
Chapter 1

Introduction

This document is a tutorial introduction to functional programming, and, more precisely, to the
usage of Caml Light. It has been used to teach Caml Light1 in different universities and is intended
for beginners. It contains numerous examples and exercises, and absolute beginners should read it
while sitting in front of a Caml Light toplevel loop, testing examples and variations by themselves.

After generalities about functional programming, some features specific to Caml Light are
described. ML type synthesis and a simple execution model are presented in a complete example
of prototyping a subset of ML.

Part I (chapters 2–6) may be skipped by users familiar with ML. Users with experience in
functional programming, but unfamiliar with the ML dialects may skip the very first chapters and
start at chapter 6, learning the Caml Light syntax from the examples. Part I starts with some
intuition about functions and types and gives an overview of ML and other functional languages
(chapter 2). Chapter 3 outlines the interaction with the Caml Light toplevel loop and its basic
objects. Basic types and some of their associated primitives are presented in chapter 4. Lists
(chapter 5) and user-defined types (chapter 6) are structured data allowing for the representation
of complex objects and their easy creation and destructuration.

While concepts presented in part I are common (under one form or another) to many functional
languages, part B (chapters 7–11) is dedicated to features specific to Caml Light: mutable data
structures (chapter 7), exception handling (chapter 8), input/output (chapter 9) and streams and
parsers (chapter 10) show a more imperative side of the language. Standalone programs and
separate compilation (chapter 11) allow for modular programming and the creation of standalone
applications. Concise examples of Caml Light features are to be found in this part.

Part C (chapters 12–16) is meant for already experienced Caml Light users willing to know more
about how the Caml Light compiler synthesizes the types of expression and how compilation and
evaluation proceeds. Some knowledge about first-order unification is assumed. The presentation
is rather informal, and is sometimes terse (specially in the chapter about type synthesis). We
prototype a small and simple functional language (called ASL): we give the complete prototype
implementation, from the ASL parser to the symbolic execution of code. Lexing and parsing of ASL
programs are presented in chapter 12, providing realistic usages of streams and parsers. Chapter
13 presents an untyped call-by-value semantics of ASL programs through the definition of an ASL
interpreter. The encoding of recursion in untyped ASL is presented in chapter 14, showing the

1The “Caml Strong” version of these notes is available as an INRIA technical report [24].

5



6 CHAPTER 1. INTRODUCTION

expressive power of the language. The type synthesis of functional programs is demonstrated in
chapter 15, using destructive unification (on first-order terms representing types) as a central tool.
Chapter 16 introduces the Categorical Abstract Machine: a simple execution model for call-by-
value functional programs. Although the Caml Light execution model is different from the one
presented here, an intuition about the simple compilation of functional languages can be found in
this chapter.

Warning: The programs and remarks (especially contained in parts B and C) might not be
valid in Caml Light versions different from 0.7.



Part I

Functional programming

7




