
12
Interoperability with

C

Developing programs in a given language very often requires one to integrate libraries
written in other languages. The two main reasons for this are:

• to use libraries that cannot be written in the language, thus extending its func-
tionality;

• to use high-performance libraries already implemented in another language.

A program then becomes an assembly of software components written in various lan-
guages, where each component has been written in the language most appropriate
for the part of the problem it addresses. Those software components interoperate by
exchanging values and requesting computations.

The Objective Caml language offers such a mechanism for interoperability with the C
language. This mechanism allows Objective Caml code to call C functions with Caml-
provided arguments, and to get back the result of the computation in Objective Caml.
The converse is also possible: a C program can trigger an Objective Caml computation,
then work on its result.

The choice of C as interoperability language is justified by the following reasons:

• it is a standardized language (ISO C);

• C is a popular implementation language for operating systems (Unix, Windows,
MacOS, etc.);

• a great many libraries are written in C;

• most programming languages offer a C interface, thus it is possible to interface
Objective Caml with these languages by going through C.

The C language can therefore be viewed as the esperanto of programming languages.

Cooperation between C and Objective Caml raises a number of difficulties that we
review below.

316 Chapter 12 : Interoperability with C

• Machine representation of data
For instance, values of base types (int, char, float) have different machine rep-
resentations in the two languages. This requires conversion between the represen-
tations, in both directions. The same holds for data structures such as records,
sum types1, or arrays.

• The Objective Caml garbage collector
Standard C does not provide garbage collection. (However, garbage collectors are
easily written in C.) Moreover, calling a C function from Objective Caml must
not modify the memory in ways incompatible with the Objective Caml GC.

• Aborted computations
Standard C does not support exceptions, and provides different mechanisms for
aborting computations. This complicates Objective Caml’s exception handling.

• Sharing common resources
For instance, files and other input-output devices are shared between Objective
Caml and C, but each language maintains its own input-output buffers. This may
violate the proper sequencing of input-output operations in mixed programs.

Programs written in Objective Caml benefit from the safety of static typing and au-
tomatic memory management. This safety must not be compromised by improper use
of C libraries and interfacing with other languages through C. The programmer must
therefore adhere to rather strict rules to ensure that both languages coexist peacefully.

Chapter outline

This chapter introduces the tools that allow interoperability between Objective Caml
and C by building executables containing code fragments written in both languages.
These tools include functions to convert between the data representations of each
language, allocation functions using the Objective Caml heap and garbage collector,
and functions to raise Objective Caml exceptions from C.

The first section shows how to call C functions from Objective Caml and how to build
executables and interactive toplevel interpreters including the C code implementing
those functions. The second section explores the C representation of Objective Caml
values. The third section explains how to create and modify Objective Caml values
from C. It discusses the interactions between C allocations and the Objective Caml
garbage collector, and presents the mechanisms ensuring safe allocation from C. The
fourth section describes exception handling: how to raise exceptions and how to handle
them. The fifth section reverses the roles: it shows how to include Objective Caml code
in an application whose main program is written in C.

1. Objective Caml’s sum types are discriminated unions. Refer to chapter 2, page 45 for a full de-
scription.

Communication between C and Objective Caml 317

Note
This chapter assumes a working knowledge of the C language. Moreover,
reading chapter 9 can be helpful in understanding the issues raised by
automatic memory management.

Communication between C and Objective

Caml

Communication between parts of a program written in C and in Objective Caml is
accomplished by creating an executable (or a new toplevel interpreter) containing both
parts. These parts can be separately compiled. It is therefore the responsibility of the
linking phase2 to establish the connection between Objective Caml function names and
C function names, and to create the final executable. To this end, the Objective Caml
part of the program contains external declarations describing this connection.

Figure 12.1 shows a sample program composed of a C part and an Objective Caml part.
Each part comprises code (function definitions and toplevel expressions for Objective

���
���
���
���
���

���
���
���
���
���

���

���

 return Val_long(Long_val(x) +
 Long_val(y) +
 Long_val(z));
}

external f : int -> int -> int -> int

let r = f 2 6 9;;

= "f_c"
value f_c (value x, value y, value z) {

C part Objective Caml part

linking

call

return

dynamic allocation heap garbage collected heap

Figure 12.1: Communication between Objective Caml and C.

Caml) and a memory area for dynamic allocation. Calling the function f with three
Objective Caml integer arguments triggers a call to the C function f c. The body of
the C function converts the three Objective Caml integers to C integers, computes
their sum, and returns the result converted to an Objective Caml integer.

2. Linking is performed differently for the bytecode compiler and the native-code compiler.

318 Chapter 12 : Interoperability with C

We now introduce the basic mechanisms for interfacing C with Objective Caml: external
declarations, calling conventions for C functions invoked from Objective Caml, and
linking options. Then, we show an example using input-output.

External declarations

External function declarations in Objective Caml associate a C function definition with
an Objective Caml name, while giving the type of the latter.

The syntax is as follows:

Syntax : external caml name : type = "C name"

This declaration indicates that calling the function caml name from Objective Caml
code performs a call to the C function C name with the given arguments. Thus, the
example in figure 12.1 declares the function f as the Objective Caml equivalent of the
C function f c.

An external function can be declared in an interface (i.e., in an .mli file) either as an
external or as a regular value:

Syntax :
external caml name : type = "C name"
val caml name : type

In the latter case, calls to the C function first go through the general function ap-
plication mechanism of Objective Caml. This is slightly less efficient, but hides the
implementation of the function as a C function.

Declaration of the C functions

C functions intended to be called from Objective Caml must have the same number
of arguments as described in their external declarations. These arguments have type
value, which is the C type for Objective Caml values. Since those values have uniform
representations (see chapter 9), a single C type suffices to encode all Objective Caml
values. On page 323, we will present the facilities for encoding and decoding values,
and illustrate them by a function that explores the representations of Objective Caml
values.

The example in figure 12.1 respects the constraints mentioned above. The function
f c, associated with an Objective Caml function of type int -> int -> int -> int,
is indeed a function with three parameters of type value returning a result of type
value.

Communication between C and Objective Caml 319

The Objective Caml bytecode interpreter evaluates calls to external functions differ-
ently, depending on the number of arguments3. If the number of arguments is less than
or equal to five, the arguments are passed directly to the C function. If the number
of arguments is greater than five, the C function’s first parameter will get an array
containing all of the arguments, and the C function’s second parameter will get the
number of arguments. These two cases must therefore be distinguished for external C
functions that can be called from the bytecode interpreter. On the other hand, the
Objective Caml native-code compiler always calls external functions by passing all the
arguments directly, as function parameters.

External functions with more than five arguments

For external functions with more than five arguments, the programmer must provide
two C functions: one for bytecode and the other for native-code. The syntax of external
declarations allows the declaration of one Objective Caml function associated with two
C functions:

Syntax : external caml name : type = "C name bytecode" "C name native"

The function C name bytecode takes two parameters: an array of values of type value
(i.e. a C pointer of type value*) and an integer giving the number of elements in this
array.

Example

The following C program defines two functions for adding together six integers: plus-
native, callable from native code, and plus bytecode, callable from the bytecode
compiler. The C code must include the file mlvalues.h containing the definitions of C
types, Objective Caml values, and conversion macros.

#include <stdio.h>

#include <caml/mlvalues.h>

value plus_native (value x1,value x2,value x3,value x4,value x5,value x6)

{

printf("<< NATIVE PLUS >>\n") ; fflush(stdout) ;

return Val_long (Long_val(x1) + Long_val(x2) + Long_val(x3)

+ Long_val(x4) + Long_val(x5) + Long_val(x6)) ;

}

value plus_bytecode (value * tab_val, int num_val)

{

int i;

long res;

3. Recall that a function such as fst, of type ’a * ’b -> ’a, does not have two arguments, but only
one that happens to be a pair; on the other hand, a function of type int -> int -> int has two
arguments.

320 Chapter 12 : Interoperability with C

printf("<< BYTECODED PLUS >> : ") ; fflush(stdout) ;

for (i=0,res=0;i<num_val;i++) res += Long_val(tab_val[i]) ;

return Val_long(res) ;

}

The following Objective Caml program exOCAML.ml calls these two C functions.
external plus : int → int → int → int → int → int → int

= "plus_bytecode" "plus_native" ; ;

print int (plus 1 2 3 4 5 6) ; ;

print newline () ; ;

We now compile these programs with the two Objective Caml compilers and a C
compiler that we call cc. We must give it the access path for the mlvalues.h include
file.

$ cc -c -I/usr/local/lib/ocaml exC.c

$ ocamlc -custom exC.o exOCAML.ml -o ex_byte_code.exe
$ ex_byte_code.exe
<< BYTECODED PLUS >> : 21

$ ocamlopt exC.o exOCAML.ml -o ex_native.exe
$ ex_native.exe
<< NATIVE PLUS >> : 21

Note
To avoid writing the C function twice (with the same body but different
calling conventions), it suffices to implement the bytecode version as a call
to the native-code version, as in the following sketch:
value prim nat (value x1, ..., value xn) { ... }
value prim bc (value *tbl, int n)

{ return prim nat(tbl[0],tbl[1],...,tbl[n-1]) ; }

Linking with C

The linking phase creates an executable from C and Objective Caml files compiled
with their respective compilers. The result of the native-code compiler is shown in
figure 12.2.

The compilation of the C and Objective Caml sources generates machine code that
is stored in the static allocation area of the program. The dynamic allocation area
contains the execution stack (corresponding to the function calls in progress) and the
heaps for C and Objective Caml.

Communication between C and Objective Caml 321

���

��

���
���
���
���
���

���
���
���
���
���

void main (int argc, ...

function x -> ...

static allocation
area

dynamic allocation
area

C code

Objective Caml code

C static variables

C heap

Objective Caml heap (with GC)

runtime stack

Figure 12.2: Mixed-language executable.

Run-time libraries

The C functions that can be called from a program using only the standard Objective
Caml library are contained in the execution library of the abstract machine (see figure
7.3 page 200). For such a program, there is no need to provide additional libraries at
link-time. However, when using Objective Caml libraries such as Graphics, Num or Str,
the programmer must explicitly provide the corresponding C libraries at link-time. This
is the purpose of the -custom compiler option (see see chapter 7, page 207). Similarly,
when we wish to call our C functions from Objective Caml, we must provide the object
file containing those C functions at link-time. The following example illustrates this.

The three linking modes

The linking commands differ slightly between the native-code compiler, the bytecode
compiler, and the construction of toplevel interactive loops. The compiler options rel-
evant to these linking modes are described in chapter 7.

To illustrate these linking modes, we consider again the example in figure 12.1. Assume
the Objective Caml source file is named progocaml.ml. It uses the external function
f c defined in the C file progC.c. In turn, the function f c refers to a C library

322 Chapter 12 : Interoperability with C

a C library.a. Once all these files are compiled separately, we link them together
using the following commands:

• bytecode:
ocamlc -custom -o vbc.exe progC.o a_C_library.a progocaml.cmo

• native code:
ocamlopt progC.o -o vn.exe a_C_library.a progocaml.cmx

We obtain two executable files: vbc.exe for the bytecode version, and vn.exe for the
native-code version.

Building an enriched abstract machine

Another possibility is to augment the run-time library of the abstract machine with new
C functions callable from Objective Caml. This is achieved by the following commands:

ocamlc -make-runtime -o new_ocamlrun progC.o a_C_library.a

We can then build a bytecode executable vbcnam.exe targeted to the new abstract
machine:

ocamlc -o vbcnam.exe -use-runtime new_ocamlrun progocaml.cmo

To run this bytecode executable, either give it as the first argument to the new abstract
machine, as in new_ocaml vbcnam.exe , or run it directly as vbcnam.exe

Note
Linking in -custom mode scans the object files (.cmo) to build a table
of all external functions mentioned. The bytecode required to use them
is generated and added to the bytecode corresponding to the Objective
Caml code.

Building a toplevel interactive loop

To be able to use an external function in the toplevel interactive loop, we must first
build a new toplevel interpreter containing the C code for the function, as well as an
Objective Caml file containing its declaration.

We assume that we have compiled the file progC.c containing the function f c. We
then build the toplevel loop ftop as follows:

ocamlmktop -custom -o ftop progC.o a_C_library.a ex.ml

The file ex.ml contains the external declaration for the function f. The new toplevel
interpreter ftop then knows this function and contains the corresponding C code, as
found in progC.o.

Exploring Objective Caml values from C 323

Mixing input-output in C and in Objective Caml

The input-output functions in C and in Objective Caml do not share their file buffers.
Consider the following C program:

#include <stdio.h>

#include <caml/mlvalues.h>

value hello_world (value v)

{ printf("Hello World !!"); fflush(stdout); return v; }

Writes to standard output must be flushed explicitly (fflush) to guarantee that they
will be printed in the intended order.

external caml hello world : unit → unit = "hello_world" ; ;

external caml_hello_world : unit -> unit = "hello_world"

print string "<< " ;

caml hello world () ;

print string " >>\n" ;

flush stdout ; ;

Hello World !!<< >>

- : unit = ()

The outputs from C and from Objective Caml are not intermingled as expected, be-
cause each language buffers its outputs independently. To get the correct behavior, the
Objective Caml part must be rewritten as follows:
print string "<< " ; flush stdout ;

caml hello world () ;

print string " >>\n" ; flush stdout ; ;

<< Hello World !! >>

- : unit = ()

By flushing the Objective Caml output buffer after each write, we ensure that the
outputs from each language appear in the expected order.

Exploring Objective Caml values from C

The machine representation of Objective Caml values differs from that of C values, even
for fundamental types such as integers. This is because the Objective Caml garbage
collector needs to record additional information in values. Since Objective Caml values
are represented uniformly, their representations all belong to the same C type, named
(unsurprisingly) value.

When Objective Caml calls a C function, passing it one or several arguments, those
arguments must be decoded before using them in the C function. Similarly, the result
of this C function must be encoded before being returned to Objective Caml.

324 Chapter 12 : Interoperability with C

These conversions (decoding and encoding) are performed by a number of macros and C
functions provided by the Objective Caml runtime system. These macros and functions
are declared in the include files listed in figure 12.3. These include files are part of the
Objective Caml installation, and can be found in the directory where Objective Caml
libraries are installed4

caml/mlvalues.h definition of the value type and basic value conversion macros.
caml/alloc.h functions for allocating Objective Caml values.
caml/memory.h macros for interfacing with the Objective Caml garbage collector.

Figure 12.3: Include files for the C interface.

Classification of Objective Caml representations

An Objective Caml representation, that is, a C datum of type value, is one of:

• an immediate value (represented as an integer);

• a pointer into the Objective Caml heap;

• a pointer pointing outside the Objective Caml heap.

The Objective Caml heap is the memory area that is managed by the Objective Caml
garbage collector. C code can also allocate and manipulate data structures in its own
memory space, and communicate pointers to these data structures to Objective Caml.

Figure 12.4 shows the macros for classifying representations and converting between
C integers and their Objective Caml representation. Note that C offers several integer

Is long(v) is v an Objective Caml integer?
Is block(v) is v an Objective Caml pointer?

Long val(v) extract the integer contained in v, as a C ”long”
Int val(v) extract the integer contained in v, as a C ”int”
Bool val(v) extract the boolean contained in v (0 if false, non-zero if true)

Figure 12.4: Classification of representations and conversion of immediate values.

types of varying sizes (short, int, long, etc), while Objective Caml has only one
integer type, int.

4. Under Unix, this directory is /usr/local/lib/ocaml by default, or sometimes /usr/lib/ocaml.
Under Windows, the default location is C: \OCAML\LIB, or the value of the environment variable
CAMLLIB, if set.

Exploring Objective Caml values from C 325

Accessing immediate values

All Objective Caml immediate values are represented as integers:

• integers are represented by their value;

• characters are represented by their ASCII code5;

• constant constructors are represented by an integer corresponding to their posi-
tion in the datatype declaration: the nth constant constructor of a datatype is
represented by the integer n− 1.

The following program defines a C function inspect that inspects the representation
of its argument:
#include <stdio.h>

#include <caml/mlvalues.h>

value inspect (value v)

{

if (Is_long(v))

printf ("v is an integer (%ld) : %ld", (long) v, Long_val(v));

else if (Is_block(v))

printf ("v is a pointer");

else

printf ("v is neither an integer nor a pointer (???)");

printf(" ");

fflush(stdout) ;

return v ;

}

The function inspect tests whether its argument is an Objective Caml integer. If so,
it prints the integer twice, first viewed as a C long integer (without conversion), then
converted by the Long val macro, which extracts the actual integer represented in the
argument.

On the following example, we see that the machine representation of integers in Ob-
jective Caml differs from that of C:
external inspect : ’a → ’a = "inspect" ; ;

external inspect : ’a -> ’a = "inspect"

inspect 123 ; ;

v is an integer (247) : 123 - : int = 123

inspect max int; ;

v is an integer (2147483647) : 1073741823 - : int = 1073741823

We can also inspect values of other predefined types, such as char and bool:
inspect ’A’ ; ;

v is an integer (131) : 65 - : char = ’A’

inspect true ; ;

v is an integer (3) : 1 - : bool = true

5. More precisely, by their ISO Latin-1 code, which is an 8-bit character encoding extending ASCII
with accented letters and signs for Western languages. Objective Caml does not yet handle wider
internationalized character sets such as Unicode.

326 Chapter 12 : Interoperability with C

inspect false ; ;

v is an integer (1) : 0 - : bool = false

inspect [] ; ;

v is an integer (1) : 0 - : ’_a list = []

Consider the Objective Caml type foo defined thus:
type foo = C1 | C2 of int | C3 | C4 ; ;

The inspect function shows that constant constructors and non-constant constructors
of this type are represented differently:
inspect C1 ; ;

v is an integer (1) : 0 - : foo = C1

inspect C4 ; ;

v is an integer (5) : 2 - : foo = C4

inspect (C2 1) ; ;

v is a pointer - : foo = C2 1

When the function inspect detects an immediate value, it prints first the “physical”
representation of this value (i.e. the representation viewed as a word-sized C integer
of C type long); then it prints the “logical” contents of this value (i.e. the Objective
Caml integer it represents, as returned by the decoding macro Long val). The examples
above show that the “physical” and the “logical” contents differ. This difference is due
to the tag bit6 used by the garbage collector to distinguish immediate values from
pointers (see chapter 9, page 253).

Representation of structured values

Non-immediate Objective Caml values are said to be structured values. Those values
are allocated in the Objective Caml heap and represented as a pointer to the cor-
responding memory block. All memory blocks contain a header word indicating the
kind of the block as well as its size expressed in machine words. Figure 12.5 shows the
structure of a block for a 32-bit machine. The two “color” bits are used by the garbage
collector for walking the memory graph (see chapter 9, page 254). The “tag” field,
or “tag” for short, contains the kind of the block. The “size” field contains the size
of the block, in words, excluding the header. The macros listed in figure 12.6 return
the tag and size of a block. The tag of a memory block can take the values listed in
figure 12.7. Depending on the block tag, different macros are used to access the con-
tents of the blocks. These macros are described in figure 12.8. When the tag is less
than No scan tag, the heap block is structured as an array of Objective Caml value
representations. Each element of the array is called a “field” of the memory block. In
accordance with C and Objective Caml conventions, the first field is at index 0, and
the last field is at index Wosize val(v) - 1.

6. Here, the tag bit is the least significant bit.

Exploring Objective Caml values from C 327

tag

10 9 8 7 031

header

array of value representations

size color

Figure 12.5: Structure of an Objective Caml heap block.

Wosize val(v) return the size of the block v (header excluded)
Tag val(v) return the tag of the block v

Figure 12.6: Accessing header information in memory blocks.

As we did earlier for immediate values, we now define a function to inspect mem-
ory blocks. The C function print block takes an Objective Caml value representa-
tion, tests whether it is an immediate value or a memory block, and in the latter
case prints the kind and contents of the block. It is called from the wrapper function
inspect block, which can be called from Objective Caml.

#include <stdio.h>

#include <caml/mlvalues.h>

void margin (int n)

{ while (n-- > 0) printf("."); return; }

void print_block (value v,int m)

{

int size, i;

from 0 to No scan tag-1 an array of Objective Caml value representations
Closure tag a function closure
String tag a character string
Double tag a double-precision float
Double array tag an array of float
Abstract tag an abstract data type
Final tag an abstract data type equipped with a finalization function

Figure 12.7: Tags of memory blocks.

328 Chapter 12 : Interoperability with C

Field(v,n) return the nth field of v.
Code val(v) return the code pointer for a closure.
string length(v) return the length of a string.
Byte(v,n) return the n th character of a string, with C type char.
Byte u(v,n) same, but result has C type unsigned char.
String val(v) return the contents of a string with C type (char *).
Double val(v) return the float contained in v.
Double field(v,n) return the n th float contained in the float array v.

Figure 12.8: Accessing the content of a memory block.

margin(m);

if (Is_long(v))

{ printf("immediate value (%d)\n", Long_val(v)); return; };

printf ("memory block: size=%d - ", size=Wosize_val(v));

switch (Tag_val(v))

{

case Closure_tag :

printf("closure with %d free variables\n", size-1);

margin(m+4); printf("code pointer: %p\n",Code_val(v)) ;

for (i=1;i<size;i++) print_block(Field(v,i), m+4);

break;

case String_tag :

printf("string: %s (%s)\n", String_val(v),(char *) v);

break;

case Double_tag:

printf("float: %g\n", Double_val(v));

break;

case Double_array_tag :

printf ("float array: ");

for (i=0;i<size/Double_wosize;i++) printf(" %g", Double_field(v,i));

printf("\n");

break;

case Abstract_tag : printf("abstract type\n"); break;

case Final_tag : printf("abstract finalized type\n"); break;

default:

if (Tag_val(v)>=No_scan_tag) { printf("unknown tag"); break; };

printf("structured block (tag=%d):\n",Tag_val(v));

for (i=0;i<size;i++) print_block(Field(v,i),m+4);

}

return ;

}

value inspect_block (value v)

Exploring Objective Caml values from C 329

{ print_block(v,4); fflush(stdout); return v; }

Each possible tag for a block corresponds to a case of the switch construct. In the
case of a block containing an array of Objective Caml values, we recursively call
print block on each field of the array. We then redefine the inspect function:
external inspect : ’a → ’a = "inspect_block" ; ;

external inspect : ’a -> ’a = "inspect_block"

We can now explore the representations of Objective Caml structured values. We must
be careful not to apply inspect block to a cyclic value, since the recursive traversal
of the value would then loop indefinitely.

Arrays, tuples, and records

Arrays and tuples are represented by structured blocks. The nth field of the block
contains the representation of the nth element of the array or tuple.
inspect [| 1; 2; 3 |] ; ;

....memory block: size=3 - structured block (tag=0):

........immediate value (1)

........immediate value (2)

........immediate value (3)

- : int array = [|1; 2; 3|]

inspect (10 , true , ()) ; ;

....memory block: size=3 - structured block (tag=0):

........immediate value (10)

........immediate value (1)

........immediate value (0)

- : int * bool * unit = 10, true, ()

Records are also represented as structured blocks. The values of the record fields appear
in the order given at record declaration time. Mutable fields and immutable fields are
represented identically.
type foo = { fld1: int ; mutable fld2: int } ; ;

type foo = { fld1: int; mutable fld2: int }

inspect { fld1=10 ; fld2=20 } ; ;

....memory block: size=2 - structured block (tag=0):

........immediate value (10)

........immediate value (20)

- : foo = {fld1=10; fld2=20}

Warning

Nothing prevents a C function from physically modify-
ing an immutable record field. It is the programmers’
responsibility to make sure that their C functions do
not introduce inconsistencies in Objective Caml data
structures.

330 Chapter 12 : Interoperability with C

Sum types

We previously saw that constant constructors are represented like integers. A non-
constant constructor is represented by a block containing the constructor’s arguments,
with a tag identifying the constructor. The tag associated with a non-constant construc-
tor represents its position in the type declaration: the first non-constant constructor
has tag 0, the second one has tag 1, and so on.
type foo = C1 of int * int * int | C2 of int | C3 | C4 of int * int ; ;

type foo = | C1 of int * int * int | C2 of int | C3 | C4 of int * int

inspect (C1 (1,2,3)) ; ;

....memory block: size=3 - structured block (tag=0):

........immediate value (1)

........immediate value (2)

........immediate value (3)

- : foo = C1 (1, 2, 3)

inspect (C4 (1,2)) ; ;

....memory block: size=2 - structured block (tag=2):

........immediate value (1)

........immediate value (2)

- : foo = C4 (1, 2)

Note
The type list is a sum type whose declaration is:
type ’a list = [] | :: of ’a * ’a list. This type has only one
non-constant constructor (::). Thus, a non-empty list is represented by a
memory block with tag 0.

Character strings

Characters inside strings occupy one byte each. Thus, the memory block representing
a string uses one word per group of four characters (on a 32-bit machine) or eight
characters (on a 64-bit machine).

Warning

Objective Caml strings can contain the null character
whose ASCII code is 0. In C, the null character repre-
sents the end of a string, and cannot appear inside a
string.

#include <stdio.h>

#include <caml/mlvalues.h>

value explore_string (value v)

{

char *s;

int i,size;

s = (char *) v;

size = Wosize_val(v) * sizeof(value);

Exploring Objective Caml values from C 331

for (i=0;i<size;i++)

{

int p = (unsigned int) s[i] ;

if ((p>31) && (p<128)) printf("%c",s[i]); else printf("(#%u)",p);

}

printf("\n");

fflush(stdout);

return v;

}

The length and position of last character of an Objective Caml string are determined
not by looking for a terminating null character, as in C, but by combining the size
of the memory block that contains the string with the last byte of the last word of
this block, which indicates the number of unused bytes in the last word. The following
examples clarify the role played by this last byte.
external explore : string → string = "explore_string" ; ;

external explore : string -> string = "explore_string"

ignore(explore "");

ignore(explore "a");

ignore(explore "ab");

ignore(explore "abc");

ignore(explore "abcd");

ignore(explore "abcd\000") ; ;

(#0)(#0)(#0)(#3)

a(#0)(#0)(#2)

ab(#0)(#1)

abc(#0)

abcd(#0)(#0)(#0)(#3)

abcd(#0)(#0)(#0)(#2)

- : unit = ()

In the last two examples ("abcd" and "abcd\000"), the strings are of length 4 and 5
respectively. This explains why the last byte takes two different values, although the
other bytes of the string representations are identical.

Floats and float arrays

Objective Caml offers only one type (float) of floating-point numbers. This type
corresponds to 64-bit, double-precision floating point numbers in C (type double).
Values of type float are heap-allocated and represented by a memory block of size 2
words (on a 32-bit machine) or 1 word (on a 64-bit machine).
inspect 1.5 ; ;

....memory block: size=2 - float: 1.5

- : float = 1.5

inspect 0.0; ;

....memory block: size=2 - float: 0

- : float = 0

332 Chapter 12 : Interoperability with C

Arrays of floats are represented specially to reduce their memory occupancy: the floats
contained in the array are stored consecutively in the memory block, rather than having
each float heap-allocated separately. Therefore, float arrays possess a specific tag and
specific access macros.
inspect [| 1.5 ; 2.5 ; 3.5 |] ; ;

....memory block: size=6 - float array: 1.5 2.5 3.5

- : float array = [|1.5; 2.5; 3.5|]

This optimized representation encourages the use of Objective Caml for numerical
computations that manipulate many float arrays: operations on array elements are
much more efficient than if each float was heap-allocated separately.

Warning

When allocating an Objective Caml float array from
C, the size of the block should be the number of
array elements multiplied by Double wosize. The
Double wosize macro represents the number of words
occupied by a double-precision float (2 words on a 32-bit
machine, but only 1 word on a 64-bit machine).

With the exception of float arrays, floating-point numbers contained in other data
structures are always treated as a structured, heap-allocated value. The following ex-
ample shows the representation of a list of floats.
inspect [3.14; 1.2; 7.6]; ;

....memory block: size=2 - structured block (tag=0):

........memory block: size=2 - float: 3.14

........memory block: size=2 - structured block (tag=0):

............memory block: size=2 - float: 1.2

............memory block: size=2 - structured block (tag=0):

................memory block: size=2 - float: 7.6

................immediate value (0)

- : float list = [3.14; 1.2; 7.6]

The list is viewed as a block with size 2, containing its head and its tail. The head of
the list is a float, which is also a block of size 2.

Closures

A function value is represented by the code to be executed when the function is applied,
and by its environment (see chapter 2, page 23). There are two ways to build a function
value: either by explicit abstraction (as in fun x -> x+1) or by partial application of
a curried function (as in (fun x -> fun y -> x+y) 1).

The environment of a closure can contain three kinds of variables: those declared glob-
ally, those declared locally, and the function parameters already instantiated by a
partial application. The implementation treats those three kinds differently. Global
variables are stored in a global environment that is not explicitly part of any clo-
sure. Local variables and instantiated parameters can appear in closures, as we now
illustrate.

Exploring Objective Caml values from C 333

A closure with an empty environment is simply a memory block containing a pointer
to the code of the function:
let f = fun x y z → x+y+z ; ;

val f : int -> int -> int -> int = <fun>

inspect f ; ;

....memory block: size=1 - closure with 0 free variables

........code pointer: 0x808c9d4

- : int -> int -> int -> int = <fun>

Functions with free local variables are represented by closures with non-empty envi-
ronments. Here, the closure contains both a pointer to the code of the function, and
the values of its free local variables.
let g = let x = 1 and y = 2 in fun z → x+y+z ; ;

val g : int -> int = <fun>

inspect g ; ;

....memory block: size=3 - closure with 2 free variables

........code pointer: 0x808ca38

........immediate value (1)

........immediate value (2)

- : int -> int = <fun>

The Objective Caml virtual machine treats partial applications of functions specially
for better performance. A partial application of an abstraction is represented by a
closure containing a value for each of the instantiated parameters, plus a pointer to
the closure for the initial abstraction.
let a1 = f 1 ; ;

val a1 : int -> int -> int = <fun>

inspect (a1) ; ;

....memory block: size=3 - closure with 2 free variables

........code pointer: 0x808c9d0

........memory block: size=1 - closure with 0 free variables

............code pointer: 0x808c9d4

........immediate value (1)

- : int -> int -> int = <fun>

let a2 = a1 2 ; ;

val a2 : int -> int = <fun>

inspect (a2) ; ;

....memory block: size=4 - closure with 3 free variables

........code pointer: 0x808c9d0

........memory block: size=1 - closure with 0 free variables

............code pointer: 0x808c9d4

........immediate value (1)

........immediate value (2)

- : int -> int = <fun>

Figure 12.9 depicts the result of the inspection above.

The function f has no free variables, hence the environment part of its closure is empty.
The code pointer for a function with several arguments points to the code that should be

334 Chapter 12 : Interoperability with C

f

a1

a2

fun x y z -> ...

code...

1

21

header

header

header

Figure 12.9: Closure representation.

called when all arguments are provided. In the case of f, this is the code corresponding
to x+y+z. Partial applications of this function result in intermediate closures that point
to a shared code (it is the same code pointer for a1 and a2). The role of this code is
to accumulate the arguments and detect when all arguments have been provided. If
so, it pushes all arguments and calls the actual code for the function body; if not,
it creates a new closure. For instance, the application of a1 to 2 fails to provide all
arguments to the function f (the last argument is still missing), hence a closure is
created containing the first two arguments, 1 and 2. Notice that the closures resulting
from partial applications always contain, in the first environment slot, a pointer to
the original closure. The original closure will be called when all arguments have been
gathered.

Mixing local declarations and partial applications results in the following representa-
tion:
let g x = let y=2 in fun z → x+y+z ; ;

val g : int -> int -> int = <fun>

let a1 = g 1 ; ;

val a1 : int -> int = <fun>

inspect a1 ; ;

....memory block: size=3 - closure with 2 free variables

........code pointer: 0x808ca78

........immediate value (1)

........immediate value (2)

- : int -> int = <fun>

Abstract types

Values of an abstract type are represented like those of its implementation type. Ac-
tually, type information is used only during type-checking and compilation. During

Creating and modifying Objective Caml values from C 335

execution, the types are not needed – only the memory representation (tag bits on val-
ues, size and tag fields on memory blocks) needs to be communicated to the garbage
collector.

For instance, a value of the abstract type ’a Stack.t is represented as a reference to
a list, since the type ’a Stack.t is implemented as ’a list ref.
let p = Stack.create () ; ;

val p : ’_a Stack.t = <abstr>

Stack.push 3 p; ;

- : unit = ()

inspect p; ;

....memory block: size=1 - structured block (tag=0):

........memory block: size=2 - structured block (tag=0):

............immediate value (3)

............immediate value (0)

- : int Stack.t = <abstr>

On the other hand, some abstract types are implemented by representations that can-
not be expressed in Objective Caml. Typical examples include arrays of weak pointers
and input-output channels. Often, values of those abstract types are represented as
memory blocks with tag Abstract tag.
let w = Weak.create 10; ;

val w : ’_a Weak.t = <abstr>

Weak.set w 0 (Some p); ;

- : unit = ()

inspect w; ;

....memory block: size=11 - abstract type

- : int Stack.t Weak.t = <abstr>

Sometimes, a finalization function is attached to those values. Finalization functions
are C functions which are called by the garbage collector just before the value is col-
lected. They are very useful to free external resources, such as an input-output buffer,
just before the memory block referring to those resources disappears. For instance,
inspection of the “standard output” channel reveals that the type out channel is rep-
resented by abstract memory blocks with a finalization function:
inspect (stdout) ; ;

....memory block: size=2 - abstract finalized type

- : out_channel = <abstr>

Creating and modifying Objective Caml

values from C

A C function called from Objective Caml can modify its arguments in place, or return a
newly-created value. This value must match the Objective Caml type for the function
result. For base types, several C macros are provided to convert a C datum to an
Objective Caml value. For structured types, the new value must be allocated in the

336 Chapter 12 : Interoperability with C

Objective Caml heap, with the correct size, and its fields initialized with values of the
correct types. Considerable care is required here: it is easy to construct bad values from
C, and these bad values may crash the Objective Caml program.

Any allocation in the Objective Caml heap can trigger a garbage collection, which will
deallocate unused memory blocks and may move live blocks. Therefore, any Objective
Caml value manipulated from C must be registered with the Objective Caml garbage
collector, if they are to survive the allocation of a new block. These values must be
treated as extra memory roots by the garbage collector. To this end, several macros
are provided for registering extra roots with the garbage collector.

Finally, C code can allocate Objective Caml heap blocks that contain C data instead
of Objective Caml values. This C data will then benefit from Objective Caml’s auto-
matic memory management. If the C data requires explicit deallocation, a finalization
function can be attached to the heap block.

Modifying Objective Caml values

The following macros allow the creation of immediate Objective Caml values from the
corresponding C data, and the modification of structured values in place.

Val long(l) return the value representing the long integer l
Val int(i) return the value representing the integer l
Val bool(x) return false if x=0, true otherwise
Val true the representation of true
Val false the representation of false
Val unit the representation of ()

Store field(b,n,v) store the value v in the n-th field of block b

Store double field(b,n,d) store the float d in the n-th field of the float array b

Figure 12.10: Creation of immediate values and modification of structured blocks.

Moreover, the macros Byte and Byte u can be used on the left-hand side of an as-
signment to modify the characters of a string. The Field macro can also be used for
assignment on blocks with tag Abstract tag or Final tag; use Store field for blocks
with tag between 0 and No scan tag-1. The following function reverses a character
string in place:

#include <caml/mlvalues.h>

value swap_char(value v, int i, int j)

{ char c=Byte(v,i); Byte(v,i)=Byte(v,j); Byte(v,j)=c; }

value swap_string (value v)

{

int i,j,t = string_length(v) ;

Creating and modifying Objective Caml values from C 337

for (i=0,j=t-1; i<t/2; i++,j--) swap_char(v,i,j) ;

return v ;

}

external mirror : string → string = "swap_string" ; ;

external mirror : string -> string = "swap_string"

mirror "abcdefg" ; ;

- : string = "gfedcba"

Allocating new blocks

The functions listed in figure 12.11 allocate new blocks in the Objective Caml heap. The

alloc(n, t) return a new block of size n words and tag t

alloc tuple(n) same, with tag 0
alloc string(n) return an uninitialized string of length n characters
copy string(s) return a string initialized with the C string s

copy double(d) return a block containing the double float d
alloc array(f, a) return a block representing an array, initialized by applying

the conversion function f to each element of the C array of
pointers a, null-terminated.

copy string array(p) return a block representing an array of strings, obtained
from the C string array p (of type char **), null-terminated.

Figure 12.11: Functions for allocating blocks.

function alloc array takes an array of pointers a, terminated by a null pointer, and a
conversion function f taking a pointer and returning a value. The result of alloc array
is an Objective Caml array containing the results of applying f in turn to each pointer in
a. In the following example, the function make str array uses alloc array to convert
a C array of strings.

#include <caml/mlvalues.h>

value make_str (char *s) { return copy_string(s); }

value make_str_array (char **p) { return alloc_array(make_str,p) ; }

It is sometimes necessary to allocate blocks of size 0, for instance to represent an empty
Objective Caml array. Such a block is called an atom.
inspect [| |] ; ;

....memory block: size=0 - structured block (tag=0):

- : ’_a array = [||]

338 Chapter 12 : Interoperability with C

Because atoms are allocated statically and do not reside in the dynamic part of the
Objective Caml heap, the allocation functions in figure 12.11 must not be used to
allocate atoms. Instead, atoms are created in C by the macro Atom(t), where t is the
desired tag for the block of size 0.

Storing C data in the Objective Caml heap

It is sometimes convenient to use the Objective Caml heap to store arbitrary C data
that does not respect the constraints imposed by the garbage collector. In this case,
blocks with tag Abstract tag must be used.

A natural example is the manipulation of native C integers (of size 32 or 64 bits) in
Objective Caml. Since these integers are not tagged as the Objective Caml garbage
collector expects, they must be kept in one-word heap blocks with tag Abstract tag.

#include <caml/mlvalues.h>

#include <stdio.h>

value Cint_of_OCAMLint (value v)

{

value res = alloc(1,Abstract_tag) ;

Field(res,0) = Long_val(v) ;

return res ;

}

value OCAMLint_of_Cint (value v) { return Val_long(Field(v,0)) ; }

value Cplus (value v1,value v2)

{

value res = alloc(1,Abstract_tag) ;

Field(res,0) = Field(v1,0) + Field(v2,0) ;

return res ;

}

value printCint (value v)

{

printf ("%d",(long) Field(v,0)) ; fflush(stdout) ;

return Val_unit ;

}

type cint

external cint of int : int → cint = "Cint_of_OCAMLint"

external int of cint : cint → int = "OCAMLint_of_Cint"

external plus cint : cint → cint → cint = "Cplus"

external print cint : cint → unit = "printCint" ; ;

Creating and modifying Objective Caml values from C 339

We can now work on native C integers, without losing the use of the tag bit, while
remaining compatible with Objective Caml’s garbage collector. However, such integers
are heap-allocated, instead of being immediate values, which renders arithmetic oper-
ations less efficient.
let a = 1000000000 ; ;

val a : int = 1000000000

a+a ; ;

- : int = -147483648

let c = let b = cint of int a in plus cint b b ; ;

val c : cint = <abstr>

print cint c ; print newline () ; ;

2000000000

- : unit = ()

int of cint c ; ;

- : int = -147483648

Finalization functions

Abstract blocks can also contain pointers to memory blocks allocated outside the Ob-
jective Caml heap. We know that Objective Caml blocks that are no longer used by
the program are deallocated by the garbage collector. But what happens to a block
allocated in the C heap and referenced by an abstract block that was reclaimed by the
GC? To avoid memory leaks, we can associate a finalization function to the abstract
block; this function is called by the GC before reclaiming the abstract block.

An abstract block with an attached finalization function is allocated via the function
alloc final (n, f, used, max) .

• n is the size of the block, in words. The first word of the block is used to store the
finalization function; hence the size occupied by the user data must be increased
by one word.

• f is the finalization function itself, with type void f (value). It receives the
abstract block as argument, just before this block is reclaimed by the GC.

• used represents the memory space (outside the Objective Caml heap) occupied
by the C data. used must be ¡= max.

• max is the maximum memory space outside the Objective Caml heap that we
tolerate not being reclaimed immediately.

For efficiency reasons, the Objective Caml garbage collector does not reclaim heap
blocks as soon as they become unused, but some time later. The ratio used/max con-
trols the proportion of finalized abstract blocks that the garbage collector may leave
allocated while they are no longer used. A ratio of 0 (that is, used = 0) lets the garbage
collector work at its usual pace; higher ratios (no greater than 1) cause it to work harder
and spend more CPU time finding unused finalized blocks and reclaiming them.

The following program manipulates arrays of C integers allocated in the C heap via
malloc. To allow the Objective Caml garbage collector to reclaim these arrays auto-

340 Chapter 12 : Interoperability with C

matically, the create function wraps them in a finalized abstract block, containing
both a pointer to the array and the finalization function finalize it.

#include <malloc.h>

#include <stdio.h>

#include <caml/mlvalues.h>

typedef struct {

int size ;

long * tab ; } IntTab ;

IntTab *alloc_it (int s)

{

IntTab *res = malloc(sizeof(IntTab)) ;

res->size = s ;

res->tab = (long *) malloc(sizeof(long)*s) ;

return res ;

}

void free_it (IntTab *p) { free(p->tab) ; free(p) ; }

void put_it (int n,long q,IntTab *p) { p->tab[n] = q ; }

long get_it (int n,IntTab *p) { return p->tab[n]; }

void finalize_it (value v)

{

IntTab *p = (IntTab *) Field(v,1) ;

int i;

printf("reclamation of an IntTab by finalization [") ;

for (i=0;i<p->size;i++) printf("%d ",p->tab[i]) ;

printf("]\n"); fflush(stdout) ;

free_it ((IntTab *) Field(v,1)) ;

}

value create (value s)

{

value block ;

block = alloc_final (2, finalize_it,Int_val(s)*sizeof(IntTab),100000) ;

Field(block,1) = (value) alloc_it(Int_val(s)) ;

return block ;

}

value put (value n,value q,value t)

{

put_it (Int_val(n), Long_val(q), (IntTab *) Field(t,1)) ;

return Val_unit ;

}

value get (value n,value t)

{

long res = get_it (Int_val(n), (IntTab *) Field(t,1)) ;

return Val_long(res) ;

}

Creating and modifying Objective Caml values from C 341

The C functions visible from Objective Caml are: create, put and get.
type c int array

external cia create : int → c int array = "create"

external cia get : int → c int array → int = "get"

external cia put : int→ int → c int array → unit = "put" ; ;

We can now manipulate our new data structure from Objective Caml:
let tbl = cia create 10 and tbl2 = cia create 10

in for i=0 to 9 do cia put i (i*2) tbl done ;

for i=0 to 9 do print int (cia get i tbl) ; print string " " done ;

print newline () ;

for i=0 to 9 do cia put (9-i) (cia get i tbl) tbl2 done ;

for i=0 to 9 do print int (cia get i tbl2) ; print string " " done ; ;

0 2 4 6 8 10 12 14 16 18

18 16 14 12 10 8 6 4 2 0 - : unit = ()

We now force a garbage collection to check that the finalization function is called:
Gc.full major () ; ;

reclaimation of an IntTab by finalization [18 16 14 12 10 8 6 4 2 0]

reclaimation of an IntTab by finalization [0 2 4 6 8 10 12 14 16 18]

- : unit = ()

In addition to freeing C heap blocks, finalization functions can also be used to close
files, terminate processes, etc.

Garbage collection and C parameters and local
variables

A C function can trigger a garbage collection, either during an allocation (if the heap
is full), or voluntarily by calling void Garbage_collection_function ().

Consider the following example. Can you spot the error?

#include <caml/mlvalues.h>

#include <caml/memory.h>

value identity (value x)

{

Garbage_collection_function() ;

return x;

}

external id : ’a → ’a = "identity" ; ;

external id : ’a -> ’a = "identity"

id [1;2;3;4;5] ; ;

- : int list = [538918066; 538918060; 538918054; 538918048; 538918042]

342 Chapter 12 : Interoperability with C

The list passed as parameter to id, hence to the C function identity, can be moved or
reclaimed by the garbage collector. In the example, we forced a garbage collection, but
any allocation in the Objective Caml heap could have triggered a garbage collection as
well. The anonymous list passed to id was reclaimed by the garbage collector, because
it is not reachable from the set of known roots. To avoid this, any C function that
allocates anything in the Objective Caml heap must tell the garbage collector about
the C function’s parameters and local variables of type value. This is achieved by
using the macros described next.

For parameters, these macros are used within the body of the C function as if they
were additional declarations:

CAMLparam1(v) : for one parameter v of type value

CAMLparam2(v1,v2) : for two parameters
.

CAMLparam5(v1,. . .,v5) : for five parameters
CAMLparam0 ; : required when there are no value parameters.

If the C function has more than five value parameters, the first five are declared with
the CAMLparam5 macro, and the remaining parameters with the macros CAMLxparam1,
. . ., CAMLxparam5, used as many times as necessary to list all value parameters.

CAMLparam5(v1,. . .,v5);

CAMLxparam5(v6,. . .,v10);

CAMLxparam2(v11,v12); : for 12 parameters of type value

For local variables, these macros are used instead of normal C declarations of the vari-
ables. Local variables of type value must also be registered with the garbage collector,
using the macros CAMLlocal1, . . ., CAMLlocal5. An array of values is declared with
CAMLlocalN(tbl,n) where n is the number of elements of the array tbl. Finally, to
return from the C function, we must use the macro CAMLreturn instead of C’s return
construct.

Here is the corrected version of the previous example:

#include <caml/mlvalues.h>

#include <caml/memory.h>

value identity2 (value x)

{

CAMLparam1(x) ;

Garbage_collection_function() ;

CAMLreturn x;

}

external id : ’a → ’a = "identity2" ; ;

external id : ’a -> ’a = "identity2"

let a = id [1;2;3;4;5] ; ;

val a : int list = [1; 2; 3; 4; 5]

Creating and modifying Objective Caml values from C 343

We now obtain the expected result.

Calling an Objective Caml closure from C

To apply a closure (i.e. an Objective Caml function value) to one or several arguments
from C, we can use the functions declared in the header file callback.h.

callback(f,v) : apply the closure f to the argument v,
callback2(f,v1,v2) : same, to two arguments,
callback3(f,v1,v2,v3) : same, to three arguments,
callbackN(f,n,tbl) : same, to n arguments stored in the array tbl.

All these functions return a value, which is the result of the application.

Registering Objective Caml functions with C

The callback functions require the Objective Caml function to be applied as a closure,
that is, as a value that was passed as an argument to the C function. We can also register
a closure from Objective Caml, giving it a name, then later refer to the closure by its
name in a C function.

The function register from module Callback associates a name (of type string)
with a closure or with any other Objective Caml value (of any type, that is, ’a). This
closure or value can be recovered from C using the C function caml named value,
which takes a character string as argument and returns a pointer to the closure or
value associated with that name, if it exists, or the null pointer otherwise.

An example is in order:
let plus x y = x + y ; ;

val plus : int -> int -> int = <fun>

Callback.register "plus3_ocaml" (plus 3); ;

- : unit = ()

#include <caml/mlvalues.h>

#include <caml/memory.h>

#include <caml/callback.h>

value plus3_C (value v)

{

CAMLparam1(v);

CAMLlocal1(f);

f = *(caml_named_value("plus3_ocaml")) ;

CAMLreturn callback(f,v) ;

}

external plusC : int → int = "plus3_C" ; ;

344 Chapter 12 : Interoperability with C

external plusC : int -> int = "plus3_C"

plusC 1 ; ;

- : int = 4

Callback.register "plus3_ocaml" (plus 5); ;

- : unit = ()

plusC 1 ; ;

- : int = 6

Do not confuse the declaration of a C function with external and the registration
of an Objective Caml closure with the function register. In the former case, the
declaration is static, the correspondence between the two names is established at link
time. In the latter case, the binding is dynamic: the correspondence between the name
and the closure is performed at run time. In particular, the name–closure binding can
be modified dynamically by registering a different closure with the same name, thus
modifying the behavior of C functions using that name.

Exception handling in C and in Objective

Caml

Different languages have different mechanisms for raising and handling exceptions:
C relies on setjmp and longjmp, while Objective Caml has built-in constructs for
exceptions (try ... with, raise). Of course, these mechanisms are not compatible:
they do not keep the same information when setting up a handler. It is extremely hard
to safely implement the nesting of exception handlers of different kinds, while ensuring
that an exception correctly “jumps over” handlers. For this reason, only Objective
Caml exceptions can be raised and handled from C; setjmp and longjmp in C cannot
be caught from Objective Caml, and must not be used to skip over Objective Caml
code.

All functions and macros introduced in this section are defined in the header file fail.h.

Raising a predefined exception

From a C function, it is easy to raise one of the exceptions Failure, Invalid argument
or Not found from the Pervasives module: just use the following functions.

failwith(s) : raise the exception Failure(s)

invalid argument(s) : raise the exception Invalid argument(s)

raise not found() : raise the exception Not found

In the first two cases, s is a C string (char *) that ends up as the argument to the
exception raised.

Exception handling in C and in Objective Caml 345

Raising a user-defined exception

A registration mechanism similar to that for closures enables user-defined exceptions
to be raised from C. We must first register the exception using the Callback module’s
register exception function. Then, from C, we retrieve the exception identifier using
the caml named value function (see page 343). Finally, we raise the exception, using
one of the following functions:

raise constant(e) raise the exception e with no argument,
raise with arg(e,v) raise the exception e with the value v as argument,
raise with string(e,s) same, but the argument is taken from the C string s.

Here is an example C function that raises an Objective Caml exception:

#include <caml/mlvalues.h>

#include <caml/memory.h>

#include <caml/fail.h>

value divide (value v1,value v2)

{

CAMLparam2(v1,v2);

if (Long_val(v2) == 0)

raise_with_arg(*caml_named_value("divzero"),v1) ;

CAMLreturn Val_long(Long_val(v1)/Long_val(v2)) ;

}

And here is an Objective Caml transcript showing the use of that C function:

external divide : int → int → int = "divide" ; ;

external divide : int -> int -> int = "divide"

exception Division zero of int ; ;

exception Division_zero of int

Callback.register exception "divzero" (Division zero 0) ; ;

- : unit = ()

divide 20 4 ; ;

- : int = 5

divide 22 0 ; ;

Uncaught exception: Division_zero(22)

Catching an exception

In a C function, we cannot catch an exception raised from another C function. How-
ever, we can catch Objective Caml exceptions arising from the application of an Ob-
jective Caml function (callback). This is achieved via the functions callback exn,

346 Chapter 12 : Interoperability with C

callback2 exn, callback3 exn and callbackN exn, which are similar to the standard
callback functions, except that if the callback raises an exception, this exception is
caught and returned as the result of the callback. The result value of the callback exn
functions must be tested with Is exception result(v); this predicate returns “true”
if the result value represents an uncaught exception, and “false” otherwise. The macro
Extract exception(v) returns the exception value contained in an exceptional result
value.

The C function divide print below calls the Objective Caml function divide using
callback2 exn, and checks whether the result is an exception. If so, it prints a message
and raises the exception again; otherwise it prints the result.

#include <stdio.h>

#include <caml/mlvalues.h>

#include <caml/memory.h>

#include <caml/callback.h>

#include <caml/fail.h>

value divide_print (value v1,value v2)

{

CAMLparam2(v1,v2) ;

CAMLlocal3(div,dbz,res) ;

div = * caml_named_value("divide") ;

dbz = * caml_named_value("div_by_0") ;

res = callback2_exn (div,v1,v2) ;

if (Is_exception_result(res))

{

value exn=Extract_exception(res);

if (Field(exn,0)==dbz) printf("division by 0\n") ;

else printf("other exception\n");

fflush(stdout);

if (Wosize_val(exn)==1) raise_constant(Field(exn,0)) ;

else raise_with_arg(Field(exn,0),Field(exn,1)) ;

}

printf("result = %d\n",Long_val(res)) ;

fflush(stdout) ;

CAMLreturn Val_unit ;

}

Callback.register "divide" (/) ; ;

- : unit = ()

Callback.register exception "div_by_0" Division by zero ; ;

- : unit = ()

external divide print : int → int → unit = "divide_print" ; ;

external divide_print : int -> int -> unit = "divide_print"

divide print 42 3 ; ;

result = 14

- : unit = ()

Main program in C 347

divide print 21 0 ; ;

division by 0

Uncaught exception: Division_by_zero

As the examples above show, it is possible to raise an exception from C and catch it in
Objective Caml, and also to raise an exception from Objective Caml and catch it in C.
However, a C program cannot by itself raise and catch an Objective Caml exception.

Main program in C

Until now, the entry point of our programs was in Objective Caml; the program could
then call C functions. Nothing prevents us from writing the entry point in C, and
having the C code call Objective Caml functions when desired. To do this, the program
must define the usual C main function. This function will then initialize the Objective
Caml runtime system by calling the function caml main(char **), which takes as
an argument the array of command-line arguments that corresponds to the Sys.argv
array in Objective Caml. Control is then passed to the Objective Caml code using
callbacks (see page 343).

Linking Objective Caml code with C

The Objective Caml compiler can output C object files (with extension .o) instead of
Objective Caml object files (with extension .cmo or .cmx). All we need to do is set the
-output-obj compiler flag.

ocamlc -output-obj files.ml
ocamlopt -output-obj.cmxa files.ml

From the Objective Caml source files, an object file with default name camlprog.o is
produced.

The final executable is obtained by linking, using the C compiler, and adding the
library -lcamlrun if the Objective Caml code was compiled to bytecode, or the library
-lasmrun if it was compiled to native code.

cc camlprog.o filesC.o -lcamlrun
cc camlprog.o filesC.o -lasmrun

Calling Objective Caml functions from the C program is performed as described pre-
viously, via the callback functions. The only difference is that the initialization of the
Objective Caml runtime system is performed via the function caml startup instead
of caml main.

348 Chapter 12 : Interoperability with C

Exercises

Polymorphic Printing Function

We wish to define a printing function print with type ’a -> unit able to print any
Objective Caml value. To this end, we extend and improve the inspect function.

1. In C, write the function print ws which prints Objective Caml as follows:
• immediate values: as C integers;
• strings: between quotes;
• floats: as usual;
• arrays of floats: between [| |]

• closures: as < code, env >

• everything else: as a tuple, between ()
The function should handle structured types recursively.

2. To avoid looping on circular values, and to display sharing properly, modify this
function to keep track of the addresses of heap blocks it has already seen. If an
address appears several times, name it when it is first printed (v = name), and
just print the name when this address is encountered again.
(a) Define a data structure to record the addresses, determine when they

occur several times, and associate a name with each address.
(b) Traverse the value once first to determine all the addresses it contains and

record them in the data structure.
(c) The second traversal prints the value while naming addresses at their first

occurrences.
(d) Define the function print combining both traversals.

Matrix Product

1. Define an abstract type float matrix for matrices of floating-point numbers.

2. Define a C type for these matrices.

3. Write a C function to convert values of type float array array to values of
type float matrix.

4. Write a C function performing the reverse conversion.

5. Add the C functions computing the sum and the product of these matrices.

6. Interface them with Objective Caml and use them.

Counting Words: Main Program in C

The Unix command wc counts the number of characters, words and lines in a file. The
goal of this exercise is to implement this command, while counting repeated words only
once.

Summary 349

1. Write the program wc in C. This program will simply count words, lines and
characters in the file whose name is passed on the command line.

2. Write in Objective Caml a function add word that uses a hash table to record
how many times the function was invoked with the same character string as
argument.

3. Write two functions num repeated words and num unique words counting re-
spectively the number of word repetitions and the number of unique words, as
determined from the hash table built by add word.

4. Register the three previous functions so that they can be called from a C pro-
gram.

5. Rewrite the main function of the wc program so that it prints the number of
unique words instead of the number of words.

6. Write the main function and the commands required to compile this program as
an Objective Caml program.

7. Write the main function and the commands required to compile this program as
a C program.

Summary

This chapter introduced the interface between the Objective Caml language and the C
language. This interface allows C functions to operate on Objective Caml values. Using
abstract Objective Caml types, the converse is also possible. An important feature of
this interface is the ability to use the Objective Caml garbage collector to perform
automatic reclamation of values created in C. This interface supports the combination,
in the same program, of components developed in the two languages. Finally, Objective
Caml exceptions can be raised and (with some limitations) handled from C.

To Learn More

For a better understanding of the C language, especially argument passing and data
representations, the book C: a reference manual [HS94] is highly recommended.

Concerning exceptions and garbage collection, several works add these missing features
to C. The technical report [Rob89] describes an implementation of exceptions in C,
based on open macros and on the setjmp and longjmp functions from the C library.
Hans Boehm distributes a conservative collector with ambiguous roots that can be
added (as a library) to any C program:

Link: http://www.hpl.hp.com/personal/Hans Boehm/gc/

Concerning interoperability between Objective Caml and C, the tools described in this
chapter are rather low-level and difficult to use. However, they give the programmer full

350 Chapter 12 : Interoperability with C

control on copying or sharing of data structures between the two languages. A higher-
level tool called CamlIDL is available; it automatically generates the Objective Caml
“stubs” (encapsulation functions) for calling C functions and converting data types.
The C types and functions are described in a language called IDL (Interface Definition
Language), similar to a subset of C++ and C. This description is then passed through
the CamlIDL compiler, which generates the corresponding .mli, .ml and .c files. This
tool is distributed from the following page:

Link: http://caml.inria.fr/camlidl/

Other interfaces exist between Objective Caml and languages other than C. They are
available on the “Caml hump” page:

Link: http://caml.inria.fr/hump.html

They include several versions of interfaces with Fortran, and also an Objective Caml
bytecode interpreter written in Java.

Finally, interoperability between Objective Caml and other languages can also be
achieved via data exchanges between separate programs, possibly over the network.
This approach is described in the chapter on distributed programming (see chapter
20).

