriding

int — int. In practice, this is essential in order to report ; :
. xtension of a sequence with another one, @rtd enforce
readable types to the user. The following example showsthat at the two sequences must be compatible (i.e. they must

thesg obJe(_:t abbreviations are introduced when the operat%rgree on the intersection of their domains). We wiifer
new is applied to a class.

the empty sequence.

which is the type of objects with a methadve of type

new point;; A sequencean be used as a function. More precisely,
— : int — point = (fun) the domainof a sequencé is the union, writtendom (S),
let p = new point 3;; of the first projection of the elements of the sequence. An
value p : point = (obj) element of the domai is mapped to the value so that

) ~x : tis the rightmost element of the sequence whose first
Classes can also be derived from other classes by addingojection isz, ignoring the tags. The sequensé, foo is
fields and methods. The following example shows how antomposed of all elements &f but those tagged witffioo.
object sends messages to itself; for instance, ifsb&le  Einally, we writefoo () for {k : t | foo k : t € S}, that

use the new scale. Here, methods of the parent class aggt stripped of the tagoo.

bound by the super-class varialderent and are used in We write 7 for a tuple of elementst;“€’) when indexes
the redefinition of thenove method (the binary operataér  are implicit from the context.
denotes method invocation in Objective ML).

class scaled_point sO = struct 2. Objects
inherit point O as parent
field s = s0 We assume that a set of variables X and two sets of
method scale = s namesu € U andm € M are given. Variables are used
method move d = to abstract other expressionsjs bound infun (z) a and
parent#move (d * self#scale) let x = a1 in ae. Programs are considered equal modulo
end; ; renaming of bound variables. Namesandm are used to
class scaled-point : int — sig name field and method components of objects, respectively.
field s : int Field names and method names are always free and not sub-
field x : int ref ject toa-conversion. The syntax of expressions is provided
method move : int — int below.
method scale : int
end
az=zx|fun(z)a|aa|letz=aina
Scaled points have a richer interface than points. It is stil | self |u| {{(u=ua;...u=a)} | a#m
possible to consider scaled points as points. This might be | (fieldu =a;...field u = a;
useful if one wants to mix different kinds of points with method m = a; ...method m = a)
incompatible attributes, ignoring anything but the interface
of points:
let points = Operations on references could be included as constants
[(new scaled_point 2 : scaled_point (: point); (the ellipsis in syntax definitions means that we are extending
new point 1];; the previous definition; " marks the positions of arguments
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around prefix or infix constants): Typing judgments are of the for + a : 7. The typing
rules for ML are recalled in appendix 1.
ax= ...k and ku=ref _|(-:=2) (1) Typing rules for objects are given in figure 1.
A simple object is just a set of methods. Methods can
For the sake of simplicity, we omit them in the formalization, send messages to the object itself, which will be bound to

although they are used in the examples. An object is comthe special variablee1£. A simple object could be typed as
posed of a sequence Héld bindings—the hidden internal follows:

state—, and a sequenceéthodindings for accessing and

modifying these fields. Fields are also caliedtance vari- A+self: (mj 777 Fa; ;7€)

ables The type of an objectis thus the type of the record of its AF (method m; = a;7€7) : (m; : 7,7€7)

methods. In an object, a method may return the object itself

or expect to be applied to another object of the same kindHowever, an object can also have instance variables. In-
Types might thus be recursive. We assume given two counktance variables may only be used inside methods defined
able collections of type variables and row variables, writtenin the same object_ The typechecking of instance variables
« andp, and a collection of type constructors written (field u; = a;)'€! of an object produces a typing envi-
ronment(field u; : 7;)*<? in which the methods are typed
(rulesOBJECT andF1ELD).

T = |T—T T,...T) K| rec a.t T . . .-
Foa (WL LT F) ||/§ 10 )l ) Instance variables also provide the ability to clone an ob-
o=V T ject possibly overriding some of its instance variables (rule

OVERRIDE). In this rule, typesr, and r; do not seem

to be connected. They are however, thanks to typing rule
OBJECT Which requires the type, of self and the types;

of instance variables to be related to the same object. This

the examples, closed object types are simply written : is also ensured by typing the premises in the contéxt
equal toA \ {field,self}. As a result, the expression

7,'€1), i.e. the symbol is omitted. The row variables of -
(field u = a;method m = (method m = w)) is ill-typed.

open object types are also left implicit in an ellipgis; : Thisi ¢ | restriction h . il writ
7:%€1; ) (abbreviations explained in section 8 can even be' 'S IS Notareairestriction ROWever, since one can stifwrite

used to share ellipsis). In the formal presentation, we keeffe less ambiguous expressifiield u = a;method m =
both § and row variables explicit. A label can only appear 18t & = u in (methodm =a)).

once in an object type. This is easily ensured by sorting typ(? The rUIeSEND for method InVOC:':.ItIOI’I 'S S|mllqr tothe rule
expressions [30]. The distinction betweemnd7 can also or polymorphic access in records: when sending a message

be guaranteed by sorts. Thus, we omit the distinction and” to an objecu, the type .Ofa must be an object type with
simply write - below. methodm of typeT; the object may have other methods that

Tvpe equality is defined by the following family of left- &€ captured in the row expressieh The type returned
com);r?utat(iqvity gxioms: y g y by the invocation of the method s The type of method

invocation may also be seen below:

Object types ending with a row variable are nanogzen
object typeswhile others are nametlosed object typedn

M1 T Me o T) = (M : To;ma : T13 T
(M miimg 2 73 T) = (M2 Tayma Ty T) let send.m a = aitm;;

plus standard rules for recursive types [4]: value sendm: (m: a; .. ) — a = (fun)

The ellipsis stands for an anonymous row varighlevhich

(e =T (FOLD-UNFOLD) means that any other method thanmay also be defined
Tec o7 = rec oty rec a.7 = 7[rec a.7/al in the objectz. Row variables provide parametric polymor-
phism for method invocation. Instead of using row variables,
(ConTraCT) many other languages use subtyping polymorphism. Since
n =7[n/a] A =7[r/a]  reca.r well-formed subtyping polymorphism must be explicitly declared in Ob-
T =Ty jective ML (see section 4), row variables are essential here

to keep type inference. Row variables also allow to express
some kind of matching [7] without F-bounded or higher-
order quantification [28, 2, 3]. Here is an example:

Recursive typesec «.7 are only well-formed ifr is nei-
ther a variable nor of the fornrec o’.7 (this is not too
restrictive sincerec a.(rec o’.7') can always be rewritten
rec a.7’[a/a]). This guarantees thatis contractive i,  1et min x y = if x#leq y then x else y;;
and ensures thatec .7 effectively defines a regular tree. ;31ue min :
Types, sorts, and type equality are a simplification of those (( 1eq : & — bool; .. ) as o) —
used in [31], which we refer to for details. Typing contexts , — o = (fun)
are sequences of bindings:
The binder “as” makes it possible to deal with open object
Au=0|A+x:0| A+ fieldu:7|A+self: T types occurring several times in a type (this will be detailed
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(FieLp) (OVERRIDE)
fieldu:7€ A (fieldwu;, : 1 € A At a;:m)El self : 7y, € A
AFu:r AF {(uia; )} 7y
(OBJECT) . _ ) ) (SEND)
A* Foa; i€t A* +self : (mj: 7;97) + field w; : ;€1 Fay : 7,9€7 AbFa:{m:7;7")
AF (field u; = a;°¢! ;method m; = a;7€7) : (m; : 7;7€7) AFa#m: T
(This rule will be overridden by the more general rule of same name in figure 3.)

FIG. 1. Typing rules for objects

in section 8). An expanded version of this type is: expands to

rec a.{leq : &« — bool; p) —

sig (rec a.{copy : a;getx : int;
rec a.{leq : @« — bool; p) — rec a.(leq : & — bool; p) e ( {copy 8 2

method getx : int
The functionmin can be used for any object of typavith a end.
methodleq : 7 — bool, since the row variablg can always

be instantiated to the remaining methods of type Typing contexts are extended with class variable bindings

and superclass bindings:
3. Classes Au=...|A+z:0| A+ supers: o

The syntax for classes, introduced in section 1, is formally/Vé @dd new typing judgments = b : p andA F d : ¢

given in figure 2. The body of a class is a sequehad that are used to type class bodies. We also rec_ieﬁfnm
small definitionsi. We assume as given a collection of classPe 4 where allfield, method, super, an.dsel.f bmdmgs
identifiersz € Z, and a collection of super-class identifiers @ve been removed. Typing rules are given in figure 3. We
written s. redefined* to be A \ {field, self, super}, so that super-
We have also enriched the syntax of objects so that iflass bindings are also removed. Generalization of class
reflects the syntax of classes. That is, objects can also J¥PesGen(y, 4) is, as for regular types; a. v wherea are
built using inheritance, and fields need not precede method&'l Variables ofy that are not free i. ,
In practice, classes will only appear at the top level. How-_  €1ass bodies are typed by adding each component (inher-
ever, itis simpler to leave more freedom, and let them appedf®Cce clause, field, or method) one after the other. Fields
anywhere except under abstraction. Technically, it would bé'® typed inA*, since other fields, self, and super bind-

possible to make them first-class, that is to allow abstractioff'dS should not be visible in field expressions. On the con-
of classes; however, class types should be provided explidf@"y; methods may depend on all fields and super-classes
itly in abstractions. The little gain in practice is probably not that were previously defined (ruldETHOD). TheINHERIT

worth the complication (a class can still be parameterized bjule ensures thafelf is assigned the same type in both the
other classes using modules). superclass and the subclass; all bindings of the superclass

The type of a class structurgig (7,) ¢ end, is composed are discharged in the subclass, and the superclass variable
y 1 . - .

of the typer, of self (i.e. the type an object of this class is given the type of the supgrclass. Superclass variables are

would have), and the type of its field bindings and method only visible while typechecking the body of the class but are

bindings. Class types are written Type schemes are not exported in the type of the class itself, as shown by rule
extended with class types. THEN. The ruleOBJECT is more general than (and over-

rides) the one of figure 1; it corresponds to the combination
of rule CLass-Bopy and ruleNEw.

When a value or method component is redefined, its type
cannot be changed, since previously defined methods might
have assumed the old type This is enforced by using in
rule THEN the @ operator which requires that the two ar-
gument sequences be compatible on the intersection of their
In the concrete syntax;, and ¢ are combined: methods domains. At first, this looks fairly restrictive. But it still
that appear irr, but not ise are flaggediirtual (as they are  leaves enough freedom in practice. Indeed, the class type
not defined); other methods appear bothjrand ¢, with  can also be specialized by instantiating some type variables.
the same type. When necessary, a type variable can also Methods returning objects of the same type as self are thus
bound tor,. For instance, the concrete syntax correctly typed.

yu=sig(7)pend|T — 7

pu=0|¢;fieldu: 7|y ;methodm: 7
| ¢ ;super s: @

o= ...|Va.ry

sig (a) virtual copy : « method x : int end class duplicable () = struct
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az=...|(b)|classz=cina|newc| s#m Expressions
cu=z|fun (z)c|ca|struct b end Class expressions
bu=0|d;b Class bodies
d ::= inherit cas s | field u = a | method m = a
FIG. 2. Core class syntax
(FIELD) (METHOD)

A*Fa:T
Al fieldu=ua: (fieldu: 1)

At self: (m:7;7) AtFa:T
At method m = a: (method m : 7)

A 4 self i1y b: oy

(INHERIT) (THEN)
A*Fc:sig(ry) pend  AF self:7, (Basic) AFd: ¢ A+ (1 \ method) b : o
Al inherit cas s: ¢ + (super s: @) AFQ:0 Al d;b: (o1 )\ super) ® v
(CLAss-BoDny) (NEW)

Al c:sig(ry) ¢ end

Ty = (method (¢))

AF struct bend: sig (1) ¢ end

AbFnewc: Ty,

(SUPER) (OBJECT) (CLASS-INST)
super s p € A method m: 7 € ¢ A* +self i1y kb Ty = (method (p)) z:Va.ye A
AbFs#m:T AF(b): Ty Al z:y[T/a]
(Crass-FuN) (CLAss-APP) (CLAss-LET)
A+z:T7hec:y Abc:Tm— v Aba o7 AFc:y A+z:Gen(y,A)Fa:7
AbFfun(z)c:7— 7y Abcd v Akl classz=cina: 7T

FIG. 3. Typing rules for classes

method copy = {( )}
end;;
class duplicable
method copy : «
end

tunit — sig (a)

In this class typegq is bound to the type of self. Thus,

and App for core ML (described in appendix 1). The two
rulesCrass-LET andCrLASS-INST are essential since poly-
morphism of class types enables method specialization dur-
ing inheritance, as explained above.

As an illustration of the typechecking rules we give a
detailed derivation of the typing of the classaled point
in the appendix 2.

objects of any subclass of this class have types that match

rec a.(copy : «a; ..). Classduplicable can then be
inherited, and methodbpy still have the expected type (that
is, the type of self).

class duplicable_point x struct
inherit duplicable () inherit point x

end;;

class duplicable_point :
field x : int ref
method copy : «
method move :

end

int — sig (a)

int — int

4. Coercion

Polymorphism on row variables enables one to write a
parametric function that sends a messagéo any object
that has a method:. Thus, subtyping polymorphism is
not required here. This is important since subtyping is not
inferred in Objective ML.

There is still a notion of explicit subtyping, that allows
explicit coercion of an expression of typgeto an expression
of type m» wheneverr; is a subtype of». As shown in the
last example of section 1, this enables one to see all kinds
of points just as simple points, and put them in the same

Note that ancestors are ordered, which disambiguates posélata-structure. o _
ble method redefinitions: the final method body is the one The language of expressions is extended with the follow-

inherited from the ancestor appearing last.
Rule Crass-LET, CrLass-INsT, CrLass-Fun and
CrAss-Aprp are similar to the ruled.eT, INST, FUN

ing construct:

S
|

Jle:T <)
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The corresponding typing rule is:

(COERCE)

<7 At a:6(r)
A (a:7<:7):0(1")

6 substitution

The premiser < 7/ means that is a subtype of’. As far

choice is simpler and more general, since classes can also be
inherited in objects.

The reduction of object expressions to values is performed
in two steps, described by the four rules for objects: in-
heritance and evaluation of value components are reduced
top-down (first rule, we remind that the meta-notatian
stands for the concatenation of sequences); the components
are then re-ordered (last rule) and redundant components
removed bottom-up (two middle rules).

The invocation of a methodw)#m evaluates the cor-

as typechecking is concerned, we could have equivalentlyesponding expressiom(m) after replacing self, instance

introduced coercions as a family of constats = <: 7)
of respective principal typega.r — 7/ wherea are free

variables, and overriding by their current values. That s, the
following substitutions are successively applied:

variables ofr andr’ indexed by all pairs of typeg-, 7/) such
thatr < 7/,

The subtyping relatior< is standard [4]. We choose
the simpler (and algorithmically more efficient) presentation
of [16]. The constraint < 7’ is defined on regular trees as
the smallest transitive relation that obeys the following rules:

1. [{(w)/self] replacesself by (w),

2. [w(u)/u]“S%™ ) replaces each outer instance variable
u by its actual value. Inner instances @f i.e. those
appearing inside an objeéty’), are not replaced since
they are related to the inner object. Note thdu) is a
value and does not contain free fields.

3. [(w @ (field u = a, V)Y /{{u = a,*SV)}VY re-
places each outer occurrence of an overridifg =
a,"<V)} by a new object built fromw by overriding
fieldsu € V by (field u = a,)“S". Inner occur-
rencesij.e. those appearing inside an objéat’), are not
replaced since they are related to the inner object. Note
thata,, is not necessarily a value, and may contain other
outer overriding of fields, that should be replaced simul-
taneously, or equivalently in a bottom-up fashion (deeper
occurrences being replaced first).

Closure rules

=T <17 —=1="1 <17 AT <7
(ry <{(ry=7<7
(m:m;m) < (m:7m;7) =71 <1 A1 <7}

Consistency rules

7 <11 — 19 => 7 is Of the shape] — 7}
7 < (19) = 7 is of the shapér{)
7 < (m:1;72) = 7is of the shapém : 7{; 73)
T<P=r7=0
T<a=T=aqa,

Coercion behaves as the identity function: the coercion
of a value reduces to the value itself. Subject reduction can
then only be proved by extending the type system with an

. . ) implicit subtyping rule:
Our subtyping relation does not enhance subtyping assump-
Aba:T <7 (SuB)

tions on variables, and it is thus weaker than the subtyping

relation used in [12], except on ground types. Ata:7
For instance, the expressi@nn (z) = has typev a, o |

a < do.a— o in[12], while we can only type the equiva-

lentexpressiofiun () (z : 7 <: /) for particular instances

(r,7") of (a, &) such that- < 7.

This means that a well-typed expression that has been re-
duced may not always be typable without r6les. This is

not surprising since explicit subtyping may disappear during
reduction. Thus, implicit subtyping may be required after
reduction. It is possible however to keep explicit subtyping
information during reduction, and avoid the need for rule

Sus. This would be obtained by replacing the rule
We give a small step reduction semantics to our language.

Values are of two kinds: regular expression values are either
functions or object values. Class values are either clas
functions or reduced class structures. Object values an
reduced class structures are composed of methods and fields
which are themselves values; fields must precede methods, . (
and neither can be o_verndden in vqlueg. \(alues, evaluation — (my = (vfEmy : T <: 7)€
contexts, and redqctlon rules are given in figure 4. (fun (x) a: 7 — 7o <: 7} — 73)
_The flr_st reduction rule ShOWS that objec_ts are just a re- — fun (z) (a[(z: 7 <:m)/z]: T2 < 7T5)
stricted view of classes where instance variables have been
hidden. The counterpart is that types, although not actively partici-
We have chosen to reduce inheritance in objects rathgvating, would be kept during reduction. The formulation we
than classes. It would also be possible to reduce inheritandeave chosen has a simpler semantics and makes it clearer
inside classes, and reorder methods and fields as well. Otinat the reduction is actually untyped.

5. Semantics

(a:7<:7")—a

gy the following rules

m; @ 7€) < (my o TETY)
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Values

vu=...|fun (z)a| {w)

ve := fun (x) ¢ | struct w end

we=0|wg;w field components preceectthod components, no overridings
wq :=method m =a | field u = v

Evaluation contexts

E:=][|lete=Fina|FEa|vE|E#m|(F)|newE |classz=FE_. ina
E.:=[|E.a|v. E | struct F end
F:Z:[]|Fd;b"wd;F

F; := inherit E.as s |fieldu=F

From classes to objects
nev (struct w end) — (w)
Reduction of objects
inherit (struct w end) as s ;b — w @ (b [w(m)/s#m]mEdom (w)
fieldu=v;w —w if u € dom (w)
method m =a;w — w if m € dom (w)
method m = a; (field u = v;w) — field u = v ; (method m = a ; w)
Reduction of method invocatio/(= dom (w))
(w)#m — w(m)[(w)/self][w(u) /u]*"[{w @ (field u = a,“"))/{{u = a, ")}V
Reduction of coercions
(a:7<:7")—a
Reduction of other expressions

let z = v ina — afv/z] class z =v ina — alv/z]
(fun (z) a) v — alv/x] (fun (z) ¢) v — clv/x]
Context reduction
Ela] — Eld]if a — d E[b) — E]ifb— ¥V
Elc] — E[d]ifc— ¢

FIG. 4. Semantics of Objective ML

The soundness of the language is stated by the two fol- Types of Objective ML are a restriction of record types.
lowing theorems. First-order unification for record types is decidable, and solv-
able unification problems admit principal solutions, even in
Theorem 1 (Subject Reduction)Reduction preserves typ- the presence of recursion [31].
ings (i.e. foranyA, if A F a:7anda — d then The unification algorithm is a simplification of the one
A ka7 used in ML-ART [31]. Itis described in figure 5 as a rewrit-
ing process over unification problems. This formalism was
introduced in [15] and has already been used for record types
in [30]. A unification problem also called anificand is a
multi-set of multi-equations preceded by a list of existentially
quantified variables. Itis writteBaq,...ap.e1 AL .. eq A
Wulti—equatione is a multi-set of types writtemr;=... 7,.
The algorithm assumes that recursive typesr have been
encoded using equatiofsy. a=r.

A substitution is a solution of a multi-equation if it makes
all its types equal. A solution of a unificand is the restriction
6. Type inference of a common solution to all its multi-equations outside of the

existentially quantified variables.

Theorem 2 (Normal forms) Well-typed irreducible normal
forms are valuegi.e. if ) - a : 7 anda cannot be reduced,
thena is a value.)

See appendix 4 for proofs of these theorems.

These results easily extend to cope with constants, as i
core ML, provideds-rules for constants are consistent with
their principal types.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 7



(FusE) (DECOMPOSE) (1) (GENERALIZE) (2)
a=e N\ a=¢ flai’€h=f(aj ") =e elr/al ag¢T

a=e=¢' fla;i€h)=e A (a;=al)i€! Ja.e Na=T

(MUTATE)
(mq @ aq;af)=(mg : ag;ab)=e

Ja/. (mg : ag;ab)=e A aj=(mz : as; ') A ab=(mq : aq;a’)

(1) In RuleDECOMPOSE, f is any type symbol, includingn : _; _) as well.
(2) To ensure termination, ruldENERALIZE must be restricted to the case wheris not a variable and appears in
e but not as a term variable ef

FIG. 5. Unification as solving multi-sets of multi-equations

Unificands can be simplified by applying the rewriting Theorem 3 (Principal types) For any typing contextl and
rules given in figure 5. Structural rules have been omittedany progran that is typable in the context, there exists a
they include associativity and commutativity of bothand  typer such thatd + a : 7 and for any other type’ such that
= and the extrusion and renaming of existential variablesA + a : 7’ there exists a substitutiochhwhose domain does
RulesFusg, DEcoMPOSE and GENERALIZE are standard. not intersect the free variables dfand such that’ = 6(r).
Rule Fuse merges two multi-equations that have a vari-
able in common. Rul®EcoMpPOSE decomposes terms of a
multi-equations into smaller ones. RUENERALIZE splits 7. Abbreviation enhancements
terms into smaller terms. Thus, unificands can always be
rewritten so that terms are of depth at most one. This permits Object types tend to be very large. Indeed, the type of an
maximal sharing during unification. It also ensures termina-object lists all its methods with their types, which can them-
tion of rewriting in the presence of recursive types. The onlyselves contain other object types. This quickly becomes
difference with unification in a free algebra is the mutationunmanageable [31, 11]. Introducing abbreviations is thus
rule Mute for left-commutativity. It identifies two terms of crucial importance. This section presents the general ab-
(mq : 11;71) and (mg : T2;74) with different top symbols breviation mechanism of Objective ML and the next section
(my : _;_) and (mg : ;_) provided their equality can be focuses on abbreviating object types. The simple type ab-
established by the application of an axiom at the root. breviation mechanism of ML is not sufficiently powerful:
The algorithm proceeds by rewriting multi-sets of multi- abbreviations are expanded and lost during unification and
equations according to the above rules. Each step preservidgey do not interact well with recursive types. Several im-
the set of solutions. Moreover, the process always terminateprovements have thus been made to the abbreviation mech-
reducing any unificand to a canonical form. anism. First, abbreviations are kept during unification and
A unificand is in a solved form if all of its multi-equations propagated as much as possible. Second, a larger class o
are merged and each of themis fully decomposgedifcon-  abbreviations are accepted: abbreviations can be recursive
tains at most one non-variable term). Principal unifiers carand their arguments can be constrained to be instances of
be read directly from solved forms. A canonical unificandsome given types.
that is not in a solved formed contains a clash (two incom- In our implementation, types are considered as graphs. In
patible types that should be identified) and is not solvable. particular, when two types are unified, they become identical
The framework and the meta-theory of unificands are stanrather than two separate, equal types. A construct has been
dard. The equational theory of object types is a sub-case afdded to the syntax to express type graphs: the construct
the more general algebra of records types; for details anfr as «) is used to bindx to , similarly to the notation
proofs, the reader is referred to [30]. rec a.7. However, a main difference is that with aliages
Objective ML does not allow classes as first-class valuesis also bound outside af. As an example, the two types
Indeed, in the expressiafun (x) a, variablex cannot be  ((m: a) as o/) — o/ and(m : a) — (m : a) are different
bound to a class (or a value containing a class). Thus, claggaphs, that represent the same regular tree. There are two
types never need to be guessed. Polymorphism is only intraeasons for considering types as graphs. First, unification
duced alLET bindings of classes or values. This ensures thatolls types. For instance, unifying types= o and7’ =
type inference reduces to first-order unification, as it is thelm : «) results in typer = 7/ = ((m : a) as «), rather
case in ML. Consequently, Objective ML has the principalthan instantiatingx to (m : o) as o’ in both types (in the
type property. Type inference for classes is straightforwardlater caser’ would becomém : (m : /) as o’)). Second,
The links between first-order unification, type inference andunification propagates abbreviations. Abbreviations can be
principal types are described in a more general setting in [29)considered as names for nodes. Unifying an abbreviated
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type with another type makes both types abbreviated. Foabbreviation(7) . The expansion df((7) «) is equal to the
instance, unifying the argument of a functional type to anresult of applying the substitutighto the expansion dff) .
abbreviated type may propagate the abbreviation to the resuh particular, constraints are preserved by substitution.
type. This is demonstrated in the following example.

8. Abbreviating object types
let bump x = x#move 1; Xx;;

value bump : We will now describe how the abbreviation mechanism
(( move : int — fB; .. ) as a) — a = presented in the previous section is used to generate abbrevi-
(fun) ations for objects. This mechanism is used to automatically
abbreviate object constructors: the expressien z will
have typer;, — ... —» 7, — (7/) k., wherex, is the

Nodes are shared between the argument type and the rgppreviation associated with class

sult type. The ellipsis stands for an anonymous row  General type abbreviations, introduced in the previous
variable. ~ When typing the expressidsump p below,  gection, can be used to simplify object types. Rather than
type((move : int — f; ..) as @) andtypepointare  goring types to ensure that object types are well-formed, we
identified. The type obump p is thus also abbreviated 10 yequire the stronger condition that any two object types that
point. share the same row variable must be equal. This eliminates
incorrect types such a®) — (m : 7;p). Types such as
(m : 711;p) — (m : 72;p), at the basis of record extension,
are also rejected. However, no primitive operation on ob-
jects exhibits such a type. These types can thus be ruled
out without seriously restricting the language. Moreover, all
sharing rePrograms keep the same principal types. This restriction was

veals too much useless information. So, only aliasing ofmplemented to avoid explaining sorts to the user. It also

open object types (thus row variables can be printed as embellkes the syntalx for t)épes slome(\j/vgat (ﬁl.earer’ Fas LOW varl-
lipses) and aliasing defining recursive types are printed. |poes can t €n always be repiaced by ellipsis. ur_t ermore,
would be possible to remove some aliasing during type gen§har|ng can still be de_scrlk_)ed with aliasing. For instance,
eralization, so that printed types would exactly reflect theirl™ : T:p) — {m : 7; p) iswritten((m : 7..) as a) — a.

internal representations. However, this would complicate class definiionclass z = c in ... automatically
the implementation needlessly. generates an abbreviation for the type of its instances. For

Abbreviations can be recursive. That is, in the definitionSPe€i?¥ing it, one actually needs to add type parameters to
of the abbreviatiorsype (a) x = 7, the type constructor the class definitions, corresponding to the one of the abbre-

x may occur in the body, as long as all occurrences have viation. That is, we should write

the same parametesis This restriction is extended to mu- class (@) z=cin... (1)

tually recursive abbreviations. It ensures that abbreviations

expand to regular trees. In the implementation, any type conwhere the parametetsmust appear in.

structor standing for an abbreviation caches the expansions In fact, abbreviations are generated from clagees It

of abbreviations it appears in. Thus, when an abbreviatiofollows from type inference that the class definitiohas a

is expanded several times during the traversal of a type, ®rincipal class typey — ... — 7, — sig (1) ¢ end.

expands each time to the same type. Here,T, is the type matched by objects in all subclasses. It
Type abbreviations are generalized to allow constraints o#f always of the form(m; : 7;°/; 7) wheremethod () is

the type parameters of the abbreviations. This is an extensich Subsequence din; : 7;)'' and is either() (this is a

to the abbreviations of LCS [5], that were also used in [31]. InPathological case, where the class cannot be extended with

an abbreviation definition, parameters are types rather thaf€W methods) or a row variabje If method (i) is exactly

type variables:type (7) x = 7. All free variables ofr (i : 7;)*€1, then itis possible to create objects of that class;

must be bound irF. Actual arguments of an abbreviation they will have typer,[0/p]. Otherwise, the class is virtual

must always be instancé$7) (for some substitution) of and can only be inherited in other class definitions. If all free

the parameters. Then, the abbreviation can expand to typetype variables of, exceptp are listed in, we automatically

0(ro). For instance, if the type constructeris defined as define two abbreviations:

type (axa’) Kk = a — o/, then(int xbool) « will expand

to int — bool. To expand an abbreviation, the arguments

are usually substituted for the parameters. Instead, we choo3de former matches all objects of subclasses dthe latter

to unify the arguments with the corresponding parameterds a special case of the former, and abbreviates any objects

The constraints need only to be enforced when parsing af classc.

type given by the user. Then, expansion is guaranteed to Letus consider an example. Clagsint has typeint —

succeed. Indeed, a substitutibnan always be appliedto an sig ({(move : int — int;p)) ¢ end for somey whose

let p = new point 7;;
value p : point = (obj)
bump p; ;

— : point = (obj)

Not all the sharing is exposed to the user :

type (&, p) #r. =Ty type (@) k. = (&, 0) #k.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 9



only method isnove : int — int. Thus, class point is not

As aresult of the abbreviation mechanisms, type inference

virtual. The two following abbreviations are generated formay reject some class definitions whose principal types have

this class:

type p #point = (move : int — int;p)
type point = (move : int — int)

One can check that the typeint is indeed an abbreviation
for the type of objects of the clag®int, and that the type
of an object of any subclass of the clgsgnt is an instance

of the typep #point.

In the concrete syntax, the row variables treated anony-

free variables. For instance, the following variant of class
point is rejected, since the methgdtx is polymorphic and
therefore the class should be parametric.

class point x0 = struct
field x = x0
method getx = x

end;;

Of course, one could choose an arbitrary ground class type,
for instance:

mously (as an ellipsis) and is omitted. The former abbrevi-

ation#«,, is given a lower priority than the regular ones in class point : int — sig
case of a clash. It also vanishes as soon as the row variablefield x : int

is instantiated, so as to reveal the value taken by the row method getx : int

variable.

In fact, we allows, and #«. to occur in the definition
of b. The previous definitions can be rewritten to handle th

general case correctly.

Constrained abbreviations are natural for abbreviating o
jects, as, for instance, a sorted list of comparable objects
should be parameterized by the type of its elements, whicge
in turn is not a type variable. Moreover this extension make
it possible to avoid row variables as type parameters (as thg
whole object type can appear as a parameter).

Constrained type abbreviations are also convenient sinc
in a class definitiorlass (@) z = c in ..., class type para-
metersa may have been instantiated to some typewhile
inferring the class typey — ... — 7, — sig (7,) ¢ end.
The two abbreviations generated by the class definition arg

thus:

type (Ta, p) #k- =Ty type (@) k. = (@, 0) #k.

€

e

end

Any other ground type could be used insteadiat. We
decide to reject those programs. This preserves the property
that any typable program has a principal type —and all other
useful properties of the type system.

This phenomenon is not new. It already appeared in

veral extensions of ML. Imperative constructs limit poly-

anorphism. Thus, some variables that are not generaliz-

ble may occur in the type of a top level expression. In
such a case, most languages would reject the program. For
instance, the extension to ML with dynamics [20] rejects
fun x — dynamics x, since the dynamic type af in
dynamics x is statically unknown.

All the examples above would have principal types as
ng as type inference is concerned. We can argue that
some programs have been rejected for sake of simplicity and
uniformity of the language, but not because of a failure of
type inference: For instance, in Objective ML we could just

The latter is unchanged except that the constraints of the firstmit the corresponding abbreviation whenever some type

ones are implicit in the second one.

parameter is missing, and print a warning message instead

Class types are shown to the user stripped of their typef an error message.
parameters. The parameters that constraint the type abbrevi-

ations are described by constraint clauses:

class « circle (p : a) = struct
field point = p
method center = point
method move m =
if m = O then 0 else
point#move (1 + Random.int m)

end;;
class « circle : @ — sig
constraint a = ( move : int — int;

field point : «

method center : «

method move : int — int
end

This class defines the abbreviation

type ((move : int — int;p) as «) circle =

(center : a;move : int — int)

10 THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998)

9. Extensions

This section lists other useful features of Objective ML
that have been added to the implementation. Imperative fea-
tures have been ignored in the formal presentation since their
addition is theoretically well-understood and independent of
the presence of objects and classes. Other features are les
important in theory, but still very useful in practice: private
instance variables, coercion primitives.

Before we explore these extensions, let us consider an
interesting restriction of the language. If recursive types are
only allowed when the recursion traverses an object type, Ob-
jective ML becomes a conservative extension of ML, which
we claimed in the introduction. Of course, all ML programs
can be defined, and behave similarly. Moreover, programs
that are syntactically ML programs are now well-typed ML
programs if and only if they are well-typed in Objective
ML. However, in the implementation Objective Caml, the



presence of modules requires the use of recursive abstraafth the corresponding typing rule:
types as well. This is because recursive object types may
be abstracted. Thus, Objective Caml is not strictly speaking
a conservative extension of ML. Still, it is a conservative
extension of ML with recursive types.

A*Fa:T A—l—:U:Tl—b:go(

LocaL)
AFlocalx=ainb:p

Local bindings are reduced top-down, like inheritance:
9.1. Imperative features
local z =v in b;b' — blv/z] + ¥

We have intentionally used references in the very first
example. We did not formalize references in the presentatio practice, however, local bindings would rather be com-
of Objective ML, since we preferred to keep the presentatiorpiled as anonymous fields. This would make methods inde-
simple and put emphasis on objects and classes. The additig@ndent of local bindings.
of imperative features to Objective ML is theoretically as  Initialization parameters could also be seen as local bind-
simple and as useful practically as their addition to ML. Bothings in the whole class body, and could also be compiled as
the semantics and the properties of reduction with respect tdnonymous instance variables. For instance, the definition
typing extend to operations on the store without any problem. ]
The formalization copies the one for core ML. class point y = struct method x =y end;;

In fact, the implementation Objective Caml also allows
fields to be mutable in a similar way mutable record fields ar
treated in Caml [21]. For instance, we could have written:

could be automatically transformed into the equivalent pro-
ram:

class point y = struct
local y = y in method x = y
end;;

class point x0 = struct
field mutable x = xO0
method move d = (x «+— x + d; x)
end;;
class point : int — sig
field mutable x : int
method move : int — int
end

That way, the method becomes independent of the initial-
ization parametey. Then, classes can be reduced to class
values: inheritance is reduced to local bindings, local bind-
ings are flattened, and method overriding is resolved.

Objective Caml only allows generalization of values (ac-2-3- CO€rcion primitives

tually, a slightly more general class of non expansive ex- o ) ) ) )
pressions). The creation of an object from a class not Explicit coercions require both the domain and co-domain

considered as a value (as it is the application of functiorf® P& specified. This eliminates the need for subtype infer-
new c to some arguments). Mutable fields in classes ar&"Ce: In practice, however, itis often sufficient to indicate the

typed as any other fields, except that mutability propertiesco'domai” of the coercion only, the domain of the coercion

are also checked during typechecking. being a functions of its co-domain. _ ,
For convenience, we introduce a collection of coercion
primitives:
9.2. Local bindings
g (C<iT):Va.S(r)—r

As shown by the evaluation rules for objects, both Valuewherea are free variables & () andr, andS(7) is defined

and method components are bound to their rightmost defiz¢ ¢510ws:
nitions. All value components must still be evaluated even
though they are to be discarded. *

Object-oriented languages often offer more security

We call positive the occurrences of a term that can be
reached without traversing an arrow from the left hand

through private instance variables. The scope of a field can
be restricted so that the field is no more visible in subclasses.

This section presents local bindings, that are only visi-
ble in the body of the class they appear in. This is weaker
than what one usually expects from private fields, as a class
cannot, for instance, inherit a field and hide it from its sub-
classes (see section 10.1).

The syntax is extended as follows:

d:=...|localz=ainb
Fy:=...|localz=FEinb

side. (This is more restrictive than the usual definition,
where the arrow is treated contravariantly).

For non recursive terms, we defisg(7) to ber where
every closed object type that occurs positively is opened
by adding a fresh row variable.

Terms with aliases are viewed as graphs, or equivalently
as pairs of a termy and a list of constrainta; = 7.

Let d be a renaming of variables; into fresh variables.

Let 7/ ber; in which every positive occurrence of each
«; is replaced by («;).

We return(So(Té),{G(ozi) = S()(Ti/),i c I} U {Oéi =

1,1 € I}) for S(7).
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For example, m' is implicitly hidden when inherited in class’, and that
S((my : (ms : int) — (ms : bool))) = classz” defines a methogh’, p_oss@bly wit_h another type!
(my : (ms : int) — (m3 : bool; p3); p1) Clearly, when a method is hidden in a class, self-
invocations ofn in all other methods of should be replaced
by calls to a function representing the methad This is a
S({m:a)asa)=(m:d;p)asa complex operation that is difficult to compile.

Another problem is that method’ appears in the type of
self. Hiding the method thus requires to modifposteriori
the type ofself. This would not be correct if, for instance,
this type is the type of a method argument.

The operatolS has the two following properties: A partial solution is to give each method a different view
. B of self inside classes. This is usually the case when classes
(1) sr)=r (2) I OSE) =7A0(r)=7) are treated as a collection of pre-methods. Another choice,
The former gives the correctness of the reduction gtef:  weaker but still useful, is to split the input and output view
7) — (a : S(7) <: 7). The latter shows that if has type  of self. The former lists the methods that are required
T then(a <: 7) also has type. while the latter enumerates methods that are provided. How-

There is no principal solution for an operatSrsatisfy-  ever, in the presence of type inference, such solutions tend
ing (1). Considerr to be (m : int) — int. There are to increase the size of a class to a point that may become
only two solutions,(m : int) — int and() — int and  unreadable [31]. The gain in expressiveness is also weak-
none is an instance of the other. This counter-example showsned by a later detection of errors. Clearly, it is an error if a
the weakness of the simulation of subtyping with row vari-method has incompatible required and provided types. How-
ables, especially on negative occurrences. There are otheyer, this would only be detected when the object is created.
examples of failure on positive occurrences, but only usingn the design of Objective ML, we have deliberately lim-
recursive types. For instanceyifis (x : a) as «, then both  ited the expressiveness of class types to keep them readable
(x:7;p)and(x : B;p’) as B are solutions fol5(7), butno  Many variations are theoretically possible, but very few of
solution is more general than both of these. Our choicg of them seem to improve expressiveness significantly without
(and correspondingly, our choice of coercion primitives) issacrificing simplicity.
somehow arbitrary, but works well in practice. This justifies  Another possibility is to introduce private methods. They
the exclusion of semi-explicit coercions from the core lan-would not appear in the type afelf, consequently, they
guage, but leave them as a collection of primitives. In factshould be invoked differently. Private methods could have
most coercions are of the forfa : S(7) <: 7). Thus, the the same scope as fields. In particular, they could be hidden
domain of a coercion rarely needs to be given. a posteriorias well.

The addition offinal classes could also resolve the prob-
lem. These classes could not be inherited. Then, a class
could be soundly matched against a final class interface that
Qmits some of its methods.

S((m:a—a)asa)=
(m:((m:a—a)asa)—a;p)asa

10. Future work

This short section describes three possible extensions
importance to Objective ML. Each extension requires fur-
ther theoretical and design investigation before it can be0.2. Polymorphic methods
integrated within Objective Caml.

In a classical programming style, functions and data are
clearly separated. Functions are often polymorphic and thus
can be applied uniformly to different kinds of data. Data
fnay be structured. It very rarely carries functions, and is

10.1. Restriction of class interfaces

In section 9.2 we have shown that field components ca

be declared local to a class. However, this does not enabfeSU@lly monomorphic. In objects, data and methods are

class components to be hiddanposteriori Assume, for jointly defined and stored or passed as arguments together —

instance, that a library provides an implementation of a clas&t €8st from a theoretical point of view.
- with two fieldsz andz’ and two methods: andm/. A Let-bound top level functions often become methods of

module may define a clas¢ that inherits from an imported A-bound first-class objects. Unfortunately, polymorphism is

class:’ whose interface is a restriction of the one of the clasdSt during this transformation. For instance, a class imple-
- to the fieldz and the methodh only. Can class be used mentlng sets, would naturally provide a fold method. The
as an import to the module? This problem corresponds to diferred class type would be of the form:
common situation of interface restriction when reusing code.
However, interface restriction is not currently possible.
Private fields would actually not be difficult to hide. How- class a set = struct
ever, hiding methods in subclasses conflicts with late binding method fold : (@« — 8 — 3) — 8 —
and a flat method name space. For instance, assume, metheati
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However, this is rejected, since variabbeis unbound in  class eq_point : int — sig

« set. An attempt to fix the problem would be to parame- field x : int

terize the classet overg as well, that is, to replace set method getx : int

in the definition above bya, ) set. However, this is method eq : point — bool

not very intuitive, since the object stays parametriGgven  end

when all its fields have a ground type. Moreover, the method_ S ) )
f01d becomes monomorphic and thus can only be applied ta’hls_ §0Iut|on_|s more gener_al, although it usually requires
functions of the same type, whenever the objedtlound. ~ €XPlicit coercion when invoking the methed:

The intuition is of course that the methdd1d should
be polymorphic. That is, the clagst should have the
following class type: Polymorphic methods would allow a more natural class type
for theeq_point (first definition):

let p = eq-point 1 in p#eq (p (: point);;

class a set = struct ...
method fold : All . (@ — 8 — ) —  — f class eq_point : int — sig
end field x : int

The addition of polymorphic methods could also be used Tmethod getx : int

to reduce the number of explicit coercions. In a class de- method eq p : .
finition methods may have types more polymorphic than A1l ((getx : int; ..) as a). a — bool
expected. For instance, assume that class point has type: end; ;

class point (int) = struct Moreover, thanks to the polymorphic (anonymous) row vari-
able, messages could then be sent to the methasith an
argument of type eithgfoint or eq_point.
We consider that the lack of polymorphic methods is a
Then, the following subclass @bint will not typecheck: weakness of Objective ML. We believe that polymorphic
methods would make most explicit coercions unnecessary.
Some solutions to extend ML with first class-
polymorphism already exist in the literature. Simple but
rudimentary proposals can be found in [31, 24] and better
integration of first-class polymorphism inside Objective ML
The parametes of the methodkq does not need to be a point has recently been studied in [14].
but an object with methogdetx of type int. Thus, its type
(getx : int; ..) — bool has a free row variable. As
for the case oket, the row variable in the type gf can be
bound in in a constraint type parameter as follows:

field x : int method getx : int
end;;

class eq_point x = struct

inherit point x

method eq p = p#getx = self#getx
end;;

10.3. Integrating classes and modules

Objects and classes of Objective ML are orthogonal to

class a eq-point x = struct the other extensions of ML. In particular, the module sys-
inherit point x tem of ML extends directly to classes and objects [18]. In-
method eq (p:a) = p#getx = self#getx deed, the implementation of Objective ML, called Objec-
end; ; tive Caml [19], offers a rich language of both modules and
class o eg_point : int — sig classes. Classes and modules share a lot of properties: they
constraint o = ( getx : int; .. ) offer some form of abstraction; they also help structuring
field x : int large applications; and they facilitate reusability of code. In
method getx : int fact, they are quite different. Modules are a very general
method eq : @ — bool and powerful abstraction. However, it is difficult to allow
end recursion between several modules or to give a meaning to

Again, this is not very intuitive and one might prefer to add sr;$I1;|nS|de imlti)zduc;es. roc;]i tg]etﬁthter: han(rj,\;:lzssitsr ar;e Ia murt]:h
a stronger type constraint. One choice is to requir® ore specialized paradigi at nas proved extremely co
venient for some applications. Objects find their limitation

be of the same type a1£. However, this unnecessarily with multiple dispatch. Hiding components also remains a
makeseq a binary method and so restricts its further US€ yiccio o task P ' 9 P

with arguments of typeq_point only. Constraining to o Lo L
be apoint in the definition of the methodq is another . For historical reasons, I|brar|e_s of Objective Caml are
implemented as modules. In practice, many of these libraries

possibility: could be rewritten as classes. Choosing one style or another
class eq_point x = struct is not insignificant, since it is a global commitment to the
inherit point x architecture of the application. The class version and the
method eq (p:point) = p#getx = self#getx module version of the same libraries are very similar, but
end; ; their code cannot currently be shared. This is, of course,
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unsatisfactory. We hope that more work will allow a betteravoid their encoding as methods not involving self, and to
integration of modules and classes. keep with the more simple state-abstraction mechanism by
scope hiding. Technically a major difference, Objective ML
does not allow method overriding.

Openrecord types are connected to the notion of matching
— . introduced by Kim Bruce [7, 8]. Matching seems to be at
The work closest to Objective ML is ML-ART [31]. Here, least as important as subtyping in object-oriented languages.

object ty_pes are also based on recor d types and havg S imi!ﬁrow variables in object types express matching in a very
EXPrESSIVENESS. State gbstra_cno_n IS bas_eq on e>_<pI|C|t SXRatural way. While explicit matching may require too much
tential ty_p(_as In ML'.ART; in Objective ML’. itis O*?ta'”ed_ by type information, type inference makes object matching very
scope hiding, but it could also be explained with a S'mplepractical

form of type abstrac'_uon. N.O coercion _at all is permitted in Palsberg has proposed type inference [27] for a first-order
ML-ART between objects with different interfaces. Unfortu- version of Abadi and Cardellis calculus of primitive ob-

nately, ML-ART has no type-abbreviation mechanism. Thisjects [1]. However, that language is missing important fea-

was a major drawback, which motivated the design of Ob'tures from the higher-order version [2]. Type inference is

jective ML. On the other hand, cla_sses _ar_e first c_:lass Valueﬁased on subtyping constraints and the technique is simi-
in ML-ART. We, however, do not think this is a major advan- lar to the one used in [11]. This latter proposal [11, 12]

tag_e. The restriction is a deliberate c_:hoice in the design of |oser to a real programming language, and more suited
Objective ML, to keep the language simpler. In theory, mosk, oo mnarison. Here, the authors use a subtyping relation

features of ML-ART could have been kept in Objective ML. that is more expressive than ours, as they can prove subtyp-

In practice, however, it would have changed the languagg,q ynder some assumptions. They can also infer coercions.
significantly. _ _ However, the types they infer tend to be too large. Indeed,

Another simplification in Objective ML is that in classes they do not have an abbreviation mechanism. Their inheri-
all methods view self with the same type. This s notrequireqance is weaker than ours since they must explicitly list all
by the semantics, and could technically be relaxed by making,herited methods in subclasses. We think the two proposals
method types more detailed in classes (see [31]). We foungre complementary and could benefit from one another. In
that this extra flexibility is not worth the complication of particular, it would be interesting to adapt automatic type
class types. abbreviations to constraint types. The problem is still non-

Our object types are a simplification of those used in [32]+jyjal since inferred type-constraints are hard to read even
The simplification is possible since object types are similati, the absence of objects.
to record types for polymorphic access, and do not require The remainder of this section is dedicated to the com-
the counterpart of record extension. Moreover, as discussqgiarison with three other proposals for adding objects to ML.
above, our implementation assumes the stronger conditiofhey all use implicit subtyping, which is, however, restricted
that two object types sharing the same row variable argg atomic structural subtyping [22, 13]. As a result, they all
always identical. With this restriction, object types seemhaye the same difficulty with parameterized classes, making
to be equivalent to kinded record types introduced in [25]it impossible to relate objects created from classes with a dif-
Ohori also proposed an efficient compilation of polymor- ferent number of parameters, even when the objects have the
phic records (which does not scale up to extensible recordsame interface. For instance, objects of a classing are
in[26]. However, his approach, based on the correspondencgst incompatible type with objects of a parameterized class
between types and domains of records cannot be applied tctor when the parameter type is character. In Objective
the compilation of objects with code-free coercions. ML, such objects could be mixed.

Objects have been widely studied in languages with |n[6], Bourdoncle and Metz propose a language based on
higher-order types [9, 23, 7, 2, 28, 6]. These proposals sigsome restricted form of type constraints [12]. However, they
nificantly differ from Objective ML. Types are not inferred do not provide type inference.
but explicitly given by the user. Type abbreviations are also  The two following proposals include type inference; how-
the user’s responsibility. On the contrary, all these proposalever, fully polymorphic method invocation cannot be typed.
allow for implicit subtyping. Two different solutions are proposed; they both amount to

Our calculus differs significantly from Abadi's and providing some explicit type information at method invoca-
Cardelli's primitive calculus of objects mostly as a resulttion.
of design choices. We have chosen primitive classes be- More precisely, in Duggan’s proposal [10], methods must
cause inferred types of sets of pre-methods would be tobe predeclared with a particular type scheme. Thus meth-
complex to be readable (see [31] for instance). We have eneds carry type information like data-type constructors in
phasized the role of row variables because we have choséviL. For instance,move would be assigned type scheme
not to infer subtyping, therefore avoiding the more compli-¥ «,,. v, — int. Type schemes that are assigned to meth-
cated framework of constraint types. On the other hand weds are polymorphic iny,: they are arrow types whose
have included other features such as instance variables, ttomain is always a variable,, standing for the type of

11. Comparison to other works
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self. Object types only list the methods that objects of thatConclusion

type must accept. For instangsint would be given type

(move). The user must provide more type information that ~ Objective ML has been designed to be the core of a real
in Objective ML. The same method name cannot be use@rogramming language. Indeed, the constructs presented
in two different objects with unrelated types. Objects ofhere have been implemented in Objective Caml. We chose
parameterized classes are treated especially, using construgass-based objects since this approach is now well under-
tor kinds. As mentioned above, objects of a parameterstood in a type framework and it does not require higher-order
ized class reveal forever that they are parameterized. Faypes.

instance, let us consider a class of vectors parameterized The original part of the design is automatic abbreviation
over the typex. All methods of that class must be given a of object types. Although this is not difficult, it is essential
type scheme of the formy a,."#7* =¥V a.oc s 7, for making the language practical. It has been demonstrated
where variabler,; range over type constructors. That is, pefore that fully inferred object types are unreadable [31, 11].
instead of the type,, of self, only the type constructor on the contrary, types of Objective ML are clear and still
# of the typer, is hidden. This reveals the dependencerequire extremely little type information from the user. To
of 7, on its parameters, and the parameters themselvegy knowledge, all other existing approaches require more
As explained above, methods of parameterized classes 3§pe declarations.

incompatible with methods of non-parameterized classes. ' gpiactive ML is also interesting theoretically for the use
Conversely, Objective ML does not currently allow poly- ot 1o\ variables [35, 32]. Row variables are very close to

morpE?c metnods while IDuggan’sl propo;z;l does. ﬁ‘ p0|3_"matching and seem more helpful than subtyping for the most
morphic methodnap could be declared with type scheme: common operations on objects. Message passing and inher-

Type—Type . ; X X
Ivn?ﬁitivel .:aorér.i\;soﬁr.naliii'fc:ni(voérs—@;l ?nlt)ro:acr:é gl?rﬁs itance are entirely based on row variables, which relegates
Y, map P ' subtyping to a lower level.

like data constructors carry arguments of existentially or . X o
. o . . ; Another interesting aspect of our proposal is its simplicity.
universally quantified types in [17, 31, 24]. Recursive I(mdSThis is certainly due to the fact that Objective ML is very

actually allow some form of polymorphism that is different close to ML. Specifically, most features rely only on ML

from polymorphic methods discussed in section 10. olvmorohism. This leads to verv simole tvoing rules for
In Object ML [34], Reppy and Riecke treat objects as ghoymorphism. - ety pie typing ruie
objects and inheritance. Coercions, based on subtyping, can

eneralized form of concrete data-types. Types are also in- . S
d yp P rbe explained later. Data abstraction is guaranteed by scope

ferred in Object ML, but the authors do not claim a principal .. o
type property. Also, method invocation must always mentior}?:i'ggn:grgféé?]igg type abstraction; this is a less powerful

the class of the object to which the method belongs. Eac ) L ,

object is actually tagged with a constructor that carries the 1€ main drawback of Objective ML is the need for ex-
class the object originated from. Therefore, objects can bQI'_C't coercions. _Coercmns aré necessary. ) I_—|0weve_r, we
tested for membership to some arbitrary class in some inhef0iNK they occur in few places. Thus, explicit coercions
itance relationship. Only single inheritance is allowed. TheShould notbe a burden. Furthermore, coercions could in the-
subtyping relationship between objects is declared and corr®"Y P& made implicit using constraint-based type inference.
sponds to the inheritance forest. Classes are generative, that /" 0ur implementation of Objective ML, classes and mod-
is, objects of different classes have different types. Althougtles are fully compatible, but orthogonal. That should be
these types can be related by subtyping, they are never in grticularly interesting to compare these two styles of large-
instance relationship. Some object coercions, but apparent§cale programming, and help us to better integrate them. This
notall, are implicit. On the contrary in Objective ML, classes IS an important direction for future work.

are transparent, that is, objects types are structural and only

descrit_ae the interface of objects: two object_s with exactly th%Acknowledgments

same interface have equal types. Two objects of classes in

a subclass relationship are not necessarily related, but when We thank Rowan Davies who collaborated in the imple-
they are, one type is simply an instance of the other. Objeanentation and the design of a precursor prototype of Objec-
ML does not provide any inheritance mechanism, except byive ML.

means of encodings [33]. Typing of binary methods is also

a problem, which is solved via runtime class-type tests. Notes

1. The syntax has been slightly modified here in order to keep the concrete
syntax and the abstract syntax closer.

2. One may imagine relaxing this constraint, and allow the type of the
redefined method to be a subtype of the original method. One would,
however, lose a property we believe important: riNetERIT shows
that the type a class gives to self is a common instance of the different
types of self in its ancestors; as a consequence, the type of self in a class
unifies with the type of any object of a subclass of this class.
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Appendices

1. Typing rules for core ML

(INST) (Fun)
r:Va.te€e A A+z:tha: 7
Al oz 77/ AFfun ()a:7— 71
(Aprp)
AFa:7 —> 1 Aba 7
AFad : 7
(LET)

Abdad 7 A+z:Gen(7',A)bFa:T

AFletxz=a"ina: 7

ables ofr that are not free .

Generalizatiorgen(7, A) is V a. T wherea are all vari-

2. An example of typing derivation

In this section, we give the typing derivation for class
scaled_point. Our focus here is not to explain type infer-

ence, but simply to illustrate the typing rules.

We assume that the clagsint has already been typed,
that is, we typescaled_point in the environment, con-
taining the following class-type (we ug¢époint as an ab-

breviation for(move : int — int;..)):

int —
sig (#point)
field x : int ref
method move : int — int
end

We remind the definition of clagsaled point:

fun (so)
struct
inherit point 0 as parent;
field s = sg;

method scale = s;
method move =

fun (d) parent#move(d * self#scale)

end

int; scale : int;..)):

int —
sig (#scaled_point)
field x : int;
field s: int;
method move : int — int;
method scale : int
end

Let A, for Ag extended withs : int andAs be A; extended
with self : #scaled_point. The body of the inheritance
clause must be typed A5 which is equal ta4;. By rule
CLAss-INST we have:

A F point :
int —
sig (#scaled_point)
field x : int ref
method mowve : int — int
end

Note that we have chosen an instance of the type of class
point where self type is#scaled point (an instance of
type#point). Thus, by ruleCrass- App, we have:

Aj Fpoint 0:
sig (#scaled_point)
field x : int ref
method move : int — int
end

Applying rule INHERITS we get:
Ag | inherit point 0 as parent :
(field x : int;
method move : int — int;
super parent :
(field x : int;
method move : int — int)) (1)

The rest of the class body must be typed in environmagnt
equal toA, extended with

field x : int; super parent :
(field z : int;method move : int — int)

SinceAj is A;, we haved} | s( : int, and by ruleF1ELD,
Az F field s = 50 : field s : int. (2)

The rest of the class body must be typeddinequal toAs
extended withfield s : int. SinceA, F s : int, we have
by rule METHOD

Ay F method scale = s : method scale : int. (3)

Using rulesSEND andSUPER, we also havel, - a : int —

The remainder of this section is a proof that classint where

scaled point has the following class type (we use
#scaled_point is an abbreviation fofmove : int —

a %L fun (d) parent#move(d x self#scale)
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Thus,

A4 F method move = a : method move : int — int.

By rule THEN applied to (3) and the previous judgment, we .

have

Ay F (method scale = s;method move = a) :
(method scale : int;
method move : int — int)

By rule THEN gain, applied to (2) and the previous judge-
ment, we have

Az b (field s = sp;method scale = s;
method move = a) :
(field s: int;method scale : int;
method move : int — int)

Hence, by ruléTHEN again applied to (1) and the previous
judgement, we havd, - b : ¢ where

d
b def (inherit point 0 as parent;
field s = sp;method scale = s;
method move = a)

de . . . .
def (field « : int;method move : int — int;

field s: int;method scale : int)

¥

Since A, + self
CLAss-Bobpy leads to:

#scaled point, applying rule

A F struct b end : sig (#scaled_point) ¢ end

Finally, by ruleCrass-FuN, we get:

Ap F fun (sp) struct b end :
int — sig (#scaled_point) ¢ end

3. Binary methods

In Objective ML, it is possible to define binary methods,

that is, methods that receive as a parameter an object 6falue min

virtual leq : @« — bool
end;;
class comparable : unit — sig virtual (a)
virtual leq :  — bool
nd

Classint_comparable inherits from clasgomparable. It
implements methotleq and adds a methagktx.

class int_comparable (x : int) = struct
inherit comparable ()

field x = ref x

method getx 'x

method leq o = !x < o#getx

end;;
class int_comparable : int — sig (a)
field x : int ref

method leq : o — bool
method getx : int
end

Method 1leq still expects to be applied to an object of
the same type as self. So, typet_comparable = rec
a.{leq : & — bool;getx : int) is not a subtype of type
comparable = rec a.(leq : @ — bool): inheritance is
not subtyping. Indeed, a methdgq of an object of the
former type expects to be applied to an object that has a
methodgetx; this is not ensured by the latter type. How-
ever,int_comparable iS an instance op #comparable,
which is by definitionrec a.(leq : & — bool;p). Binary
methods are correctly handled since the type of self is kept
open while typing classes: adding the metlgedx to class
comparable Ssimply amounts to instantiating the row vari-
able in the type of self, tdgetx : int; ..). Thus, the
type of self in the subclass has a methgtx and is still
open.

As atest, the functiomin will return the minimum of any
two objects whose type is an instance of t¢pemparable.

let min (x : #comparable) y =
if x#leq y then x else y;;
: (#comparable as a) — a — «

the same type as self. Furthermore, a class that has binary (fun)

methods can be freely extended by inheritance. Of cours
binary methods remains binary in a subclass.

The virtual classcomparable is a template for classes
with a binary method eq. The componentirtual leqis

a type constraint on the type of self. This method must be

applied to an object of the same type as self.

class comparable () struct virtual (a)

4. Proofs of type soundness theorems

e

This function can thus be applied to objects of type
int_comparable.

let p = min (new int_comparable 7)
(new int_comparable 11)
in (p, p#getx);;

: int_comparable * int

(obj), 7

Subject reduction is a straightforward combination of redex contraction (lemma 13) and context replacement (lemma
Since we have multiple syntactic categories for expressions, contexts, and types, itis convenient to introduce the follov

meta-notations:

az=alblc|d
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These meta-letters are used consistently. For instance, when wiiting : 7, (@, 7) meanga, 7), (b, ), etc, but no(b, 7).
The following propositions are used several times in the proof.

Proposition 4 (Stability by substitution) If A a : 7, then for any substitutiofl, 6(A) F a : 6(F).

Proposition 5 (Extension of environment)If type environmentd and B are identical on free variables of expressioand
At a:7,thenBF a: 7. If type environmenB extends type environmeAt(that is B  dom (A) is A) and A + a : 7, then
BFa:Tt.

We say that is an instance of’ if any instance ofr is an instance of’. We say that type environmendtis an instance
of type environmen#’ if both type environments have the same domain and for any eleimeftheir domainA(h) is an
instance ofd’(h).

Proposition 6 (Strengthening of context)lf type environmen#l is an instance of type environmeBitand A - a : 7, then
BFa:rT.

The following lemma somewhat simplifies the proofs.

Lemma 7 (Derivation simplification) When proving that for ali, Ag - ag : 7 impliesA  a : 7 (for someAy, ag, A and
a), one can restrict oneself to the case where a derivatiodpf- ag : 7 does not end with rul€uB. The general case
follows.

Proof. This is done by induction on the size of derivations. Let us assume that a derivatiigri-ofi, : 7 ends as

AobFag: 7 <7 (SuB)
Agbtag: T
By induction hypothesisd + a : 7. Hence
Abla:1 T’ST(SUB)
Ala:T

n
We writea; C as if for any environment such thatd* = A and any typer suchthatd - a; : 7, A ay : 7. Likewise,
we writeb; C b (resp.c; C ¢g) if for any environmentsid and any class body type such thatd + b; : ¢ (resp. any class
type~y such thatd F ¢; : v), thenA F by : ¢ (resp. A F ¢3 : 7). Subject reduction theorem can be restated as follows: if
a1 — asg, thena; C as.

Lemma 8 (Context replacement)For any contexi®, if a1 C as thenE[a,] C Elas].

Proof. The property can be proved independently for each arbitrary one-node céht&kien, the lemma follows by a
trivial induction on the size of the context.

Let £ be a one-node context. Let be a type environment anda type such thatt - Efa,] : 7 (1). We show that
A& Elas) : 7. Using lemma 7, one can assume that a derivation Jofi¢es not end with rul8us.

All cases are simple and similar. We show one case for example:

CaseF islet x =[] ina: Aderivation of (1) ends as:

Ablay: 7 Aer:Gen(T',A)Fa:T(

LET)
AFletx=aj;ina: T

By induction hypothesis applied to the first premide; as : 7. HenceA - let x = as ina: 7

The following lemmas (9 thru 12) are used to simplify the proof of redex contraction.

Lemma 9 (Append) Let A be a typing environment containing saper bindings. IfA - by : ¢1, A+ (1 \ method) F
bs : o, andy; andy- are compatible (that isp; @ - is correct), thenA - by @ by : 1 D ps.

Proof. We actually prove a more general property. Lgtbe a sequence afuper bindings. IfA + o F b1 : @1,
A+ (p1 \ method) F b : @9, andy; andy, are compatible (that isy; @ - is correct), them + ¢o F by Qbs : 1 & o
This is easily proved by induction dn. -

Lemma 10 (Term replacement (variables))Let A be a type environmend, and o’ be term expressions, and 7’ be type
expressions. IA* o' : 7/ (2) and A + x : Gen(7', A) F a : 7 (3) and bound variables of are not free ina’, then
At ald'/x] : 7 is provable(4).
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Proof. The proofis by induction on the structure@fi.e. a, ¢, b andd). Using lemma 7, we can assume that a derivation
of (3) does not end with rul8us.

In each case, we consider a derivation3)f By using a renaming substitution o) (if necessary (proposition 4), we can
assume that free variables®©dfthat are notird* do not appear free in this derivatios)( We write A, for A+x : Gen(7', A*).

We only show the more complicated cases. Other cases are either similar or simple.

Caseaislet 1 = a; in ay: A derivation of §) ends as:

(6) Ay Fay:m Ay + 21 : Gen(m, Ay) Fag: 7 (7) (

LET)
A, Fletxy =aiinas: 7

By induction hypothesis applied t6), we getA - ay[a’/z] : 71 (8).

If 1 = z, (7) becomesA + x : Gen(ry, A;) F ay : 7. By strengthening of environment (proposition 6), we have
A+ x:Gen(r1,A) F as : T SinceA is a subsequence df,. We conclude by rulé&.T.

Otherwise, letd; be A+x; : Gen(m1, A). Re-ordering hypotheses ifi)( we haveA +z; : Gen(7y, A;)+z : Gen(7/, A) F
as : 7. By strengthening of environment, we can replageby A. Since free type variables of; are the same as free type
variables of4, we can replacel by A; in Gen(7’, A). Thus, we haved; + = : Gen(7', A1) F as : 7. On the other hand,
sincez; is notbound iny/, and A} extendsA*, we deduced} o’ : 7’ from (2) by extension of environment (proposition 5).
Thus, we can apply the induction hypothesis withfor A. We getA; F as[a’/z] : 7. Combining with §) in aLET rule,
we finally haveA F (let x1 = a1 in ag)[ad’/x] : 7.

Casea is fun (z1) ag: A derivation of ) ends as:

Ay +x1 b as:m (FuN)
Az b fun (z1) as: 11 — 7

Let A; be A+ z : 7. Re-ordering type environment of the premise, we h&vez; : 7+« : Gen(7', A) F as : 12. By (5),
the generalizatiofen(7’, A) is equal tGGen(7', A+x; : 71), thatisGen(7’, A;). So,we havel; +x : Gen(7', A1) F as : 7.
Sincezr; is not bound i’ and Ay extendsA* , we deducedt o' : 7/ from (2). Thus, we can apply the induction hypothesis
with A; for A. We getA; b as[a’/z] : 7. We conclude with rul&un

Caseais (b): A derivation of @) ends as:

AX+self imybb:gp Ty = (method (¢)) (

OBJECT)
A F () 7y

Let A, be A* + self : 7,,. Re-ordering type environment of the premise, we have- self : 7, + x : Gen(7/, A) - b : .
We can replacé@en(7’, A) by Gen(7’, A*) by strengthening of environment. B§)( the generalizatiogen(7’, A*) is equal
to Gen(7’, A* + self : 1), thatis,Gen(7’, A,). Thus, we havel, + x : Gen(7', A,) - b : ¢. SinceA; is justA*, we have
Ay = a’ 7' (3). Thus, we can apply the induction hypothesis withfor A. We getA, - bla’/z] : ¢. We conclude with
rule OBJECT.

Lemma 11 (Term replacement (instance variables andelf)) Let A be an environment and be either an expressiom
or a class expression Letw be an object body ang be an object body type. We defiiéss the restriction oflom (w) to
fields. We writer,, for (method (¢)). We assume that* is A, bound variables of are not be free ifw) andw(u), and the
following three judgments hold:

A+self:T, Fw:p, (A w(u) : 7)Y, A+ self : 7, + (¢ \ method) - a : 7(9).
Then,A - af[(w) /self][w(u)/u]*SY [(w @ (field u = a, ")) /{(u = a,*€V)}]V Y : 7.
Proof. The proof is by induction on the structureaf For any expressiom, we writea™ for
al(w)/self][w(u)/u]"“Y [(w @ (field u = a,""))/{(u = a,*")}" Y

Class expressioa’ is defined likewise. We writel, for A + self : 7, + (¢ \ method). Using lemma 7, we can assume
that a derivation of{) does not end with rul8us.
We only show the more complicated cases. Other cases are easy.
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Casea isself: Hypothesis ) is A + self : 7, + (¢ \ method) I self : 7. So,7 andr, are equal. On the other hand,
a™ is equal to{w). We conclude by rul®BJecT:

A+self:7hw:p 7 = (method ()) (

OBJECT)
AF(w):T

Casea is {{u = a,"€V)}: Aderivation of Q) ends as:

((10) fieldu:7, € A,  (11) Ay b ay : 7)€

(OVERRIDE)
Ay F{{u:a, Yy} i1y

So, from (0), » @ field u : 7,“€V = ¢. By induction hypothesis applied td 1), we getA + a; : 7, (12). Hence
AF (fieldu = a) )"V : (field u: 7,)*€V. Then, the append lemma 9 applied to the hypothésisself : 7, - w : ¢
and the last judgment yield$ + self : 7, - w @ (field u = a;})*Y : . Hence the following derivation :

A+self:7,Fw@ (fieldu=a))""V : T, = (method (¢)) (
AR (w@ (field u = af)"cV) : 7,

u

OBJECT)

Lemma 12 (Term replacement guper)) If A by : 1, A + super: ¢ - by : @2 and bound variables df; are not free in
by, thenA I b, : o Whereb), is [a/s#m]retbedm=acbs j e b, where all invocations of methods to supefm have been
replaced by the body of the corresponding methaod in b;.

Proof. The proof is similar to the one of lemma 10. It is in fact simplersager is not substituted across class and
object boundaries, nor across instance variable definitions. -

Lemma 13 (Redex contraction)We write— . for a one-step reduction in an empty contextaIf—. as thena,; C as.

Proof. The proof is done independently for each redex. All cases are easy now that we have proven the right lemma
Let us assumel - a; : 7 (13) and A equalsA* (resp. A F by : p (14) for any A). We show thatd I a5 : 7 (15) (resp.
Ak by : ) by cases on the redex (resp.b;). Each case is shown independently. Using lemma 7, we can assume that
derivation of (13) does not end with rul8us.

Caseaq; is (fun (z) a) v: A derivation of (13) ends either as:

A+z:7Fa:T (Fun)
Abfun(@)a:7' -7 T ST 2T (up)

AFfun (z)a:7)— 7 AFv:7 (APP)
AbF(fun () a)v:T
or as:
(16) A+z:7'Fa:7 (FuN)
AFfun (z)a: 7 — 7 (17) Ao 7 (App)
AF (fun (z)a)v:7

The end of the first derivation can be rewritten as:
A+z:7"Fa:m TOST(SUB)
(16) A+z:7"Fa:T (FuN) Abvimy m<7 (SuB)
AFfun (z)a: 7 — 7 (17) Atwv:7 (APP)
AF (fun (z)a)v: T

In both cases, the term replacement lemma 10 applieti@oand (1 6) shows the conclusion.
Casec; is (fun (z) ¢) v:  Similar to previous case.

Casea; islet x = v ina: A derivation of (13) ends as

(18) Atw: 7 (19)A+x:Gen(T’,A)l—a:T(

LET)
AFletz=vina: 7

The term replacement lemma 10 appliedt8)(and (19) shows the conclusion.
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Caseq; isclass z = v in a: Similar to previous case.

Caseq; isnew (struct w end): A derivation of (L3) ends as

A*+self iy Fw: o (Crass-Bopy)
AF struct wend: sig ()  end Ty = (method (¢)) (NEW)

(20) At new (struct w end) : 7,

Hence,
A*+self :tyFw:¢ 7, = (method (p)) (

OBJECT)
AF{(w):7,

Casea; is (w)#m: We must remember that* is A. A derivation of (13) ends either as

A+self:ryFw:gp 7y = (method () (OBJECT)
AF (w) 7, =T (Sup)
AF (w): 1)/ ) = (m 17" (SEND)
AF (w)y#m : 7],
or as
(21) A+self iyl w: g (22) 7, = (method (¢)) (OBJECT)
AbF (w):7y (23) 7y = (m : 7h;7) (SEND)
AF (w)y#m 7y
The end of the first derivation can be rewritten
A+self iyl w:o 7y = (method () (OBJECT)
AF{w): Ty Ty = (m: T T) (SEND)

AF (w)y#m 7y

Tk < Ti (SuB)
AF (w)y#m : 7],

It has been seen at the beginning of the proof that$ute at the end of a derivation could be ignored. Thus, only the second
case need to be considered.

The result is then proved using the term replacement lemma 11.

We first show that the hypotheses of lemma 11 are satisfied. As the fields of an object are typed in the same environt
as the object, foftield u : 7, € ¢, A+ v, : 7, (24) wherefield v = v, € w. From 22) and @3), method m : 71, € .
Then, from @1), an easy induction ow using rulesT'HEN, FIELD, andMETHOD Yyields:

A+ self : 7, + o1 F w(m) : 7 for somey; C (¢ \ method)
As A contains naield bindings, the environment can be extended to includenethod:
(25) A+ self : 7, + (¢ \method) - w(m) : 7
Finally, the term replacement lemma 11 applied2d)( (24), (25) yields
Ak w(m)[(w)/self][w(u) /u] "<V [(w @ (field u = 4,V ))/{(u = a,"<" )}V : 7

Caseb; isinherit (struct w end) as s;b: A derivation of (L4) ends as

At inherit (struct w end) as s : gp (26) A+ (¢ \method) Fb: oo (

THEN)
Al inherit (struct wend) as s;b: o1 ® ¢

wherep = ;1 + (super s : 1), continued by

(28) A* +self 7y Fw: ¢ (CLASS-BoDY)

(27) Al self: 1, AF struct w end : sig (1) 1 end (INHERIT)

At inherit (struct w end) as s: @1 + (super s: 1)
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According to @7), self : 7, € A. JudgmentZ8) can thus be rewritted - w : 1 (29).

Applying the term replacement lemma 12 dnt (¢1 \ method) F w : 1 (the environment has been extended) &) (
yields A + (o1 \ method) b bla/s#m|rethodm=acw . o, Then, the append lemma applied @) and this last judgment
gives the result:

AF w @ b[a/s#m]methodm:aEw L o) V2

Caseb; isfield u =wv;b: Aderivation of ((4) ends as

A Fov:T (FIELD)
AF fieldu=wv: (fieldu:T) (30) A—i—(fieldu:T)l—w:gp(

AFfieldu=v;w:p® (fieldu:7)

THEN)

From 30), sinceu € dom (w) and fields appear before methodsunan easy induction shows thatk w : ¢. Indeed,
fields are typed in environmerit*, and methods are typed in an environment in whitheld « : 7) has been added anyway
after the typing of the field appearing inv.

Caseb; ismethod m = a ; b: A derivation of (14) ends as

Al self: (m:7;7) Ara:T (METHOD)
At method m = a : (method m : 7) (31)A|—w:<p(
AF methodm =a;w: (methodm:7)& ¢

THEN)

Sincem € dom (w), m € dom (p), theny and(method m : 7) @ ¢ are equal. Therefore, judgmerstl() can be rewritten
Al w: (method m: 7) ® .

Caseaq; is (v : 7 <:7'): Aderivation of (L3) ends as

AFv:0(r) TST’(

COERCE)
AF(w:rT<:7):0(7)

Hence,
Al wv:0(T) 0(t) < 0(7") (

The normal-form theorem is proved by structural induction on values, using the following lemma.
Lemma 14 Letv be a value. We assunie- v : 7 (32).

e If 7is afunctional type, then is a function.
e If 7is an object type, thenis an object.

Letv, be a value. We assunfié- v,. : 7.

e If vis afunctional type, then is a function.
e Otherwisep is an object.

Proof. We prove that ifv is a function, then is a functional type and thatifis an object, them is an object type. Then,
since a value is either a function or an object and functional types and object types are incompatible, this proves the lem
We can ignore rul&uB at the end of a derivation, as it does not change the shape of a type.

Casea is fun (z) a1: A derivation of 82) ends as

A+z:mibFa; i (FuN)
Al fun (x) ay: 11 — T2

So,7isT — To.

Casea is (w): A derivation of §2) ends as

A* +self iy Fw: ¢ 7, = (method (¢)) (

OBJECT)
A (w): 7y

So,7 is (method (¢)).
The proof is similar for class values.
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Theorem 2 (Normal forms) Well-typed irreducible normal forms are valug®. if § - a : 7 anda cannot be reduced, then
a is a value.)

Proof. The proof is by structural induction simultaneously on expressiomsd class bodies. Let us assume
ODFa:7(33)(resp.0Fc:v(34), AFb:p(35)or At d: o, whereA contains onlyfield andmethod bindings), and
thata (resp.c, b or d) cannot be reduced.

Casea isz: This expression cannot be typed in the empty environment.

Casea is aj ao: Itis not possible. A derivation of3g) shows that there exists a typesuch tha) - a; : 7 — 7. The
induction hypothesis applied to expressionshows that it is a value. Since it has a functional type, it must be a function
fun (x) ag. But then expression could be reduced.

Caseaislet z = a; in ap: Itis not possible. The induction hypothesis applied to expressi@hows that it is a value.
But then expressioa could be reduced.

Caseaisa;#mor class z = cina;: Similar to previous cases.

Casea is fun (z) a1: By definition, expression is a value.

Casea is s#m: Itis not possible : expressio¥¥m is not typable in the empty environment.

Casea is self or u or {{(u = a,“€V)}: Same as previous case.

Caseais (a1 : 7 <: 7'): ltis not possiblex can be reduced.

Casea is (b): The induction hypothesis shows that object bbdy a value. Then, expressiaris also a value.

Casea isnew c: It is not possible. A derivation of3g) shows that) - ¢ : sig (7,) ¢ end. The induction hypothesis
applied toc shows that it is a value. According to its type, it is a structure. But thean be reduced

Casecis z: This expression is not typable in the empty environment.

Casecis c; a: Itis not possible. A derivation of3¢) shows that there exists a typesuch that) - ¢; : 7 — ~. The
induction hypothesis applied to expressigrshows that it is a class value. Since it has a functional type, it must be a functior
fun (z) ¢p. But then expressioacould be reduced.

Casecis fun (z) ¢;: By definition, expression s a value.
Casecisstruct b end: The induction hypothesis shows that class bbdya value. Then, expressieris also a value.

Casebisd;by: The induction hypothesis shows that object compodartd object body, are in normal formsd is thus
a field or method definition, and it is not overriddenty(otherwisep could be reduced.)

Casebis(): By definition, object body is a value.
Cased isinherit c as s: Itis not possible. A derivation of3) ends as:

Abself: T, (36) AFc:sig (1) 1 end (

INHERIT)
At inherit cas s: @1 + (super s: ¢1)

The induction hypothesis applied tsshows that it is a class value. According to its type, it is of the fetmuct w end.
But then, the inheritance clause could be reduced.

Cased ismethod m = a: By definition, expressiod is in normal form.

Casedisfieldu =a: If A+ d: fieldu : 7, thend F a : 7, asA contains onlyfield andmethod bindings. By
induction hypothesis, expressians in normal form. Then, so is object componént
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