Chapter 4

Basic types

We examine in this chapter the Caml basic types.

4.1 Numbers

Caml Light provides two numeric types: integers (type int) and floating-point numbers (type
float). Integers are limited to the range —230...230 — 1. Integer arithmetic is taken modulo 23!;
that is, an integer operation that overflows does not raise an error, but the result simply wraps
around. Predefined operations (functions) on integers include:

+ addition
- subtraction and unary minus
* multiplication
/ division
mod modulo

Some examples of expressions:

#3 x 4 + 2;;
- : int = 14
#3 * (4 + 2);;
- : int = 18
#3 -7 - 2;;
- : int = -6

There are precedence rules that make * bind tighter than +, and so on. In doubt, write extra
parentheses.

So far, we have not seen the type of these arithmetic operations. They all expect two integer
arguments; so, they are functions taking one integer and returning a function from integers to
integers. The (functional) value of such infix identifiers may be obtained by taking their prefix
version.

#prefix + ;;
- : int -> int -> int = <fun>

21

22 CHAPTER 4. BASIC TYPES

#prefix * ;;

- : int -> int -> int = <fun>
#prefix mod ;;
- : int -> int -> int = <fun>
As shown by their types, the infix operators +, *, ..., do not work on floating-point values. A

separate set of floating-point arithmetic operations is provided:

+. addition
-. subtraction and unary minus
*. multiplication
/. division
sqrt square root
exp, log exponentiation and logarithm
sin, cos,... usual trigonometric operations

We have two conversion functions to go back and forth between integers and floating-point
numbers: int_of_float and float_of_int.

#1 + 2.3;;

Toplevel input:

>1 + 2.3;;

> ~na

This expression has type float,
but is used with type int.

#float_of_int 1 +. 2.3;;
- : float = 3.3

Let us now give some examples of numerical functions. We start by defining some very simple
functions on numbers:

#let square x = x *. X;;
square : float -> float = <fun>

#square 2.0;;
- : float = 4.0

#square (2.0 /. 3.0);;
- : float = 0.444444444444

#let sum_of_squares (x,y) = square(x) +. square(y);;
sum_of_squares : float * float —-> float = <fun>

#let half_pi = 3.14159 /. 2.0
#in sum_of_squares(cos(half_pi), sin(half_pi));;
- : float = 1.0

4.1. NUMBERS 23

We now develop a classical example: the computation of the root of a function by Newton’s
method. Newton’s method can be stated as follows: if y is an approximation to a root of a function

f, then:
y f(y)
f'(w)

is a better approximation, where f’(y) is the derivative of f evaluated at y. For example, with
f(x) = 2% — a, we have f’(z) = 2z, and therefore:

fly) yP—a Yty

YU TV T2y T 2

We can define a function deriv for approximating the derivative of a function at a given point
by:

#let deriv f x dx = (f(x+.dx) -. f(x)) /. dx;;
deriv : (float -> float) -> float -> float —-> float = <fun>

Provided dx is sufficiently small, this gives a reasonable estimate of the derivative of f at x.
The following function returns the absolute value of its floating point number argument. It uses
the “if ...then ...else” conditional construct.

#let abs x = if x >. 0.0 then x else -. Xx;;
abs : float -> float = <fun>

The main function, given below, uses three local functions. The first one, until, is an example
of a recursive function: it calls itself in its body, and is defined using a let rec construct (rec
shows that the definition is recursive). It takes three arguments: a predicate p on floats, a function
change from floats to floats, and a float x. If p(x) is false, then until is called with last argument
change (x), otherwise, x is the result of the whole call. We will study recursive functions more
closely later. The two other auxiliary functions, satisfied and improve, take a float as argument
and deliver respectively a boolean value and a float. The function satisfied asks wether the image
of its argument by £ is smaller than epsilon or not, thus testing wether y is close enough to a root
of £. The function improve computes the next approximation using the formula given below. The
three local functions are defined using a cascade of 1let constructs. The whole function is:

#let newton f epsilon =
let rec until p change x =
if p(x) then x

let satisfied y = abs(f y) <. epsilon in
let improve y =y -. (f(y) /. (deriv f y epsilon))
#in until satisfied improve;;
newton : (float -> float) -> float -> float -> float = <fun>

#
#
else until p change (change(x)) in
#
#

Some examples of equation solving:

#let square_root x epsilon =
newton (function y -> y*.y -. x) epsilon x

24 CHAPTER 4. BASIC TYPES

#and cubic_root x epsilon =

newton (function y -> y*.y*.y -. x) epsilon x;;
square_root : float -> float -> float = <fun>

cubic_root : float -> float -> float = <fun>

#square_root 2.0 le-5;;
- : float = 1.41421569553

#cubic_root 8.0 1le-5;;
- : float = 2.00000000131

#2.0 *. (newton cos le-5 1.5);;
- : float = 3.14159265359

4.2 Boolean values

The presence of the conditional construct implies the presence of boolean values. The type bool is
composed of two values true and false.

#true; ;
- : bool = true
#false;;
- : bool = false

The functions with results of type bool are often called predicates. Many predicates are predefined
in Caml. Here are some of them:

#prefix <;;
- : %a =-> ’a -> bool = <fun>

#1 < 2;;
- : bool = true

#prefix <.;;
- : float -> float -> bool = <fun>

#3.14159 <. 2.718;;
- : bool = false

There exist also <=, >, >=, and similarly <=., >., >=..

4.2.1 Equality

Equality has a special status in functional languages because of functional values. It is easy to test
equality of values of base types (integers, floating-point numbers, booleans, ...):

#1 = 2;;
- : bool = false

#false = (1>2);;

- : bool true

4.2. BOOLEAN VALUES 25

But it is impossible, in the general case, to decide the equality of functional values. Hence, equality
stops on a run-time error when it encounters functional values.

#(fun x -> x) = (fun x > x);;
Uncaught exception: Invalid_argument "equal: functional value"

Since equality may be used on values of any type, what is its type? Equality takes two arguments
of the same type (whatever type it is) and returns a boolean value. The type of equality is a
polymorphic type, i.e. may take several possible forms. Indeed, when testing equality of two
numbers, then its type is int -> int -> bool, and when testing equality of strings, its type is
string -> string -> bool.

#prefix =;;
- : ’a =-> ’a =-> bool = <fun>

The type of equality uses type variables, written ’a, ‘b, etc. Any type can be substituted to type
variables in order to produces specific instances of types. For example, substituting int for ’a
above produces int -> int -> bool, which is the type of the equality function used on integer
values.

#1=2;;
- : bool = false

#(1,2) = (2,1);;
- : bool = false

#1 = (1,2);;
Toplevel input:
>1 = (1,2);;

> ~na

This expression has type int * int,
but is used with type int.

4.2.2 Conditional

Conditional expressions are of the form “if eiest then e; else ey”, where egest is an expression of
type bool and eq, es are expressions possessing the same type. As an example, the logical negation
could be written:

#let negate a = if a then false else true;;
negate : bool -> bool = <fun>

#negate (1=2);;
- : bool = true

26 CHAPTER 4. BASIC TYPES

4.2.3 Logical operators

The classical logical operators are available in Caml. Disjunction and conjunction are respectively
written or and &:

#true or false;;
- : bool = true

#(1<2) & (2>1);;
- : bool = true

The operators & and or are not functions. They should not be seen as regular functions, since they
evaluate their second argument only if it is needed. For example, the or operator evaluates its
second operand only if the first one evaluates to false. The behavior of these operators may be
described as follows:

e1 or eo is equivalent to if e; then true else ey
e1 & ey is equivalent to if e then ey else false

Negation is predefined:

#not true;;
- : bool = false

The not identifier receives a special treatment from the parser: the application “not f x” is
recognized as “not (f x)” while “f g x” isidentical to “(f g) x”. This special treatment explains
why the functional value associated to not can be obtained only using the prefix keyword:

#prefix not;;
- : bool -> bool = <fun>

4.3 Strings and characters

String constants (type string) are written between " characters (double-quotes). Single-character
constants (type char) are written between ¢ characters (backquotes). The most used string oper-
ation is string concatenation, denoted by the ~ character.

#"Hello" ~ " World!";;
- : string = "Hello World!"

#prefix 7;;

- : string -> string -> string = <fun>
Characters are ASCII characters:

#a‘;;

- : char = ‘af‘

#\065°;;
- : char = ‘Af

4.4. TUPLES 27

and can be built from their ASCII code as in:

#char_of_int 65;;
- : char = ‘A°

Other operations are available (sub_string, int_of_char, etc). See the Caml Light reference
manual [20] for complete information.

4.4 Tuples

4.4.1 Constructing tuples

It is possible to combine values into tuples (pairs, triples, ...). The value constructor for tuples is
the “,” character (the comma). We will often use parentheses around tuples in order to improve

readability, but they are not strictly necessary.

#1,25;

- : int * int = 1, 2

#1,2,3,4;;

- : int * int * int * int =1, 2, 3, 4
#let p = (1+2, 1<2);;

p : int * bool = 3, true

The infix “*” identifier is the type constructor for tuples. For instance, t1*ty corresponds to the
mathematical cartesian product of types t; and to.
We can build tuples from any values: the tuple value constructor is generic.

4.4.2 Extracting pair components

Projection functions are used to extract components of tuples. For pairs, we have:

#fst;;
- : ’a * ’b -> ’a = <fun>

#snd; ;
- : ’a * ’b -> ’b = <fun>

They have polymorphic types, of course, since they may be applied to any kind of pair. They are
predefined in the Caml system, but could be defined by the user (in fact, the cartesian product
itself could be defined — see section 6.1, dedicated to user-defined product types):

#let first (x,y) = x

#and second (x,y) = y;;

first : ’a * ’b -> ’a = <fun>
second : ’a * ’b -> ’b = <fun>

#first p;;

- : int = 3
#second p;;

- : bool = true

28 CHAPTER 4. BASIC TYPES

We say that first is a generic value because it works uniformly on several kinds of arguments
(provided they are pairs). We often confuse between “generic” and “polymorphic”, saying that
such value is polymorphic instead of generic.

4.5 Patterns and pattern-matching

Patterns and pattern-matching play an important role in ML languages. They appear in all real
programs and are strongly related to types (predefined or user-defined).

A pattern indicates the shape of a value. Patterns are “values with holes”. A single variable
(formal parameter) is a pattern (with no shape specified: it matches any value). When a value
is matched against a pattern (this is called pattern-matching), the pattern acts as a filter. We
already used patterns and pattern-matching in all the functions we wrote: the function body
(function x -> ...) does (trivial) pattern-matching. When applied to a value, the formal
parameter x gets bound to that value. The function body (function (x,y) -> x+y) does also
pattern-matching: when applied to a value (a pair, because of well-typing hypotheses), the x and
y get bound respectively to the first and the second component of that pair.

All these pattern-matching examples were trivial ones, they did not involve any test:

e formal parameters such as x do not impose any particular shape to the value they are supposed
to match;

e pair patterns such as (x,y) always match for typing reasons (cartesian product is a product
type).

However, some types do not guarantee such a uniform shape to their values. Consider the bool
type: an element of type bool is either true or false. If we impose to a value of type bool to
have the shape of true, then pattern-matching may fail. Consider the following function:

#let f = function true -> false;;
Toplevel input:

>let f = function true -> false;;

S emecccccsscaccccaaaaaa

Warning: this matching is not exhaustive.
f : bool -> bool = <fun>

The compiler warns us that the pattern-matching may fail (we did not consider the false case).
Thus, if we apply £ to a value that evaluates to true, pattern-matching will succeed (an equality
test is performed during execution).

#f (1<2);;
- : bool = false

But, if £’s argument evaluates to false, a run-time error is reported:

#t (1>2);;
Uncaught exception: Match_failure ("", 1346, 1368)

Here is a correct definition using pattern-matching:

4.5. PATTERNS AND PATTERN-MATCHING 29

#let negate = function true -> false
| false -> true;;
negate : bool -> bool = <fun>

(4|77

The pattern-matching has now two cases, separated by the character. Cases are examined in

turn, from top to bottom. An equivalent definition of negate would be:

#let negate = function true -> false
| x -> true;;
negate : bool -> bool = <fun>

The second case now matches any boolean value (in fact, only false since true has been caught by
the first match case). When the second case is chosen, the identifier x gets bound to the argument
of negate, and could be used in the right-hand part of the match case. Since in our example we
do not use the value of the argument in the right-hand part of the second match case, another
equivalent definition of negate would be:

#let negate = function true -> false
| _ -> true;;
negate : bool -> bool = <fun>

Where “_” acts as a formal paramenter (matches any value), but does not introduce any binding;:
it should be read as “anything else”.
As an example of pattern-matching, consider the following function definition (truth value table

of implication):

#let imply = function (true,true) -> true

| (true,false) -> false
| (false,true) -> true
| (false,false) -> true;;

imply : bool * bool —> bool = <fun>
Here is another way of defining imply, by using variables:

#let imply = function (true,x) -> x
| (false,x) —-> true;;
imply : bool * bool -> bool = <fun>

Simpler, and simpler again:

#let imply = function (true,x) -> x
| (false,_) -> true;;
imply : bool * bool -> bool = <fun>

#let imply = function (true,false) -> false
| _ -> true;;
imply : bool * bool -> bool = <fun>

Pattern-matching is allowed on any type of value (non-trivial pattern-matching is only possible on
types with data constructors).
For example:

30 CHAPTER 4. BASIC TYPES

#let is_zero = function 0 -> true | _ -> false;;
is_zero : int -> bool = <fun>

#let is_yes = function "oui" -> true

| "si" -> true
| "ya" -> true
| "yes" -> true
| _ -> false;;

is_yes : string -> bool = <fun>

4.6 Functions

The type constructor “->” is predefined and cannot be defined in ML’s type system. We shall
explore in this section some further aspects of functions and functional types.

4.6.1 Functional composition

Functional composition is easily definable in Caml. It is of course a polymorphic function:

#let compose f g = function x -> f (g (x));;
compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

The type of compose contains no more constraints than the ones appearing in the definition: in a
sense, it is the most general type compatible with these constraints.
These constraints are:

e the codomain of g and the domain of £ must be the same;
e x must belong to the domain of g;

e compose f g x will belong to the codomain of f.

Let’s see compose at work:

#let succ x = x+1;;
succ : int -> int = <fun>

#compose succ list_length;;
- : ’_a list -> int = <fun>

#(compose succ list_length) [1;2;3];;
- : int = 4

4.6.2 Currying

We can define two versions of the addition function:

4.6. FUNCTIONS 31

#let plus = function (x,y) -> x+y;;
plus : int * int -> int = <fun>

#let add = function x -> (function y -> x+y);;
add : int -> int -> int = <fun>

These two functions differ only in their way of taking their arguments. The first one will take an
argument belonging to a cartesian product, the second one will take a number and return a function.
The add function is said to be the curried version of plus (in honor of the logician Haskell Curry).

The currying transformation may be written in Caml under the form of a higher-order function:

#let curry f = function x -> (function y -> f(x,y));;
curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c¢ = <fun>

Its inverse function may be defined by:

#let uncurry f = function (x,y) -> f x y;;
uncurry : (’a => ’b -> ’c) -> ’a * ’b -> ’c = <fun>

We may check the types of curry and uncurry on particular examples:

#uncurry (prefix +);;
- : int * int -> int = <fun>

#uncurry (prefix 7);;
- : string * string -> string = <fun>

#curry plus;;
- : int -> int -> int = <fun>

Exercises

Exercise 4.1 Define functions that compute the surface area and the volume of well-known geo-
metric objects (rectangles, circles, spheres, ...).

Exercise 4.2 What would happen in o language submitted to call-by-value with recursion if there
was no conditional construct (if ... then ... else ...)?

Exercise 4.3 Define the factorial function such that:
factorialn=n*x(n—1)%...%2x%1
Give two versions of factorial: recursive and tail recursive.

Exercise 4.4 Define the fibonacci function that, when given a number n, returns the nth Fi-
bonacci number, i.e. the nth term u, of the sequence defined by:

uyp = 1
us =1
Un+2 = Upt1 + Up

32 CHAPTER 4. BASIC TYPES

Exercise 4.5 What are the types of the following expressions?

® uncurry compose
e compose CuUrry uncurry

® Ccompose uncurry curry

