
Chapter 9

Basic input/output

We describe in this chapter the Caml Light input/output model and some of its primitive operations.
More complete information about IO can be found in the Caml Light manual [20].

Caml Light has an imperative input/output model: an IO operation should be considered as
a side-effect, and is thus dependent on the order of evaluation. IOs are performed onto channels
with types in_channel and out_channel. These types are abstract, i.e. their representation is not
accessible.

Three channels are predefined:

#std_in;;
- : in_channel = <abstr>

#std_out;;
- : out_channel = <abstr>

#std_err;;
- : out_channel = <abstr>

They are the “standard” IO channels: std_in is usually connected to the keyboard, and printing
onto std_out and std_err usually appears on the screen.

9.1 Printable types

It is not possible to print and read every value. Functions, for example, are typically not readable,
unless a suitable string representation is designed and reading such a representation is followed by
an interpretation computing the desired function.

We call printable type a type for which there are input/output primitives implemented in Caml
Light. The main printable types are:

• characters: type char;

• strings: type string;

• integers: type int;

• floating point numbers: type float.

59

60 CHAPTER 9. BASIC INPUT/OUTPUT

We know all these types from the previous chapters. Strings and characters support a notation for
escaping to ASCII codes or to denote special characters such as newline:

#‘A‘;;
- : char = ‘A‘

#‘\065‘;;
- : char = ‘A‘

#‘\\‘;;
- : char = ‘\\‘

#‘\n‘;;
- : char = ‘\n‘

#"string with\na newline inside";;
- : string = "string with\na newline inside"

The “\” character is used as an escape and is useful for non-printable or special characters.
Of course, character constants can be used as constant patterns:

#function ‘a‘ -> 0 | _ -> 1;;
- : char -> int = <fun>

On types such as char that have a finite number of constant elements, it may be useful to use
or-patterns, gathering constants in the same matching rule:

#let is_vowel = function
‘a‘ | ‘e‘ | ‘i‘ | ‘o‘ | ‘u‘ | ‘y‘ -> true
#| _ -> false;;
is_vowel : char -> bool = <fun>

The first rule is chosen if the argument matches one of the cases. Since there is a total ordering on
characters, the syntax of character patterns is enriched with a “..” notation:

#let is_lower_case_letter = function
‘a‘..‘z‘ -> true
#| _ -> false;;
is_lower_case_letter : char -> bool = <fun>

Of course, or-patterns and this notation can be mixed, as in:

#let is_letter = function
‘a‘..‘z‘ | ‘A‘..‘Z‘ -> true
#| _ -> false;;
is_letter : char -> bool = <fun>

In the next sections, we give the most commonly used IO primitives on these printable types.
A complete listing of predefined IO operations is given in [20].

9.2. OUTPUT 61

9.2 Output

Printing on standard output is performed by the following functions:

#print_char;;
- : char -> unit = <fun>

#print_string;;
- : string -> unit = <fun>

#print_int;;
- : int -> unit = <fun>

#print_float;;
- : float -> unit = <fun>

Printing is buffered, i.e. the effect of a call to a printing function may not be seen immediately:
flushing explicitly the output buffer is sometimes required, unless a printing function flushes it
implicitly. Flushing is done with the flush function:

#flush;;
- : out_channel -> unit = <fun>

#print_string "Hello!"; flush std_out;;
Hello!- : unit = ()

The print_newline function prints a newline character and flushes the standard output:

#print_newline;;
- : unit -> unit = <fun>

Flushing is required when writing standalone applications, in which the application may terminate
without all printing being done. Standalone applications should terminate by a call to the exit
function (from the io module), which flushes all pending output on std_out and std_err.

Printing on the standard error channel std_err is done with the following functions:

#prerr_char;;
- : char -> unit = <fun>

#prerr_string;;
- : string -> unit = <fun>

#prerr_int;;
- : int -> unit = <fun>

#prerr_float;;
- : float -> unit = <fun>

The following function prints its string argument followed by a newline character to std_err and
then flushes std_err.

#prerr_endline;;
- : string -> unit = <fun>

62 CHAPTER 9. BASIC INPUT/OUTPUT

9.3 Input

These input primitives flush the standard output and read from the standard input:

#read_line;;
- : unit -> string = <fun>

#read_int;;
- : unit -> int = <fun>

#read_float;;
- : unit -> float = <fun>

Because of their names and types, these functions do not need further explanation.

9.4 Channels on files

When programs have to read from or print to files, it is necessary to open and close channels on
these files.

9.4.1 Opening and closing channels

Opening and closing is performed with the following functions:

#open_in;;
- : string -> in_channel = <fun>

#open_out;;
- : string -> out_channel = <fun>

#close_in;;
- : in_channel -> unit = <fun>

#close_out;;
- : out_channel -> unit = <fun>

The open_in function checks the existence of its filename argument, and returns a new input
channel on that file; open_out creates a new file (or truncates it to zero length if it exists) and
returns an output channel on that file. Both functions fail if permissions are not sufficient for
reading or writing.
Warning:

• Closing functions close their channel argument. Since their behavior is unspecified on already
closed channels, anything can happen in this case!

• Closing one of the standard IO channels (std_in, std_out, std_err) have unpredictable
effects!

9.4. CHANNELS ON FILES 63

9.4.2 Reading or writing from/to specified channels

Some of the functions on standard input/output have corresponding functions working on channels:

#output_char;;
- : out_channel -> char -> unit = <fun>

#output_string;;
- : out_channel -> string -> unit = <fun>

#input_char;;
- : in_channel -> char = <fun>

#input_line;;
- : in_channel -> string = <fun>

9.4.3 Failures

The exception End_of_file is raised when an input operation cannot complete because the end of
the file has been reached.

#End_of_file;;
- : exn = End_of_file

The exception sys__Sys_error (Sys_error from the module sys) is raised when some manip-
ulation of files is forbidden by the operating system:

#open_in "abracadabra";;
Uncaught exception: sys__Sys_error "abracadabra: No such file or directory"

The functions that we have seen in this chapter are sufficient for our needs. Many more exist
(useful mainly when working with files) and are described in [20].

Exercises

Exercise 9.1 Define a function copy_file taking two filenames (of type string) as arguments,
and copying the contents of the first file on the second one. Error messages must be printed on
std_err.

Exercise 9.2 Define a function wc taking a filename as argument and printing on the standard
output the number of characters and lines appearing in the file. Error messages must be printed on
std_err.

Note: it is good practice to develop a program in defining small functions. A single function doing
the whole work is usually harder to debug and to read. With small functions, one can trace them
and see the arguments they are called on and the result they produce.

64 CHAPTER 9. BASIC INPUT/OUTPUT

