
Chapter 7

Mutable data structures

The definition of a sum or product type may be annotated to allow physical (destructive) update
on data structures of that type. This is the main feature of the imperative programming style.
Writing values into memory locations is the fundamental mechanism of imperative languages such
as Pascal. The Lisp language, while mostly functional, also provides the dangerous functions rplaca
and rplacd to physically modify lists. Mutable structures are required to implement many efficient
algorithms. They are also very convenient to represent the current state of a state machine.

7.1 User-defined mutable data structures

Assume we want to define a type person as in the previous chapter. Then, it seems natural to
allow a person to change his/her age, job and the city that person lives in, but not his/her name.
We can do this by annotating some labels in the type definition of person by the mutable keyword:

#type person =
{Name: string; mutable Age: int;
mutable Job: string; mutable City: string};;
Type person defined.

We can build values of type person in the very same way as before:

#let jean =
{Name="Jean"; Age=23; Job="Student"; City="Paris"};;
jean : person = {Name="Jean"; Age=23; Job="Student"; City="Paris"}

But now, the value jean may be physically modified in the fields specified to be mutable in the
definition (and only in these fields).

We can modify the field Field of an expression <expr1> in order to assign it the value of
<expr2> by using the following construct:

<expr1>.Field <- <expr2>

For example; if we want jean to become one year older, we would write:

#jean.Age <- jean.Age + 1;;
- : unit = ()

49

50 CHAPTER 7. MUTABLE DATA STRUCTURES

Now, the value jean has been modified into:

#jean;;
- : person = {Name="Jean"; Age=24; Job="Student"; City="Paris"}

We may try to change the Name of jean, but we won’t succeed: the typecheker will not allow us to
do that.

#jean.Name <- "Paul";;
Toplevel input:

>jean.Name <- "Paul";;

>^^^^^^^^^^^^^^^^^^^

The label Name is not mutable.

It is of course possible to use such constructs in functions as in:

#let get_older ({Age=n; _} as p) = p.Age <- n + 1;;
get_older : person -> unit = <fun>

In that example, we named n the current Age of the argument, but we also named p the argument.
This is an alias pattern: it saves us the bother of writing:

#let get_older p =
match p with {Age=n} -> p.Age <- n + 1;;
get_older : person -> unit = <fun>

Notice that in the two previous expressions, we did not specify all fields of the record p. Other
examples would be:

#let move p new_city = p.City <- new_city
#and change_job p j = p.Job <- j;;
move : person -> string -> unit = <fun>

change_job : person -> string -> unit = <fun>

#change_job jean "Teacher"; move jean "Cannes";
#get_older jean; jean;;
- : person = {Name="Jean"; Age=25; Job="Teacher"; City="Cannes"}

We used the “;” character between the different changes we imposed to jean. This is the sequencing
of evaluations: it permits to evaluate successively several expressions, discarding the result of each
(except the last one). This construct becomes useful in the presence of side-effects such as physical
modifications and input/output, since we want to explicitly specify the order in which they are
performed.

7.2 The ref type

The ref type is the predefined type of mutable indirection cells. It is present in the Caml system
for reasons of compatibility with earlier versions of Caml. The ref type could be defined as follows
(we don’t use the ref name in the following definition because we want to preserve the original
ref type):

7.3. ARRAYS 51

#type ’a reference = {mutable Ref: ’a};;
Type reference defined.

Example of building a value of type ref:

#let r = ref (1+2);;
r : int ref = ref 3

The ref identifier is syntactically presented as a sum data constructor. The definition of r should
be read as “let r be a reference to the value of 1+2”. The value of r is nothing but a memory
location whose contents can be overwritten.

We consult a reference (i.e. read its memory location) with the “!” symbol:

#!r + 1;;
- : int = 4

We modify values of type ref with the := infix function:

#r:=!r+1;;
- : unit = ()

#r;;
- : int ref = ref 4

Some primitives are attached to the ref type, for example:

#incr;;
- : int ref -> unit = <fun>

#decr;;
- : int ref -> unit = <fun>

which increments (resp. decrements) references on integers.

7.3 Arrays

Arrays are modifiable data structures. They belong to the parameterized type ’a vect. Array
expressions are bracketed by [| and |], and elements are separated by semicolons:

#let a = [| 10; 20; 30 |];;
a : int vect = [|10; 20; 30|]

The length of an array is returned by with the function vect_length:

#vect_length a;;
- : int = 3

52 CHAPTER 7. MUTABLE DATA STRUCTURES

7.3.1 Accessing array elements

Accesses to array elements can be done using the following syntax:

#a.(0);;
- : int = 10

or, more generally: e1.(e2), where e1 evaluates to an array and e2 to an integer. Alternatively, the
function vect_item is provided:

#vect_item;;
- : ’a vect -> int -> ’a = <fun>

The first element of an array is at index 0. Arrays are useful because accessing an element is done
in constant time: an array is a contiguous fragment of memory, while accessing list elements takes
linear time.

7.3.2 Modifying array elements

Modification of an array element is done with the construct:

e1.(e2) <- e3

where e3 has the same type as the elements of the array e1. The expression e2 computes the index
at which the modification will occur.

As for accessing, a function for modifying array elements is also provided:

#vect_assign;;
- : ’a vect -> int -> ’a -> unit = <fun>

For example:

#a.(0) <- (a.(0)-1);;
- : unit = ()

#a;;
- : int vect = [|9; 20; 30|]

#vect_assign a 0 ((vect_item a 0) - 1);;
- : unit = ()

#a;;
- : int vect = [|8; 20; 30|]

7.4 Loops: while and for

Imperative programming (i.e. using side-effects such as physical modification of data structures)
traditionally makes use of sequences and explicit loops. Sequencing evaluation in Caml Light is
done by using the semicolon “;”. Evaluating expression e1, discarding the value returned, and then
evaluating e2 is written:

7.4. LOOPS: WHILE AND FOR 53

e1 ; e2

If e1 and e2 perform side-effects, this construct ensures that they will be performed in the specified
order (from left to right). In order to emphasize sequential side-effects, instead of using parentheses
around sequences, one can use begin and end, as in:

#let x = ref 1 in
begin
x := !x + 1;
x := !x * !x
end;;
- : unit = ()

The keywords begin and end are equivalent to opening and closing parentheses. The program
above could be written as:

#let x = ref 1 in
(x := !x + 1; x := !x * !x);;
- : unit = ()

Explicit loops are not strictly necessary per se: a recursive function could perform the same
work. However, the usage of an explicit loop locally emphasizes a more imperative style. Two loops
are provided:

• while: while e1 do e2 done evaluates e1 which must return a boolean expression, if e1 return
true, then e2 (which is usually a sequence) is evaluated, then e1 is evaluated again and so on
until e1 returns false.

• for: two variants, increasing and decreasing

– for v=e1 to e2 do e3 done

– for v=e1 downto e2 do e3 done

where v is an identifier. Expressions e1 and e2 are the bounds of the loop: they must evaluate
to integers. In the case of the increasing loop, the expressions e1 and e2 are evaluated
producing values n1 and n2 : if n1 is strictly greater than n2, then nothing is done. Otherwise,
e3 is evaluated (n2 − n1) + 1 times, with the variable v bound successively to n1, n1 + 1, . . . ,
n2.

The behavior of the decreasing loop is similar: if n1 is strictly smaller than n2, then nothing
is done. Otherwise, e3 is evaluated (n1 − n2) + 1 times with v bound to successive values
decreasing from n1 to n2.

Both loops return the value () of type unit.

#for i=0 to (vect_length a) - 1 do a.(i) <- i done;;
- : unit = ()

#a;;
- : int vect = [|0; 1; 2|]

54 CHAPTER 7. MUTABLE DATA STRUCTURES

7.5 Polymorphism and mutable data structures

There are some restrictions concerning polymorphism and mutable data structures. One cannot
enclose polymorphic objects inside mutable data structures.

#let r = ref [];;
r : ’_a list ref = ref []

The reason is that once the type of r, (’a list) ref, has been computed, it cannot be changed.
But the value of r can be changed: we could write:

r:=[1;2];;

and now, r would be a reference on a list of numbers while its type would still be (’a list) ref,
allowing us to write:

r:= true::!r;;

making r a reference on [true; 1; 2], which is an illegal Caml object.
Thus the Caml typechecker imposes that modifiable data structures appearing at toplevel must

possess monomorphic types (i.e. not polymorphic).

Exercises

Exercise 7.1 Give a mutable data type defining the Lisp type of lists and define the four functions
car, cdr, rplaca and rplacd.

Exercise 7.2 Define a stamp function, of type unit -> int, that returns a fresh integer each time
it is called. That is, the first call returns 1; the second call returns 2; and so on.

Exercise 7.3 Define a quick_sort function on arrays of floating point numbers following the
quicksort algorithm [13]. Information about the quicksort algorithm can be found in [33], for
example.

