
Chapter 14

Encoding recursion

14.1 Fixpoint combinators

We have seen that we do not have recursion in ASL. However, it is possible to encode recursion by
defining a fixpoint combinator. A fixpoint combinator is a function F such that:

F M is equivalent to M (F M) modulo the evaluation rules.

for any expression M . A consequence of the equivalence given above is that fixpoint combinators
can encode recursion. Let us note M ≡ N if expressions M and N are equivalent modulo the
evaluation rules. Then, consider ffact to be the functional obtained from the body of the factorial
function by abstracting (i.e. using as a parameter) the fact identifier, and fix an arbitrary fixpoint
combinator. We have:

ffact is \fact.(\n. if = n 0 then 1 else * n (fact (- n 1)) fi)

Now, let us consider the expression E = (fix ffact) 3. Using our intuition about the evaluation
rules, and the definition of a fixpoint combinator, we obtain:
E ≡ ffact (fix ffact) 3
Replacing ffact by its definition, we obtain:
E ≡ (\fact.(\n. if = n 0 then 1 else * n (fact (- n 1)) fi)) (fix ffact) 3
We can now pass the two arguments to the first abstraction, instantiating fact and n respectively
to fix ffact and 3:
E ≡ if = 3 0 then 1 else * 3 (fix ffact (- 3 1)) fi
We can now reduce the conditional into its else branch:
E ≡ * 3 (fix ffact (- 3 1))
Continuing this way, we eventually compute:
E ≡ * 3 (* 2 (* 1 1)) ≡ 6

This is the expected behavior of the factorial function. Given an appropriate fixpoint combinator
fix, we could define the factorial function as fix ffact, where ffact is the expression above.

Unfortunately, when using call-by-value, any application of a fixpoint combinator F such that:

F M evaluates to M (F M)

leads to non-termination of the evaluation (because evaluation of (F M) leads to evaluating
(M (F M)), and thus (F M) again).
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We will use the Z fixpoint combinator defined by:

Z = λf.((λx. f (λy. (x x) y))(λx. f (λy. (x x) y)))

The fixpoint combinator Z has the particularity of being usable under call-by-value evaluation
regime (in order to check that fact, it is necessary to know the evaluation rules of λ-calculus).
Since the name z looks more like an ordinary parameter name, we will call fix the ASL expression
corresponding to the Z fixpoint combinator.

#semantics (parse_top
# "let fix be \\f.((\\x.f(\\y.(x x) y))(\\x.f(\\y.(x x) y)));");;
ASL Value of fix is <fun>

- : unit = ()

We are now able to define the ASL factorial function:

#semantics (parse_top
# "let fact be fix (\\f.(\\n. if = n 0 then 1
# else * n (f (- n 1)) fi));");;
ASL Value of fact is <fun>

- : unit = ()

#semantics (parse_top "fact 8;");;
ASL Value of it is 40320

- : unit = ()

and the ASL Fibonacci function:

#semantics (parse_top
# "let fib be fix (\\f.(\\n. if = n 1 then 1
# else if = n 2 then 1
# else + (f (- n 1)) (f (- n 2)) fi fi));");;
ASL Value of fib is <fun>

- : unit = ()

#semantics (parse_top "fib 9;");;
ASL Value of it is 34

- : unit = ()

14.2 Recursion as a primitive construct

Of course, in a more realistic prototype, we would extend the concrete and abstract syntaxes of
ASL in order to support recursion as a primitive construct. We do not do it here because we want
to keep ASL simple. This is an interesting non trivial exercise!


