
Chapter 11

Standalone programs and separate
compilation

So far, we have used Caml Light in an interactive way. It is also possible to program in Caml
Light in a batch-oriented way: writing source code in a file, having it compiled into an executable
program, and executing the program outside of the Caml Light environment. Interactive use is
great for learning the language and quickly testing new functions. Batch use is more convenient to
develop larger programs, that should be usable without knowledge of Caml Light.

Note for Macintosh users: batch compilation is not available in the standalone Caml Light
application. It requires the MPW environment (see the Caml Light manual).

11.1 Standalone programs

Standalone programs are composed of a sequence of phrases, contained in one or several text files.
Phrases are the same as at toplevel: expressions, value declarations, type declarations, exception
declarations, and directives. When executing the stand-alone program produced by the compiler,
all phrases are executed in order. The values of expressions and declared global variables are not
printed, however. A stand-alone program has to perform input and output explicitly.

Here is a sample program, that prints the number of characters and the number of lines of its
standard input, like the wc Unix utility.

let chars = ref 0;;
let lines = ref 0;;
try
while true do
let c = input_char std_in in
chars := !chars + 1;
if c = ‘\n‘ then lines := !lines + 1 else ()

done
with End_of_file ->
print_int !chars; print_string " characters, ";
print_int !lines; print_string " lines.\n";
exit 0

77



78 CHAPTER 11. STANDALONE PROGRAMS AND SEPARATE COMPILATION

;;

The input_char function reads the next character from an input channel (here, std_in, the
channel connected to standard input). It raises exception End_of_file when reaching the end
of the file. The exit function aborts the process. Its argument is the exit status of the process.
Calling exit is absolutely necessary to ensure proper flushing of the output channels.

Assume this program is in file count.ml. To compile it, simply run the camlc command from
the command interpreter:

camlc -o count count.ml

The compiler produces an executable file count. You can now run count with the help of the
”camlrun” command:

camlrun count < count.ml

This should display something like:

306 characters, 13 lines.

Under Unix, the count file can actually be executed directly, just like any other Unix command,
as in:

./count < count.ml

This also works under MS-DOS, provided the executable file is given extension .exe. That is, if
we compile count.ml as follows:

camlc -o count.exe count.ml

we can run count.exe directly, as in:

count.exe < count.ml

See the reference manual for more information on camlc.

11.2 Programs in several files

It is possible to split one program into several source files, separately compiled. This way, local
changes do not imply a full recompilation of the program. Let us illustrate that on the previous
example. We split it in two modules: one that implements integer counters; another that performs
the actual counting. Here is the first one, counter.ml:

(* counter.ml *)
type counter = { mutable val: int };;
let new init = { val = init };;
let incr c = c.val <- c.val + 1;;
let read c = c.val;;

Here is the source for the main program, in file main.ml.



11.2. PROGRAMS IN SEVERAL FILES 79

(* main.ml *)
let chars = counter__new 0;;
let lines = counter__new 0;;
try
while true do
let c = input_char std_in in
counter__incr chars;
if c = ‘\n‘ then counter__incr lines else ()

done
with End_of_file ->
print_int (counter__read chars); print_string " characters, ";
print_int (counter__read lines); print_string " lines.\n";
exit 0

;;

Notice that references to identifiers defined in module counter.ml are prefixed with the name of
the module, counter, and by __ (the “long dash” symbol: two underscore characters). If we had
simply entered new 0, for instance, the compiler would have assumed new is an identifier declared
in the current module, and issued an “undefined identifier” error.

Compiling this program requires two compilation steps, plus one final linking step.

camlc -c counter.ml
camlc -c main.ml
camlc -o main counter.zo main.zo

Running the program is done as before:

camlrun main < counter.ml

The -c option to camlc means “compile only”; that is, the compiler should not attempt to produce a
stand-alone executable program from the given file, but simply an object code file (files counter.zo,
main.zo). The final linking phases takes the two .zo files and produces the executable main. Object
files must be linked in the right order: for each global identifier, the module defining it must come
before the modules that use it.

Prefixing all external identifiers by the name of their defining module is sometimes tedious.
Therefore, the Caml Light compiler provides a mechanism to omit the module__ part in external
identifiers. The system maintains a list of “default” modules, called the currently opened modules,
and whenever it encounters an identifier without the module__ part, it searches through the opened
modules, to find one that defines this identifier. Searched modules always include the module being
compiled (searched first), and some library modules of general use. In addition, two directives are
provided to add and to remove modules from the list of opened modules:

• #open "module";; to add module in front of the list;

• #close "module";; to remove module from the list.

For instance, we can rewrite the main.ml file above as:



80 CHAPTER 11. STANDALONE PROGRAMS AND SEPARATE COMPILATION

#open "counter";;
let chars = new 0;;
let lines = new 0;;
try
while true do
let c = input_char std_in in
incr chars;
if c = ‘\n‘ then incr lines

done
with End_of_file ->
print_int (read chars);
print_string " characters, ";
print_int (read lines);
print_string " lines.\n";
exit 0

;;

After the #open "counter" directive, the identifier new automatically resolves to counters__new.
If two modules, say mod1 and mod2, define both a global value f, then f in a client module

client resolves to mod1__f if mod1 is opened but not mod2, or if mod1 has been opened more
recently than mod2. Otherwise, it resolves to mod2__f. For instance, the two system modules int
and float both define the infix identifier +. Both modules int and float are opened by default,
but int comes first. Hence, x + y is understood as the integer addition, since + is resolved to
int__+. But after the directive #open "float";;, module float comes first, and the identifier +
is resolved to float__+.

11.3 Abstraction

Some globals defined in a module are not intended to be used outside of this module. Then, it is
good programming style not to export them outside of the module, so that the compiler can check
they are not used in another module. Also, one may wish to export a data type abstractly, that
is, without publicizing the structure of the type. This ensures that other modules cannot build or
inspect objects of that type without going through one of the functions on that type exported in
the defining module. This helps in writing clean, well-structured programs.

The way to do that in Caml Light is to write an explicit interface, or output signature, specifying
those identifiers that are visible from the outside. All other identifiers will remain local to the
module. For global values, their types must be given by hand. The interface is contained in a file
whose name is the module name, with extension .mli.

Here is for instance an interface for the counter module, that abstracts the type counter:

(* counter.mli *)
type counter;; (* an abstract type *)
value new : int -> counter
and incr : counter -> unit
and read : counter -> int;;



11.3. ABSTRACTION 81

Interfaces must be compiled separately. However, once the interface for module A has been
compiled, any module B that uses A can be immediately compiled, even if the implementation of
A is not yet compiled or even not yet written. Consider:

camlc -c counter.mli
camlc -c main.ml
camlc -c counter.ml
camlc -o main counter.zo main.zo

The implementation main.ml could be compiled before counter.ml. The only requirement for
compiling main.ml is the existence of counter.zi, the compiled interface of the counter module.

Exercises

Exercise 11.1 Complete the count command: it should be able to operate on several files, given on
the command line. Hint: sys__command_line is an array of strings, containing the command-line
arguments to the process.



82 CHAPTER 11. STANDALONE PROGRAMS AND SEPARATE COMPILATION



Part III

A complete example

83




