
Parallel programming with Sklml

Quentin Carbonneaux François Clément Pierre Weis

INRIA

April 19th, 2013

Sklml

Skeleton programming

Traditional approaches to parallelism (MPI, OpenMP)

intrusive: mix sequential instructions with parallel primitives;

low level notations and concepts;

fine tune of parallelism; very efficient parallel programs;

error prone: very demanding in programming/debugging effort.

Sklml approach

non intrusive: parallel code is apart from sequential code;

skeleton combinators: high level parallel programming schemes;

skeleton algebra: compositional description of parallelism;

reliable: deterministic parallel execution;

Domain Specific Language embeded in OCaml.

QC, FC, PW (INRIA) Parallel programming with Sklml April 19th, 2013 2 / 4

Sklml

Skeleton algebra

skeletons are functions over data streams;

coarse grain parallelism;

task parallel combinators: pipe, farm;

data parallel combinators: prod, sum, farm_vector, rails;

control combinator: loop.

Safety

well defined semantics: given by the sequential interpretation;

proof feasibility: proofs for all basic combinators imply proofs for
all programs;

weak adequacy theorem: sequential and parallel versions are
compiled from the same source code;

strong adequacy theorem: sequential and parallel versions always
give the same results.

QC, FC, PW (INRIA) Parallel programming with Sklml April 19th, 2013 3 / 4

Sklml

Skeletons in practice

Development methodology

develop and debug using the sequential semantics;

run heavy computations in parallel after a simple recompilation.

Example

Deploy nw independent workers computing f, then compose g:

farm (skl () -> f, nw) ||| skl () -> g;;

Abstraction over combinators

make_domain: specialized combinator for domain decomposition.

Foreign languages (C, C++, Fortran)

External communication layer: Pio (polyglot I/O library).

Sklml is free software available at http://sklml.inria.fr/.
QC, FC, PW (INRIA) Parallel programming with Sklml April 19th, 2013 4 / 4

	Sklml

