
Parallel programming with Sklml

Quentin Carbonneaux François Clément Pierre Weis

INRIA

MaGiX@LiX - September 22nd, 2011

Today’s parallelism

Industry standards

OpenMP

It is used to parallelize purely sequential code;

it is designed for shared memory architectures;

it is low level and intrusive.

MPI

It is a kind of assembly toolbox for parallelism;

let you fine tune the parallelism for the application;

the code is a mixture of sequential instructions and parallel
primitives;

the parallelization process is difficult and lengthy.

Both approaches give very efficient parallel programs.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 2 / 26

Today’s parallelism

Design goals for Sklml

The traditional approaches to parallelism exhibit major drawbacks

too low level notations and concepts;

hence, extremely error prone;

hence, very demanding in programming/debugging effort.

The Sklml answers

separation: the parallelization code does not interfere with the
core of the computational code;

high-level: skeleton programming is an abstract description of
parallelism;

reliable: functional and statically type checked;

well-founded: the sequential and parallel versions of a program
always give the same results (adequacy theorem).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 3 / 26

Sklml’s parallelism Overview

What Sklml is

As a result, Sklml

is high level: based on a compositional combinator algebra;

clearly isolates the description of the parallelism in the skeletons
of the algebra;

is a powerful tool to describe parallelism
(parallelization code is typically a few tens of lines);

is type safe by construction due to the skeleton algebra;

is a true Domain Specific Language embeded in OCaml;

frees the programmer from all the ugly low level details
(message passing, process management);

is not restricted to shared memory systems (works on clusters);

is a complete toolkit (compiler + library + runtime system).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 4 / 26

Sklml’s parallelism Overview

What Sklml is not

On the other hand,

Sklml does not give access to processes, shared memory, . . . ;

hence, Sklml does not permit to encode every parallel scheme;

hence, Sklml may not be the fastest parallel toolkit.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 5 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
What is a skeleton

A skeleton is an OCaml value with type (’a, ’b) skel
(its input is of type ’a and its output is of type ’b).
A skeleton is a function acting on streams (a potentially infinite
sequence of data).

The Sklml library provides skeletal combinators which might either

encode some kind of parallelism (data parallelism, program
parallelism);

encode some kind of control structure (if-then-else,
do-while,. . .).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 6 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
The farm skeleton combinator

The farm skeleton combinator applies one treatment in parallel to a
flow of data.

val farm : (’a, ’b) skel * int → (’a, ’b) skel;;

Figure: farm (F , 2) skeleton graph

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 7 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
The pipeline skeleton combinator

The pipeline skeleton combinator modelizes the parallel composition of
functions.

val (|||) :
(’a, ’b) skel → (’b, ’c) skel → (’a, ’c) skel;;

Figure: G ||| F skeleton graph

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 8 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
The loop skeleton combinator

The loop skeleton combinator is a control combinator: it iteratively
applies a skeleton on a data until the resulting value negates a given
predicate.

val loop :
(’a, bool) skel * (’a, ’a) skel → (’a, ’a) skel;;

Figure: loop (P,F) skeleton graph

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 9 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
Other skeleton combinators

The &&& skeleton combinator modelizes the parallel application of two
functions.

val (&&&) :
(’a, ’b) skel → (’c, ’d) skel →

(’a * ’c, ’b * ’d) skel;;

The +++ skeleton combinator modelizes the parallel application of two
functions on the elements of the direct sum of two sets.

val (+++) :
(’a, ’c) skel → (’b, ’c) skel →

((’a, ’b) sum, ’c) skel;;

where sum is the classical direct sum of sets defined as

type (’a, ’b) sum = Inl of ’a | Inr of ’b;;

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 10 / 26

Sklml’s parallelism Programming with skeletons

Sklml skeletons
Other skeleton combinators

The farm_vector skeleton combinator modelizes the parallel
application of a function to the items of a vector.

val farm_vector :
(’a, ’b) skel * int → (’a array, ’b array) skel;;

The rails skeleton combinator modelizes the parallel application of a
vector of n functions to the n items of an input vector.

val rails :
((’a, ’b) skel) array → (’a array, ’b array) skel;;

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 11 / 26

Sklml’s parallelism Examples

A simple example
Introducing the example

Problem

Find the first element which does not satisify a given property P.
We suppose that P is expensive and must be computed in parallel.
We also have two functions:

next_elm which gives the “successor” of its input;

test_elm a predicate function which test if an element satisfies
the property P.

This problem is borrowed from the program PrimeGen that generates
primes satisfying strong cryptographic properties.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 12 / 26

Sklml’s parallelism Examples

A simple example
The actual Sklml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 13 / 26

Sklml’s parallelism Examples

A simple example
The actual Sklml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);

In Sklml, the program uses the loop skeleton, with a predicate
described as a parallel pipeline:

let find_skl nw =
loop (farm_vector (test_elm, nw) ||| fold_or,

next_elms) in
...

The Sklml compiler can compile this program for both sequential and
parallel executions.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 13 / 26

Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (1)

Sklml was developed to cope with scientific computing problems and in
particular domain decomposition problems.

Domain decomposition algorithm

A computation needs to be performed on a grid (domain) splitted in
different small subdomains.
Domain decomposition algorithms perform a sequence of rounds built
of two steps:

1 each processor run a step of a numerical scheme on its
subdomain;

2 border information is exchanged between processors.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 14 / 26

Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (2)

Figure: Computation using a domain decomposition algorithm

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 15 / 26

Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (3)

Sklml provides a library of derived operators written in terms of
composition of the basic skeletons.
The make_domain skeleton is specific to decomposition domain
algorithms.
Given a vector of skeleton workers, the connectivity of the
subdomains, and a stopping criterion, the make_domain skeleton
combinator creates a skeleton implementing the appropriate domain
decomposition algorithm.

type (’a, ’b) worker_spec =
(’a border list, ’a * ’b) skel * int list

val make_domain :
((’a, ’b) worker_spec) array ->
(’b array, bool) skel ->
(’a array, (’a * ’b) array) skel

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 16 / 26

Sklml’s parallelism Inside Sklml

The Sklml distribution

Sklml is a set of 4 components written both in OCaml and Sklml:

a compiler (sklmlc);

a core library of basic skeletons;

an extra library of derived skeletons;

a parallel process manager (sklmlrun).

Sklml is free software available at http://sklml.inria.fr/.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 17 / 26

Sklml’s parallelism Inside Sklml

Sklml’s key feature (1)

Fact

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 18 / 26

Sklml’s parallelism Inside Sklml

Sklml’s key feature (1)

Fact

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.

The two semantics in practice

Compile either in parallel mode:

sklmlc -mode par code.ml

Or in sequential mode:

sklmlc -mode seq code.ml

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 18 / 26

Sklml’s parallelism Inside Sklml

Sklml’s key feature (2)

The Sklml system guaranties that:

the parallel and sequential programs give the same results;

hence, if the code runs properly in sequential mode, it is
guaranteed to be correct in parallel mode.

Hence, the methodoly:
1 develop and debug using the sequential semantics;
2 start the heavy parallel computation after changing a flag in the

makefile!

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 19 / 26

Sklml’s parallelism Inside Sklml

Sklml and OCaml 3.12

Due to its high abstraction level, Sklml needs advanced features of the
OCaml language:

first class modules to emulate GADTs (3.12);

lazy evaluation to represent possibly infinite computations;

second rank polymorphism to provide a polymorphic API;

polymorphic recursion to uniformly implement the skeletons
(3.12).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 20 / 26

Sklml’s parallelism Interacting with Sklml

Sklml and the other languages

Sequential parts of Sklml programs can be written:

in pure OCaml;

in C, with the standard OCaml Foreign Language Interface;

in many languages, with the external data communication layer
associated to Sklml (Pio, the Polyglot I/O library).

Already written code can be parallelized with Sklml!
(In particular, closed or complex codes from third party).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 21 / 26

Future directions

State of the art

Sklml is robust and usable but can be improved:

improve the load balancing system;

handle and recover from network or machine failures;

improve error messages;

enrich the library of derived skeletons;

evangelism: tell people they must use it!

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 22 / 26

End

That’s all folks!

Any questions?

Want to see some code?

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 23 / 26

Code appendix

Implementing simple helper skeletons

let projl = skl () -> fun (x, _) -> x;;
let projr = skl () -> fun (_, x) -> x;;

let injl = skl () -> fun x -> Inl x;;
let injr = skl () -> fun x -> Inr x;;

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 24 / 26

Code appendix

Implementing a if_then_else skeleton

let dup = skl () -> fun x -> (x, x);;
let to_sum = skl () ->
fun (x, b) -> if b then Inl x else Inr x

;;

let if_then_else (cond_skl, then_skl, else_skl) =
dup () ||| (id () *** cond_skl) |||
to_sum () ||| (then_skl +++ else_skl)

;;

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 25 / 26

Code appendix

Factorial in pure Sklml

let is_gt = skl i -> (<) i;;
let con = skl x -> fun _ -> x;;
let minus = skl i -> fun x -> x - i;;
let mult = skl () -> fun (a, b) -> a * b;;

let fact =
dup () ||| (id () *** con 1) |||
loop
(projl () ||| is_gt 1
, dup () |||
((projl () ||| minus 1) ***
mult ()

)
) |||

projr ()
;;

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 26 / 26

	Today's parallelism
	Sklml's parallelism
	Overview
	Programming with skeletons
	Examples
	Inside Sklml
	Interacting with Sklml

	Future directions
	End
	Code appendix

