Chapter 14

Encoding recursion

14.1 Fixpoint combinators

We have seen that we do not have recursion in ASL. However, it is possible to encode recursion by defining a fixpoint combinator. A fixpoint combinator is a function F such that:

$$F \ M \text{ is equivalent to } M (F \ M) \text{ modulo the evaluation rules.}$$

for any expression M. A consequence of the equivalence given above is that fixpoint combinators can encode recursion. Let us note $M \equiv N$ if expressions M and N are equivalent modulo the evaluation rules. Then, consider $ffact$ to be the functional obtained from the body of the factorial function by abstracting (i.e. using as a parameter) the $fact$ identifier, and fix an arbitrary fixpoint combinator. We have:

$$ffact \equiv \fact. (\ n. \text{ if } = n 0 \text{ then } 1 \text{ else } * n \ (fact (- n 1)) fi)$$

Now, let us consider the expression $E = (fix \ ffact) \ 3$. Using our intuition about the evaluation rules, and the definition of a fixpoint combinator, we obtain:

$$E \equiv ffact \ (fix \ ffact) \ 3$$

Replacing $ffact$ by its definition, we obtain:

$$E \equiv (\fact. (\ n. \text{ if } = n 0 \text{ then } 1 \text{ else } * n \ (fact (- n 1)) fi)) \ (fix \ ffact) \ 3$$

We can now pass the two arguments to the first abstraction, instantiating $fact$ and n respectively to $fix \ ffact$ and 3:

$$E \equiv \text{if } = 3 0 \text{ then } 1 \text{ else } * 3 \ (fix \ ffact (- 3 1)) \ fi$$

We can now reduce the conditional into its else branch:

$$E \equiv * 3 \ (fix \ ffact (- 3 1))$$

Continuing this way, we eventually compute:

$$E \equiv * 3 \ (\ * 2 \ (\ * 1 1)) \equiv 6$$

This is the expected behavior of the factorial function. Given an appropriate fixpoint combinator fix, we could define the factorial function as $fix \ ffact$, where $ffact$ is the expression above.

Unfortunately, when using call-by-value, any application of a fixpoint combinator F such that:

$$F \ M \text{ evaluates to } M (F \ M)$$

leads to non-termination of the evaluation (because evaluation of $(F \ M)$ leads to evaluating $(M (F \ M))$, and thus $(F \ M)$ again).
We will use the \(Z \) fixpoint combinator defined by:

\[
Z = \lambda f.(\lambda x. f (\lambda y. (x x) y)) (\lambda x. f (\lambda y. (x x) y))
\]

The fixpoint combinator \(Z \) has the particularity of being usable under call-by-value evaluation regime (in order to check that fact, it is necessary to know the evaluation rules of \(\lambda \)-calculus). Since the name \(z \) looks more like an ordinary parameter name, we will call \textit{fix} the ASL expression corresponding to the \(Z \) fixpoint combinator.

```plaintext
#semantics (parse_top
  #   "let fix be \( \lambda f.((\lambda x.f(\lambda y.(x x) y))(\lambda x.f(\lambda y.(x x) y))) \);;
ASL Value of fix is <fun>
- : unit = ()

We are now able to define the ASL factorial function:

```plaintext
#semantics (parse_top
 # "let fact be \(\lambda n. if = n 0 then 1
 # else * n (f (- n 1)) fi) \);
ASL Value of fact is <fun>
- : unit = ()

and the ASL Fibonacci function:

```plaintext
#semantics (parse_top
  #   "let fib be \( \lambda n. if = n 1 then 1
  #   else if = n 2 then 1
  #   else + (f (- n 1)) (f (- n 2)) fi) \);
ASL Value of fib is <fun>
- : unit = ()
```

14.2 Recursion as a primitive construct

Of course, in a more realistic prototype, we would extend the concrete and abstract syntaxes of ASL in order to support recursion as a primitive construct. We do not do it here because we want to keep ASL simple. This is an interesting non trivial exercise!