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Today’s parallelism

Industry standards

OpenMP

It is used to parallelize purely sequential code;

it is designed for shared memory architectures;

it is low level and intrusive.

MPI

It is a kind of assembly toolbox for parallelism;

let you fine tune the parallelism for the application;

the code is a mixture of sequential instructions and parallel
primitives;

the parallelization process is difficult and lengthy.

Both approaches give very efficient parallel programs.
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Today’s parallelism

Design goals for Sklml

The traditional approaches to parallelism exhibit major drawbacks

too low level notations and concepts;

hence, extremely error prone;

hence, very demanding in programming/debugging effort.

The Sklml answers

separation: the parallelization code does not interfere with the
core of the computational code;

high-level: skeleton programming is an abstract description of
parallelism;

reliable: functional and statically type checked;

well-founded: the sequential and parallel versions of a program
always give the same results (adequacy theorem).
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Sklml’s parallelism Overview

What Sklml is

As a result, Sklml

is high level: based on a compositional combinator algebra;

clearly isolates the description of the parallelism in the skeletons
of the algebra;

is a powerful tool to describe parallelism
(parallelization code is typically a few tens of lines);

is type safe by construction due to the skeleton algebra;

is a true Domain Specific Language embeded in OCaml;

frees the programmer from all the ugly low level details
(message passing, process management);

is not restricted to shared memory systems (works on clusters);

is a complete toolkit (compiler + library + runtime system).
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Sklml’s parallelism Overview

What Sklml is not

On the other hand,

Sklml does not give access to processes, shared memory, . . . ;

hence, Sklml does not permit to encode every parallel scheme;

hence, Sklml may not be the fastest parallel toolkit.
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Sklml’s parallelism Programming with skeletons

Sklml skeletons
What is a skeleton

A skeleton is an OCaml value with type (’a, ’b) skel
(its input is of type ’a and its output is of type ’b).
A skeleton is a function acting on streams (a potentially infinite
sequence of data).

The Sklml library provides skeletal combinators which might either

encode some kind of parallelism (data parallelism, program
parallelism);

encode some kind of control structure (if-then-else,
do-while,. . . ).

QC, FC, PW (INRIA) Parallel programming with Sklml MaGiX@LiX 09/22/2011 6 / 26



Sklml’s parallelism Programming with skeletons

Sklml skeletons
The farm skeleton combinator

The farm skeleton combinator applies one treatment in parallel to a
flow of data.

val farm : (’a, ’b) skel * int → (’a, ’b) skel;;

Figure: farm (F , 2) skeleton graph
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Sklml’s parallelism Programming with skeletons

Sklml skeletons
The pipeline skeleton combinator

The pipeline skeleton combinator modelizes the parallel composition of
functions.

val ( ||| ) :
(’a, ’b) skel → (’b, ’c) skel → (’a, ’c) skel;;

Figure: G ||| F skeleton graph
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Sklml’s parallelism Programming with skeletons

Sklml skeletons
The loop skeleton combinator

The loop skeleton combinator is a control combinator: it iteratively
applies a skeleton on a data until the resulting value negates a given
predicate.

val loop :
(’a, bool) skel * (’a, ’a) skel → (’a, ’a) skel;;

Figure: loop (P,F ) skeleton graph
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Sklml’s parallelism Programming with skeletons

Sklml skeletons
Other skeleton combinators

The &&& skeleton combinator modelizes the parallel application of two
functions.

val ( &&& ) :
(’a, ’b) skel → (’c, ’d) skel →

(’a * ’c, ’b * ’d) skel;;

The +++ skeleton combinator modelizes the parallel application of two
functions on the elements of the direct sum of two sets.

val ( +++ ) :
(’a, ’c) skel → (’b, ’c) skel →

((’a, ’b) sum, ’c) skel;;

where sum is the classical direct sum of sets defined as

type (’a, ’b) sum = Inl of ’a | Inr of ’b;;
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Sklml’s parallelism Programming with skeletons

Sklml skeletons
Other skeleton combinators

The farm_vector skeleton combinator modelizes the parallel
application of a function to the items of a vector.

val farm_vector :
(’a, ’b) skel * int → (’a array, ’b array) skel;;

The rails skeleton combinator modelizes the parallel application of a
vector of n functions to the n items of an input vector.

val rails :
((’a, ’b) skel) array → (’a array, ’b array) skel;;
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Sklml’s parallelism Examples

A simple example
Introducing the example

Problem

Find the first element which does not satisify a given property P.
We suppose that P is expensive and must be computed in parallel.
We also have two functions:

next_elm which gives the “successor” of its input;

test_elm a predicate function which test if an element satisfies
the property P.

This problem is borrowed from the program PrimeGen that generates
primes satisfying strong cryptographic properties.
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Sklml’s parallelism Examples

A simple example
The actual Sklml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);
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Sklml’s parallelism Examples

A simple example
The actual Sklml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);

In Sklml, the program uses the loop skeleton, with a predicate
described as a parallel pipeline:

let find_skl nw =
loop ( farm_vector (test_elm, nw) ||| fold_or,

next_elms ) in
...

The Sklml compiler can compile this program for both sequential and
parallel executions.
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Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (1)

Sklml was developed to cope with scientific computing problems and in
particular domain decomposition problems.

Domain decomposition algorithm

A computation needs to be performed on a grid (domain) splitted in
different small subdomains.
Domain decomposition algorithms perform a sequence of rounds built
of two steps:

1 each processor run a step of a numerical scheme on its
subdomain;

2 border information is exchanged between processors.
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Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (2)

Figure: Computation using a domain decomposition algorithm
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Sklml’s parallelism Examples

Domain Decomposition problems using Sklml (3)

Sklml provides a library of derived operators written in terms of
composition of the basic skeletons.
The make_domain skeleton is specific to decomposition domain
algorithms.
Given a vector of skeleton workers, the connectivity of the
subdomains, and a stopping criterion, the make_domain skeleton
combinator creates a skeleton implementing the appropriate domain
decomposition algorithm.

type (’a, ’b) worker_spec =
(’a border list, ’a * ’b) skel * int list

val make_domain :
((’a, ’b) worker_spec) array ->
(’b array, bool) skel ->
(’a array, (’a * ’b) array) skel
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Sklml’s parallelism Inside Sklml

The Sklml distribution

Sklml is a set of 4 components written both in OCaml and Sklml:

a compiler (sklmlc);

a core library of basic skeletons;

an extra library of derived skeletons;

a parallel process manager (sklmlrun).

Sklml is free software available at http://sklml.inria.fr/.
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Sklml’s parallelism Inside Sklml

Sklml’s key feature (1)

Fact

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.
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Sklml’s parallelism Inside Sklml

Sklml’s key feature (1)

Fact

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.

The two semantics in practice

Compile either in parallel mode:

sklmlc -mode par code.ml

Or in sequential mode:

sklmlc -mode seq code.ml
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Sklml’s parallelism Inside Sklml

Sklml’s key feature (2)

The Sklml system guaranties that:

the parallel and sequential programs give the same results;

hence, if the code runs properly in sequential mode, it is
guaranteed to be correct in parallel mode.

Hence, the methodoly:
1 develop and debug using the sequential semantics;
2 start the heavy parallel computation after changing a flag in the

makefile!
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Sklml’s parallelism Inside Sklml

Sklml and OCaml 3.12

Due to its high abstraction level, Sklml needs advanced features of the
OCaml language:

first class modules to emulate GADTs (3.12);

lazy evaluation to represent possibly infinite computations;

second rank polymorphism to provide a polymorphic API;

polymorphic recursion to uniformly implement the skeletons
(3.12).
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Sklml’s parallelism Interacting with Sklml

Sklml and the other languages

Sequential parts of Sklml programs can be written:

in pure OCaml;

in C, with the standard OCaml Foreign Language Interface;

in many languages, with the external data communication layer
associated to Sklml (Pio, the Polyglot I/O library).

Already written code can be parallelized with Sklml!
(In particular, closed or complex codes from third party).
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Future directions

State of the art

Sklml is robust and usable but can be improved:

improve the load balancing system;

handle and recover from network or machine failures;

improve error messages;

enrich the library of derived skeletons;

evangelism: tell people they must use it!
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End

That’s all folks!

Any questions?

Want to see some code?
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Code appendix

Implementing simple helper skeletons

let projl = skl () -> fun (x, _) -> x;;
let projr = skl () -> fun (_, x) -> x;;

let injl = skl () -> fun x -> Inl x;;
let injr = skl () -> fun x -> Inr x;;
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Code appendix

Implementing a if_then_else skeleton

let dup = skl () -> fun x -> (x, x);;
let to_sum = skl () ->
fun (x, b) -> if b then Inl x else Inr x

;;

let if_then_else (cond_skl, then_skl, else_skl) =
dup () ||| (id () *** cond_skl) |||
to_sum () ||| (then_skl +++ else_skl)

;;
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Code appendix

Factorial in pure Sklml

let is_gt = skl i -> ( < ) i;;
let con = skl x -> fun _ -> x;;
let minus = skl i -> fun x -> x - i;;
let mult = skl () -> fun (a, b) -> a * b;;

let fact =
dup () ||| (id () *** con 1) |||
loop
( projl () ||| is_gt 1
, dup () |||
( (projl () ||| minus 1) ***
mult ()

)
) |||

projr ()
;;
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