
Chapter 10

Streams and parsers

In the next part of these course notes, we will implement a small functional language. Parsing valid
programs of this language requires writing a lexical analyzer and a parser for the language. For the
purpose of writing easily such programs, Caml Light provides a special data structure: streams.
Their main usage is to be interfaced to input channels or strings and to be matched against stream
patterns.

10.1 Streams

Streams belong to an abstract data type: their actual representation remains hidden from the user.
However, it is still possible to build streams either “by hand” or by using some predefined functions.

10.1.1 The stream type

The type stream is a parameterized type. One can build streams of integers, of characters or of
any other type. Streams receive a special syntax, looking like the one for lists. The empty stream
is written:

#[< >];;
- : ’_a stream = <abstr>

A non empty stream possesses elements that are written preceded by the “’” (quote) character.

#[< ’0; ’1; ’2 >];;
- : int stream = <abstr>

Elements that are not preceded by “’” are substreams that are expanded in the enclosing stream:

#[< ’0; [<’1;’2>]; ’3 >];;
- : int stream = <abstr>

#let s = [< ’"abc" >] in [< s; ’"def" >];;
- : string stream = <abstr>

Thus, stream concatenation can be defined as:

65

66 CHAPTER 10. STREAMS AND PARSERS

#let stream_concat s t = [< s; t >];;
stream_concat : ’a stream -> ’a stream -> ’a stream = <fun>

Building streams in this way can be useful while testing a parsing function or defining a lexical
analyzer (taking as argument a stream of characters and returning a stream of tokens). Stream
concatenation does not copy substreams: they are simply put in the same stream. Since (as we will
see later) stream matching has a destructive effect on streams (streams are physically “eaten” by
stream matching), parsing [< t; t >] will in fact parse t only once: the first occurrence of t will
be consumed, and the second occurrence will be empty before its parsing will be performed.

Interfacing streams with an input channel can be done with the function:

#stream_of_channel;;
- : in_channel -> char stream = <fun>

returning a stream of characters which are read from the channel argument. The end of stream
will coincide with the end of the file associated to the channel.

In the same way, one can build the character stream associated to a character string using:

#stream_of_string;;
- : string -> char stream = <fun>

#let s = stream_of_string "abc";;
s : char stream = <abstr>

10.1.2 Streams are lazily evaluated

Stream expressions are submitted to lazy evaluation, i.e. they are effectively build only when
required. This is useful in that it allows for the easy manipulation of “interactive” streams like the
stream built from the standard input. If this was not the case, i.e. if streams were immediately
completely computed, a program evaluating “stream_of_channel std_in” would read everything
up to an end-of-file on standard input before giving control to the rest of the program. Furthermore,
lazy evaluation of streams allows for the manipulation of infinite streams. As an example, we can
build the infinite stream of integers, using side effects to show precisely when computations occur:

#let rec ints_from n =
[< ’(print_int n; print_char ‘ ‘; flush std_out; n);
ints_from (n+1) >];;
ints_from : int -> int stream = <fun>

#let ints = ints_from 0;;
ints : int stream = <abstr>

We notice that no printing occurred and that the program terminates: this shows that none of
the elements have been evaluated and that the infinite stream has not been built. We will see in
the next section that these side-effects will occur on demand, i.e. when tests will be needed by a
matching function on streams.

10.2. STREAM MATCHING AND PARSERS 67

10.2 Stream matching and parsers

The syntax for building streams can be used for pattern-matching over them. However, stream
matching is more complex than the usual pattern matching.

10.2.1 Stream matching is destructive

Let us start with a simple example:

#let next = function [< ’x >] -> x;;
next : ’a stream -> ’a = <fun>

The next function returns the first element of its stream argument, and fails if the stream is empty:

#let s = [< ’0; ’1; ’2 >];;
s : int stream = <abstr>

#next s;;
- : int = 0

#next s;;
- : int = 1

#next s;;
- : int = 2

#next s;;
Uncaught exception: Parse_failure

We can see from the previous examples that the stream pattern [< ’x >] matches an initial
segment of the stream. Such a pattern must be read as “the stream whose first element matches
x”. Furthermore, once stream matching has succeeded, the stream argument has been physically
modified and does not contain any longer the part that has been recognized by the next function.

If we come back to the infinite stream of integers, we can see that the calls to next provoke the
evaluation of the necessary part of the stream:

#next ints; next ints; next ints;;
0 1 2 - : int = 2

Thus, successive calls to next remove the first elements of the stream until it becomes empty. Then,
next fails when applied to the empty stream, since, in the definition of next, there is no stream
pattern that matches an initial segment of the empty stream.

It is of course possible to specify several stream patterns as in:

#let next = function
[< ’x >] -> x
#| [< >] -> raise (Failure "empty");;
next : ’a stream -> ’a = <fun>

68 CHAPTER 10. STREAMS AND PARSERS

Cases are tried in turn, from top to bottom.
Stream pattern components are not restricted to quoted patterns (intended to match stream

elements), but can be also function calls (corresponding to non-terminals, in the grammar termi-
nology). Functions appearing as stream pattern components are intended to match substreams of
the stream argument: they are called on the actual stream argument, and they are followed by a
pattern which should match the result of this call. For example, if we define a parser recognizing
a non empty sequence of characters ‘a‘:

#let seq_a =
let rec seq = function
[< ’‘a‘; seq l >] -> ‘a‘::l
| [< >] -> []
in function [< ’‘a‘; seq l >] -> ‘a‘::l;;
seq_a : char stream -> char list = <fun>

we used the recursively defined function seq inside the stream pattern of the first rule. This
definition should be read as:

• if the stream is not empty and if its first element matches ‘a‘, apply seq to the rest of the
stream, let l be the result of this call and return ‘a‘::l,

• otherwise, fail (raise Parse_failure);

and seq should be read in the same way (except that, since it recognizes possibly empty sequences
of ‘a‘, it never fails).

Less operationally, we can read it as: “a non-empty sequence of ‘a‘ starts with an ‘a‘, and is
followed by a possibly empty sequence of ‘a‘.

Another example is the recognition of a non-empty sequence of ‘a‘ followed by a ‘b‘, or a ‘b‘
alone:

#let seq_a_b = function
[< seq_a l; ’‘b‘ >] -> l@[‘b‘]
#| [< ’‘b‘ >] -> [‘b‘];;
seq_a_b : char stream -> char list = <fun>

Here, operationally, once an ‘a‘ has been recognized, the first matching rule is chosen. Any further
mismatch (either from seq_a or from the last ‘b‘) will raise a Parse_error exception, and the
whole parsing will fail. On the other hand, if the first character is not an ‘a‘, seq_a will raise
Parse_failure, and the second rule ([< ’‘b‘ >] -> ...) will be tried.

This behavior is typical of predictive parsers. Predictive parsing is recursive-descent parsing
with one look-ahead token. In other words, a predictive parser is a set of (possibly mutually
recursive) procedures, which are selected according to the shape of (at most) the first token.

10.2.2 Sequential binding in stream patterns

Bindings in stream patterns occur sequentially, in contrast with bindings in regular patterns, which
can be thought as occurring in parallel. Stream matching is guaranteed to be performed from left
to right. For example, computing the sum of the elements of an integer stream could be defined as:

10.3. PARAMETERIZED PARSERS 69

#let rec stream_sum n = function
[< ’0; (stream_sum n) p >] -> p
#| [< ’x; (stream_sum (n+x)) p >] -> p
#| [< >] -> n;;
stream_sum : int -> int stream -> int = <fun>

#stream_sum 0 [< ’0; ’1; ’2; ’3; ’4 >];;
- : int = 10

The stream_sum function uses its first argument as an accumulator holding the sum computed
so far. The call (stream_sum (n+x)) uses x which was bound in the stream pattern component
occurring at the left of the call.

Warning: streams patterns are legal only in the function and match constructs. The let and
other forms are restricted to usual patterns. Furthermore, a stream pattern cannot appear inside
another pattern.

10.3 Parameterized parsers

Since a parser is a function like any other function, it can be parameterized or be used as a
parameter. Parameters used only in the right-hand side of stream-matching rules simulate inherited
attributes of attribute grammars. Parameters used as parsers in stream patterns allow for the
implementation of higher-order parsers. We will use the next example to motivate the introduction
of parameterized parsers.

10.3.1 Example: a parser for arithmetic expressions

Before building a parser for arithmetic expressions, we need a lexical analyzer able to recognize
arithmetic operations and integer constants. Let us first define a type for tokens:

#type token =
PLUS | MINUS | TIMES | DIV | LPAR | RPAR
#| INT of int;;
Type token defined.

Skipping blank spaces is performed by the spaces function defined as:

#let rec spaces = function
[< ’‘ ‘|‘\t‘|‘\n‘; spaces _ >] -> ()
#| [< >] -> ();;
spaces : char stream -> unit = <fun>

The conversion of a digit (character) into its integer value is done by:

#let int_of_digit = function
‘0‘..‘9‘ as c -> (int_of_char c) - (int_of_char ‘0‘)
#| _ -> raise (Failure "not a digit");;
int_of_digit : char -> int = <fun>

70 CHAPTER 10. STREAMS AND PARSERS

The “as” keyword allows for naming a pattern: in this case, the variable c will be bound to the
actual digit matched by ‘0‘..‘9‘. Pattern built with as are called alias patterns.

For the recognition of integers, we already feel the need for a parameterized parser. Integer
recognition is done by the integer analyzer defined below. It is parameterized by a numeric value
representing the value of the first digits of the number:

#let rec integer n = function
[< ’ ‘0‘..‘9‘ as c; (integer (10*n + int_of_digit c)) r >] -> r
#| [< >] -> n;;
integer : int -> char stream -> int = <fun>

#integer 0 (stream_of_string "12345");;
- : int = 12345

We are now ready to write the lexical analyzer, taking a stream of characters, and returning a
stream of tokens. Returning a token stream which will be explored by the parser is a simple,
reasonably efficient and intuitive way of composing a lexical analyzer and a parser.

#let rec lexer s = match s with
[< ’‘(‘; spaces _ >] -> [< ’LPAR; lexer s >]
#| [< ’‘)‘; spaces _ >] -> [< ’RPAR; lexer s >]
#| [< ’‘+‘; spaces _ >] -> [< ’PLUS; lexer s >]
#| [< ’‘-‘; spaces _ >] -> [< ’MINUS; lexer s >]
#| [< ’‘*‘; spaces _ >] -> [< ’TIMES; lexer s >]
#| [< ’‘/‘; spaces _ >] -> [< ’DIV; lexer s >]
#| [< ’‘0‘..‘9‘ as c; (integer (int_of_digit c)) n; spaces _ >]
-> [< ’INT n; lexer s >];;
lexer : char stream -> token stream = <fun>

We assume there is no leading space in the input.
Now, let us examine the language that we want to recognize. We shall have integers, infix

arithmetic operations and parenthesized expressions. The BNF form of the grammar is:

Expr ::= Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr
| (Expr)
| INT

The values computed by the parser will be abstract syntax trees (by contrast with concrete syntax,
which is the input string or stream). Such trees belong to the following type:

#type atree =
Int of int
#| Plus of atree * atree
#| Minus of atree * atree
#| Mult of atree * atree
#| Div of atree * atree;;
Type atree defined.

10.3. PARAMETERIZED PARSERS 71

The Expr grammar is ambiguous. To make it unambiguous, we will adopt the usual precedences
for arithmetic operators and assume that all operators associate to the left. Now, to use stream
matching for parsing, we must take into account the fact that matching rules are chosen according
to the behavior of the first component of each matching rule. This is predictive parsing, and, using
well-known techniques, it is easy to rewrite the grammar above in such a way that writing the
corresponding predictive parser becomes trivial. These techniques are described in [2], and consist
in adding a non-terminal for each precedence level, and removing left-recursion. We obtain:

Expr ::= Mult
| Mult + Expr
| Mult - Expr

Mult ::= Atom
| Atom * Mult
| Atom / Mult

Atom ::= INT
| (Expr)

While removing left-recursion, we forgot about left associativity of operators. This is not a problem,
as long as we build correct abstract trees.

Since stream matching bases its choices on the first component of stream patterns, we cannot
see the grammar above as a parser. We need a further transformation, factoring common prefixes
of grammar rules (left-factor). We obtain:

Expr ::= Mult RestExpr

RestExpr ::= + Mult RestExpr
| - Mult RestExpr
| (* nothing *)

Mult ::= Atom RestMult

RestMult ::= * Atom RestMult
| / Atom RestMult
| (* nothing *)

Atom ::= INT
| (Expr)

Now, we can see this grammar as a parser (note that the order of rules becomes important, and
empty productions must appear last). The shape of the parser is:

let rec expr =
let rec restexpr ? = function

[< ’PLUS; mult ?; restexpr ? >] -> ?
| [< ’MINUS; mult ?; restexpr ? >] -> ?

72 CHAPTER 10. STREAMS AND PARSERS

| [< >] -> ?
in function [< mult e1; restexpr ? >] -> ?

and mult =
let rec restmult ? = function

[< ’TIMES; atom ?; restmult ? >] -> ?
| [< ’DIV; atom ?; restmult ? >] -> ?
| [< >] -> ?

in function [< atom e1; restmult ? >] -> ?

and atom = function
[< ’INT n >] -> Int n

| [< ’LPAR; expr e; ’RPAR >] -> e

We used question marks where parameters, bindings and results still have to appear. Let us consider
the expr function: clearly, as soon as e1 is recognized, we must be ready to build the leftmost
subtree of the result. This leftmost subtree is either restricted to e1 itself, in case restexpr does
not encounter any operator, or it is the tree representing the addition (or subtraction) of e1 and
the expression immediately following the additive operator. Therefore, restexpr must be called
with e1 as an intermediate result, and accumulate subtrees built from its intermediate result, the
tree constructor corresponding to the operator and the last expression encountered. The body of
expr becomes:

let rec expr =
let rec restexpr e1 = function

[< ’PLUS; mult e2; restexpr (Plus (e1,e2)) e >] -> e
| [< ’MINUS; mult e2; restexpr (Minus (e1,e2)) e >] -> e
| [< >] -> e1

in function [< mult e1; (restexpr e1) e2 >] -> e2

Now, expr recognizes a product e1 (by mult), and applies (restexpr e1) to the rest of the stream.
According to the additive operator encountered (if any), this function will apply mult which will
return some e2. Then the process continues with Plus(e1,e2) as intermediate result. In the end,
a correctly balanced tree will be produced (using the last rule of restexpr).

With the same considerations on mult and restmult, we can complete the parser, obtaining:

#let rec expr =
let rec restexpr e1 = function
[< ’PLUS; mult e2; (restexpr (Plus (e1,e2))) e >] -> e
| [< ’MINUS; mult e2; (restexpr (Minus (e1,e2))) e >] -> e
| [< >] -> e1
#in function [< mult e1; (restexpr e1) e2 >] -> e2
#
#and mult =
let rec restmult e1 = function
[< ’TIMES; atom e2; (restmult (Mult (e1,e2))) e >] -> e
| [< ’DIV; atom e2; (restmult (Div (e1,e2))) e >] -> e

10.3. PARAMETERIZED PARSERS 73

| [< >] -> e1
#in function [< atom e1; (restmult e1) e2 >] -> e2
#
#and atom = function
[< ’INT n >] -> Int n
#| [< ’LPAR; expr e; ’RPAR >] -> e;;
expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

And we can now try our parser:

#expr (lexer (stream_of_string "(1+2+3*4)-567"));;
- : atree = Minus (Plus (Plus (Int 1, Int 2), Mult (Int 3, Int 4)), Int 567)

10.3.2 Parameters simulating inherited attributes

In the previous example, the parsers restexpr and restmult take an abstract syntax tree e1 as ar-
gument and pass it down to the result through recursive calls such as (restexpr (Plus(e1,e2))).
If we see such parsers as non-terminals (RestExpr from the grammar above) this parameter acts as
an inherited attribute of the non-terminal. Synthesized attributes are simulated by the right hand
sides of stream matching rules.

10.3.3 Higher-order parsers

In the definition of expr, we may notice that the parsers expr and mult on the one hand and
restexpr and restmult on the other hand have exactly the same structure. To emphasize this
similarity, if we define parsers for additive (resp. multiplicative) operators by:

#let addop = function
[< ’PLUS >] -> (function (x,y) -> Plus(x,y))
#| [< ’MINUS >] -> (function (x,y) -> Minus(x,y))
#and multop = function
[< ’TIMES >] -> (function (x,y) -> Mult(x,y))
#| [< ’DIV >] -> (function (x,y) -> Div(x,y));;
addop : token stream -> atree * atree -> atree = <fun>

multop : token stream -> atree * atree -> atree = <fun>

we can rewrite the expr parser as:

#let rec expr =
let rec restexpr e1 = function
[< addop f; mult e2; (restexpr (f (e1,e2))) e >] -> e
| [< >] -> e1
#in function [< mult e1; (restexpr e1) e2 >] -> e2
#
#and mult =

74 CHAPTER 10. STREAMS AND PARSERS

let rec restmult e1 = function
[< multop f; atom e2; (restmult (f (e1,e2))) e >] -> e
| [< >] -> e1
#in function [< atom e1; (restmult e1) e2 >] -> e2
#
#and atom = function
[< ’INT n >] -> Int n
#| [< ’LPAR; expr e; ’RPAR >] -> e;;
expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

Now, we take advantage of these similarities in order to define a general parser for left-associative
operators. Its name is left_assoc and is parameterized by a parser for operators and a parser for
expressions:

#let rec left_assoc op term =
let rec rest e1 = function
[< op f; term e2; (rest (f (e1,e2))) e >] -> e
| [< >] -> e1
in function [< term e1; (rest e1) e2 >] -> e2;;
left_assoc :

(’a stream -> ’b * ’b -> ’b) -> (’a stream -> ’b) -> ’a stream -> ’b = <fun>

Now, we can redefine expr as:

#let rec expr str = left_assoc addop mult str
#and mult str = left_assoc multop atom str
#and atom = function
[< ’INT n >] -> Int n
#| [< ’LPAR; expr e; ’RPAR >] -> e;;
expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

And we can now try our definitive parser:

#expr (lexer (stream_of_string "(1+2+3*4)-567"));;
- : atree = Minus (Plus (Plus (Int 1, Int 2), Mult (Int 3, Int 4)), Int 567)

Parameterized parsers are useful for defining general parsers such as left_assoc that can be used
with different instances. Another example of a useful general parser is the star parser defined as:

#let rec star p = function
[< p x; (star p) l >] -> x::l
#| [< >] -> [];;
star : (’a stream -> ’b) -> ’a stream -> ’b list = <fun>

10.3. PARAMETERIZED PARSERS 75

The star parser iterates zero or more times its argument p and returns the list of results. We still
have to be careful in using these general parsers because of the predictive nature of parsing. For
example, star p will never successfully terminate if p has a rule for the empty stream pattern: this
rule will make the second rule of star useless!

10.3.4 Example: parsing a non context-free language

As an example of parsing with parameterized parsers, we shall build a parser for the language
{wCw | w ∈ (A|B)∗}, which is known to be non context-free.

First, let us define a type for this alphabet:

#type token = A | B | C;;
Type token defined.

Given an input of the form wCw, the idea for a parser recognizing it is:

• first, to recognize the sequence w with a parser wd (for word definition) returning information
in order to build a parser recognizing only w;

• then to recognize C;

• and to use the parser built at the first step to recognize the sequence w.

The definition of wd is as follows:

#let rec wd = function
[< ’A; wd l >] -> (function [< ’A >] -> "a")::l
#| [< ’B; wd l >] -> (function [< ’B >] -> "b")::l
#| [< >] -> [];;
wd : token stream -> (token stream -> string) list = <fun>

The wu function (for word usage) builds a parser sequencing a list of parsers:

#let rec wu = function
p::pl -> (function [< p x; (wu pl) l >] -> x^l)
#| [] -> (function [< >] -> "");;
wu : (’a stream -> string) list -> ’a stream -> string = <fun>

The wu function builds, from a list of parsers pi, for i = 1..n, a single parser

function [<p1 x1;. . . ;pn xn>] -> [x1;. . . ;xn]

which is the sequencing of parsers pi. The main parser w is:

#let w = function [< wd l; ’C; (wu l) r >] -> r;;
w : token stream -> string = <fun>

#w [< ’A; ’B; ’B; ’C; ’A; ’B; ’B >];;
- : string = "abb"

#w [< ’C >];;
- : string = ""

76 CHAPTER 10. STREAMS AND PARSERS

In the previous parser, we used an intermediate list of parsers in order to build the second
parser. We can redefine wd without using such a list:

#let w =
let rec wd wr = function
[< ’A; (wd (function [< wr r; ’A >] -> r^"a")) p >] -> p
| [< ’B; (wd (function [< wr r; ’B >] -> r^"b")) p >] -> p
| [< >] -> wr
in function [< (wd (function [< >] -> "")) p; ’C; p str >] -> str;;
w : token stream -> string = <fun>

#w [< ’A; ’B; ’B; ’C; ’A; ’B; ’B >];;
- : string = "abb"

#w [< ’C >];;
- : string = ""

Here, wd is made local to w, and takes as parameter wr (for word recognizer) whose initial value is
the parser with an empty stream pattern. This parameter accumulates intermediate results, and
is delivered at the end of parsing the initial sequence w. After checking for the presence of C, it is
used to parse the second sequence w.

10.4 Further reading

A summary of the constructs over streams and of primitives over streams is given in [20].
An alternative to parsing with streams and stream matching are the camllex and camlyacc

programs.
A detailed presentation of streams and stream matching following “predictive parsing” semantics

can be found in [25], where alternative semantics are given with some possible implementations.

Exercises

Exercise 10.1 Define a parser for the language of prefix arithmetic expressions generated by the
grammar:

Expr ::= INT
| + Expr Expr
| - Expr Expr
| * Expr Expr
| / Expr Expr

Use the lexical analyzer for arithmetic expressions given above. The result of the parser must be
the integer resulting from the evaluation of the arithmetic expression, i.e. its type must be:

token -> int

Exercise 10.2 Enrich the type token above with a constructor IDENT of string for identifiers,
and enrich the lexical analyzer for it to recognize identifiers built from alphabetic letters (upper or
lowercase). Length of identifiers may be limited.

