
Chapter 3

Basic concepts

We examine in this chapter some fundamental concepts which we will use and study in the following
chapters. Some of them are specific to the interface with the Caml language (toplevel, global
definitions) while others are applicable to any functional language.

3.1 Toplevel loop

The first contact with Caml is through its interactive aspect1. When running Caml on a computer,
we enter a toplevel loop where Caml waits for input from the user, and then gives a response to
what has been entered.

The beginning of a Caml Light session looks like this (assuming $ is the shell prompt on the
host machine):

$camllight
> Caml Light version 0.6

#

On the PC version, the command is called caml.
The “#” character is Caml’s prompt. When this character appears at the beginning of a line in

an actual Caml Light session, the toplevel loop is waiting for a new toplevel phrase to be entered.
Throughout this document, the phrases starting by the # character represent legal input to

Caml. Since this document has been pre-processed by Caml Light and these lines have been
effectively given as input to a Caml Light process, the reader may reproduce by him/herself the
session contained in each chapter (each chapter of the first two parts contains a different session, the
third part is a single session). Lines starting with the “>” character are Caml Light error messages.
Lines starting by another character are either Caml responses or (possibly) illegal input. The input
is printed in typewriter font (like this), and output is written using slanted typewriter font (like
that).

Important: Of course, when developing non-trivial programs, it is preferable to edit programs
in files and then to include the files in the toplevel, instead of entering the programs directly.

1Caml Light implementations also possess a batch compiler usable to compile files and produce standalone appli-
cations; this will be discussed in chapter 11.

13

14 CHAPTER 3. BASIC CONCEPTS

Furthermore, when debugging, it is very useful to trace some functions, to see with what arguments
they are called, and what result they return. See the reference manual [20] for a description of
these facilities.

3.2 Evaluation: from expressions to values

Let us enter an arithmetic expression and see what is Caml’s response:

#1+2;;
- : int = 3

The expression “1+2” has been entered, followed by “;;” which represents the end of the current
toplevel phrase. When encountering “;;”, Caml enters the type-checking (more precisely type
synthesis) phase, and prints the inferred type for the expression. Then, it compiles code for the
expression, executes it and, finally, prints the result.

In the previous example, the result of evaluation is printed as “3” and the type is “int”: the
type of integers.

The process of evaluation of a Caml expression can be seen as transforming this expression
until no further transformation is allowed. These transformations must preserve semantics. For
example, if the expression “1+2” has the mathematical object 3 as semantics, then the result “3”
must have the same semantics. The different phases of the Caml evaluation process are:

• parsing (checking the syntactic legality of input);

• type synthesis;

• compiling;

• loading;

• executing;

• printing the result of execution.

Let us consider another example: the application of the successor function to 2+3. The expression
(function x -> x+1) should be read as “the function that, given x, returns x+1”. The juxtapo-
sition of this expression to (2+3) is function application.

#(function x -> x+1) (2+3);;
- : int = 6

There are several ways to reduce that value before obtaining the result 6. Here are two of them
(the expression being reduced at each step is underlined):

(function x -> x+1) (2+3) (function x -> x+1) (2+3)
↓ ↓

(function x -> x+1) 5 (2+3) + 1
↓ ↓

5+1 5+1
↓ ↓
6 6

3.3. TYPES 15

The transformations used by Caml during evaluation cannot be described in this chapter, since
they imply knowledge about compilation of Caml programs and machine representation of Caml
values. However, since the basic control structure of Caml is function application, it is quite easy
to give an idea of the transformations involved in the Caml evaluation process by using the kind of
rewriting we used in the last example. The evaluation of the (well-typed) application e1(e2), where
e1 and e2 denote arbitrary expressions, consists in the following steps:

• Evaluate e2, obtaining its value v.

• Evaluate e1 until it becomes a functional value. Because of the well-typing hypothesis, e1

must represent a function from some type t1 to some t2, and the type of v is t1. We will write
(function x -> e) for the result of the evaluation of e1. It denotes the mathematical object
usually written as:

f : t1 → t2
x 7→ e (where, of course, e may depend on x)

N.B.: We do not evaluate e before we know the value of x.

• Evaluate e where v has been substituted for all occurrences of x. We then get the final value
of the original expression. The result is of type t2.

In the previous example, we evaluate:

• 2+3 to 5;

• (function x -> x+1) to itself (it is already a function body);

• x+1 where 5 is substituted for x, i.e. evaluate 5+1, getting 6 as result.

It should be noticed that Caml uses call-by-value: arguments are evaluated before being passed to
functions. The relative evaluation order of the functional expression and of the argument expression
is implementation-dependent, and should not be relied upon. The Caml Light implementation
evaluates arguments before functions (right-to-left evaluation), as shown above; the original Caml
implementation evaluates functions before arguments (left-to-right evaluation).

3.3 Types

Types and their checking/synthesis are crucial to functional programming: they provide an indica-
tion about the correctness of programs.

The universe of Caml values is partitioned into types. A type represents a collection of values.
For example, int is the type of integer numbers, and float is the type of floating-point numbers.
Truth values belong to the bool type. Character strings belong to the string type. Types are
divided into two classes:

• Basic types (int, bool, string, . . .).

16 CHAPTER 3. BASIC CONCEPTS

• Compound types such as functional types. For example, the type of functions from integers
to integers is denoted by int -> int. The type of functions from boolean values to character
strings is written bool -> string. The type of pairs whose first component is an integer
and whose second component is a boolean value is written int * bool.

In fact, any combination of the types above (and even more!) is possible. This could be written as:

BasicType ::= int
| bool
| string

Type ::= BasicType
| Type -> Type
| Type * Type

Once a Caml toplevel phrase has been entered in the computer, the Caml process starts analyzing
it. First of all, it performs syntax analysis, which consists in checking whether the phrase belongs
to the language or not. For example, here is a syntax error2 (a parenthesis is missing):

#(function x -> x+1 (2+3);;
Toplevel input:

>(function x -> x+1 (2+3);;

> ^^

Syntax error.

The carets “^^^” underline the location where the error was detected.
The second analysis performed is type analysis: the system attempts to assign a type to each

subexpression of the phrase, and to synthesize the type of the whole phrase. If type analysis fails
(i.e. if the system is unable to assign a sensible type to the phrase), then a type error is reported
and Caml waits for another input, rejecting the current phrase. Here is a type error (cannot add
a number to a boolean):

#(function x -> x+1) (2+true);;
Toplevel input:

>(function x -> x+1) (2+true);;

> ^^^^

This expression has type bool,

but is used with type int.

The rejection of ill-typed phrases is called strong typing. Compilers for weakly typed languages (C,
for example) would instead issue a warning message and continue their work at the risk of getting
a “Bus error” or “Illegal instruction” message at run-time.

Once a sensible type has been deduced for the expression, then the evaluation process (compi-
lation, loading and execution) may begin.

Strong typing enforces writing clear and well-structured programs. Moreover, it adds security
and increases the speed of program development, since most typos and many conceptual errors are

2Actually, lexical analysis takes place before syntax analysis and lexical errors may occur, detecting for instance
badly formed character constants.

3.4. FUNCTIONS 17

trapped and signaled by the type analysis. Finally, well-typed programs do not need dynamic type
tests (the addition function does not need to test whether or not its arguments are numbers), hence
static type analysis allows for more efficient machine code.

3.4 Functions

The most important kind of values in functional programming are functional values. Mathemati-
cally, a function f of type A → B is a rule of correspondence which associates with each element
of type A a unique member of type B.

If x denotes an element of A, then we will write f(x) for the application of f to x. Parentheses
are often useless (they are used only for grouping subexpressions), so we could also write (f(x)) as
well as (f((x))) or simply f x. The value of f x is the unique element of B associated with x by
the rule of correspondence for f .

The notation f(x) is the one normally employed in mathematics to denote functional appli-
cation. However, we shall be careful not to confuse a function with its application. We say “the
function f with formal parameter x”, meaning that f has been defined by:

f : x 7→ e

or, in Caml, that the body of f is something like (function x -> ...). Functions are values
as other values. In particular, functions may be passed as arguments to other functions, and/or
returned as result. For example, we could write:

#function f -> (function x -> (f(x+1) - 1));;
- : (int -> int) -> int -> int = <fun>

That function takes as parameter a function (let us call it f) and returns another function which,
when given an argument (let us call it x), will return the predecessor of the value of the application
f(x+1).

The type of that function should be read as: (int -> int) -> (int -> int).

3.5 Definitions

It is important to give names to values. We have already seen some named values: we called them
formal parameters. In the expression (function x -> x+1), the name x is a formal parameter.
Its name is irrelevant: changing it into another one does not change the meaning of the expression.
We could have written that function (function y -> y+1).

If now we apply this function to, say, 1+2, we will evaluate the expression y+1 where y is the
value of 1+2. Naming y the value of 1+2 in y+1 is written as:

#let y=1+2 in y+1;;
- : int = 4

This expression is a legal Caml phrase, and the let construct is indeed widely used in Caml
programs.

The let construct introduces local bindings of values to identifiers. They are local because the
scope of y is restricted to the expression (y+1). The identifier y kept its previous binding (if any)

18 CHAPTER 3. BASIC CONCEPTS

after the evaluation of the “let . . . in . . . ” construct. We can check that y has not been globally
defined by trying to evaluate it:

#y;;
Toplevel input:

>y;;

>^

The value identifier y is unbound.

Local bindings using let also introduce sharing of (possibly time-consuming) evaluations. When
evaluating “let x=e1 in e2”, e1 gets evaluated only once. All occurrences of x in e2 access the
value of e1 which has been computed once. For example, the computation of:

let big = sum_of_prime_factors 35461243
in big+(2+big)-(4*(big+1));;

will be less expensive than:

(sum_of_prime_factors 35461243)
+ (2 + (sum_of_prime_factors 35461243))
- (4 * (sum_of_prime_factors 35461243 + 1));;

The let construct also has a global form for toplevel declarations, as in:

#let successor = function x -> x+1;;
successor : int -> int = <fun>

#let square = function x -> x*x;;
square : int -> int = <fun>

When a value has been declared at toplevel, it is of course available during the rest of the session.

#square(successor 3);;
- : int = 16

#square;;
- : int -> int = <fun>

When declaring a functional value, there are some alternative syntaxes available. For example
we could have declared the square function by:

#let square x = x*x;;
square : int -> int = <fun>

or (closer to the mathematical notation) by:

#let square (x) = x*x;;
square : int -> int = <fun>

All these definitions are equivalent.

3.6. PARTIAL APPLICATIONS 19

3.6 Partial applications

A partial application is the application of a function to some but not all of its arguments. Consider,
for example, the function f defined by:

#let f x = function y -> 2*x+y;;
f : int -> int -> int = <fun>

Now, the expression f(3) denotes the function which when given an argument y returns the value
of 2*3+y. The application f(x) is called a partial application, since f waits for two successive
arguments, and is applied to only one. The value of f(x) is still a function.

We may thus define an addition function by:

#let addition x = function y -> x+y;;
addition : int -> int -> int = <fun>

This can also be written:

#let addition x y = x+y;;
addition : int -> int -> int = <fun>

We can then define the successor function by:

#let successor = addition 1;;
successor : int -> int = <fun>

Now, we may use our successor function:

#successor (successor 1);;
- : int = 3

Exercises

Exercise 3.1 Give examples of functions with the following types:

1. (int -> int) -> int

2. int -> (int -> int)

3. (int -> int) -> (int -> int)

Exercise 3.2 We have seen that the names of formal parameters are meaningless. It is then
possible to rename x by y in (function x -> x+x). What should we do in order to rename x in
y in

(function x -> (function y -> x+y))

Hint: rename y by z first. Question: why?

Exercise 3.3 Evaluate the following expressions (rewrite them until no longer possible):

20 CHAPTER 3. BASIC CONCEPTS

let x=1+2 in ((function y -> y+x) x);;
let x=1+2 in ((function x -> x+x) x);;
let f1 = function f2 -> (function x -> f2 x)
in let g = function x -> x+1

in f1 g 2;;

