
Chapter 2

Functional languages

Programming languages are said to be functional when the basic way of structuring programs is
the notion of function and their essential control structure is function application. For example,
the Lisp language [22], and more precisely its modern successor Scheme [31, 1], has been called
functional because it possesses these two properties.

However, we want the programming notion of function to be as close as possible to the usual
mathematical notion of function. In mathematics, functions are “first-class” objects: they can be
arbitrarily manipulated. For example, they can be composed, and the composition function is itself
a function.

In mathematics, one would present the successor function in the following way:

successor : N −→ N
n 7−→ n + 1

The functional composition could be presented as:

◦ : (A ⇒ B)× (C ⇒ A) −→ (C ⇒ B)
(f, g) 7−→ (x 7−→ f (g x))

where (A ⇒ B) denotes the space of functions from A to B.
We remark here the importance of:

1. the notion of type; a mathematical function always possesses a domain and a codomain. They
will correspond to the programming notion of type.

2. lexical binding: when we wrote the mathematical definition of successor, we have assumed
that the addition function + had been previously defined, mapping a pair of natural numbers
to a natural number; the meaning of the successor function is defined using the meaning of
the addition: whatever + denotes in the future, this successor function will remain the same.

3. the notion of functional abstraction, allowing to express the behavior of f ◦ g as
(x 7−→ f (g x)), i.e. the function which, when given some x, returns f (g x).

ML dialects (cf. below) respect these notions. But they also allow non-functional programming
styles, and, in this sense, they are functional but not purely functional.

9



10 CHAPTER 2. FUNCTIONAL LANGUAGES

2.1 History of functional languages

Some historical points:

• 1930: Alonzo Church developed the λ-calculus [6] as an attempt to provide a basis for math-
ematics. The λ-calculus is a formal theory for functionality. The three basic constructs of
the λ-calculus are:

– variable names (e.g. x, y,. . . );

– application (MN if M and M are terms);

– functional abstraction (λx.M).

Terms of the λ-calculus represent functions. The pure λ-calculus has been proved inconsis-
tent as a logical theory. Some type systems have been added to it in order to remedy this
inconsistency.

• 1958: Mac Carthy invented Lisp [22] whose programs have some similarities with terms of
the λ-calculus. Lisp dialects have been recently evolving in order to be closer to modern
functional languages (Scheme), but they still do not possess a type system.

• 1965: P. Landin proposed the ISWIM [18] language (for “If You See What I Mean”), which
is the precursor of languages of the ML family.

• 1978: J. Backus introduced FP: a language of combinators [3] and a framework in which it is
possible to reason about programs. The main particularity of FP programs is that they have
no variable names.

• 1978: R. Milner proposes a language called ML [11], intended to be the metalanguage of the
LCF proof assistant (i.e. the language used to program the search of proofs). This language
is inspired by ISWIM (close to λ-calculus) and possesses an original type system.

• 1985: D. Turner proposed the Miranda [36] programming language, which uses Milner’s type
system but where programs are submitted to lazy evaluation.

Currently, the two main families of functional languages are the ML and the Miranda families.

2.2 The ML family

ML languages are based on a sugared1 version of λ-calculus. Their evaluation regime is call-by-
value (i.e. the argument is evaluated before being passed to a function), and they use Milner’s type
system.

The LCF proof system appeared in 1972 at Stanford (Stanford LCF). It has been further
developed at Cambridge (Cambridge LCF) where the ML language was added to it.

From 1981 to 1986, a version of ML and its compiler was developed in a collaboration between
INRIA and Cambridge by G. Cousineau, G. Huet and L. Paulson.

1i.e. with a more user-friendly syntax.



2.3. THE MIRANDA FAMILY 11

In 1981, L. Cardelli implemented a version of ML whose compiler generated native machine
code.

In 1984, a committee of researchers from the universities of Edinburgh and Cambridge, Bell
Laboratories and INRIA, headed by R. Milner worked on a new extended language called Standard
ML [28]. This core language was completed by a module facility designed by D. MacQueen [23].

Since 1984, the Caml language has been under design in a collaboration between INRIA and
LIENS2). Its first release appeared in 1987. The main implementors of Caml were Ascánder Suárez,
Pierre Weis and Michel Mauny.

In 1989 appeared Standard ML of New-Jersey, developed by Andrew Appel (Princeton Univer-
sity) and David MacQueen (Bell Laboratories).

Caml Light is a smaller, more portable implementation of the core Caml language, developed
by Xavier Leroy since 1990.

2.3 The Miranda family

All languages in this family use lazy evaluation (i.e. the argument of a function is evaluated if and
when the function needs its value—arguments are passed unevaluated to functions). They also use
Milner’s type system.

Languages belonging to the Miranda family find their origin in the SASL language [34] (1976)
developed by D. Turner. SASL and its successors (KRC [35] 1981, Miranda [36] 1985 and Haskell
[15] 1990) use sets of mutually recursive equations as programs. These equations are written in a
script (collection of declarations) and the user may evaluate expressions using values defined in this
script. LML (Lazy ML) has been developed in Göteborg (Sweeden); its syntax is close to ML’s
syntax and it uses a fast execution model: the G-machine [16].

2Laboratoire d’Informatique de l’Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris



12 CHAPTER 2. FUNCTIONAL LANGUAGES


