
13
Applications

This chapter presents two applications which seek to illustrate the use of the many
different programming concepts presented previously in Part III.

The first application builds a library of graphic components, Awi (Application Window
Interface). Next the library will be applied in a simple Francs to Euros converter. The
components library reacts to user input by calling event handlers. Although this is a
simple application algorithmically, it shows the benefits of using closures to structure
the communication between components. Indeed the various event handlers share cer-
tain values via their environment. To appreciate the construction of Awi it is necessary
to know the base library Graphics (see chapter 5, page 117).

The second application is a search for a least cost path in a directed graph. It uses
Dijkstra’s algorithm which calculates all the least cost paths from a source node to
all the other nodes connected to this source. A cache mechanism implemented using
a table of weak pointers (see page 265) is used to speed the search. The GC can free
the elements of this table at any time but they can be recalculated as necessary. The
graph visualization uses the simple button component of the Awi library for selecting
the origin and destination nodes of the path sought. We then compare the efficiency
of running the algorithm both with and without the cache. To facilitate timing mea-
surements between the two versions a file with the description of the graph and the
origin and destination nodes is passed as an argument to the search algorithm. Finally,
a small graphical interface will be added to the search program.

Constructing a Graphical Interface

The implementation of a graphical interface for a program is a tedious job if the tools
at your disposal are not powerful enough, as this is the case with the Graphics library.
The user-friendliness of a program derives in part from its interface. To ease the task of
creating a graphical interface we will start by creating a new library called Awi which

352 Chapter 13 : Applications

sits on top of Graphics and then we will use it as a simple module to help us construct
the interface for an application.

This graphical interface manipulates components. A component is a region of the main
window which can be displayed in a certain graphical context and can handle events
that are sent to it. There are basically two kinds of components: simple components,
such as a confirmation button or a text entry field, and containers which allow other
components to be placed within them. A component can only be attached to a single
container. Thus the interface of an application is built as a tree whose root corresponds
to the main container (the graphics window), the nodes are also containers and the
leaves are simple components or empty containers. This treelike structure helps us to
propagate events arising from user interaction. If a container receives an event it checks
whether one of its children can handle it, if so then it sends the event to that child,
otherwise it deals with the event using its own handler.

The component is the essential element in this library. We define it as a record which
contains details of size, a graphic context, the parent and child components along
with functions for display and for handling events. Containers include a function for
displaying their components. To define the component type, we build the types for the
graphics context, for events and for initialization options. A graphical context is used
to contain the details of “graphical styles” such as the colors of the background and
foreground, the size of the characters, the current location of the component and the
fonts that have been chosen. Then must we define the kinds of events which can be sent
to the component. These are more varied than those in the Graphics library on which
they are based. We include a simple option mechanism which helps us to configure
graphics contexts or components. One implementation difficulty arises in positioning
components within a container.

The general event handling loop receives physical events from the input function of
the Graphics library, decides whether other events should be generated as a result of
these physical events, and then sends them to the root container. We shall consider
the following components: text display, buttons, list boxes, input regions and enriched
components. Next we will show how the components are assembled to construct graph-
ical interfaces, illustrating this with a program to convert between Francs and Euros.
The various components of this application communicate with each other over a shared
piece of state.

Graphics Context, Events and Options

Let’s start by defining the base types along with the functions to initialize and mod-
ify graphics contexts, events and options. There is also an option type to help us
parametrize the functions which create graphical objects.

Constructing a Graphical Interface 353

Graphics Context

The graphics context allows us to keep track of the foreground and background colors,
the font, its size, the current cursor position, and line width. This results in the following
type.

type g context = {
mutable bcol : Graphics.color;

mutable fcol : Graphics.color;

mutable font : string;

mutable font size : int;

mutable lw : int;

mutable x : int;

mutable y : int }; ;

The make default context function creates a new graphics context containing default
values 1.

let default font = "fixed"

let default font size = 12

let make default context () =

{ bcol = Graphics.white; fcol = Graphics.black;

font = default font;

font size = default font size;

lw = 1;

x = 0; y = 0;}; ;
val default_font : string = "fixed"

val default_font_size : int = 12

val make_default_context : unit -> g_context = <fun>

Access functions for the individual fields allow us to retrieve their values without know-
ing the implementation of the type itself.

let get gc bcol gc = gc.bcol

let get gc fcol gc = gc.fcol

let get gc font gc = gc.font

let get gc font size gc = gc.font size

let get gc lw gc = gc.lw

let get gc cur gc = (gc.x,gc.y); ;

val get_gc_bcol : g_context -> Graphics.color = <fun>

val get_gc_fcol : g_context -> Graphics.color = <fun>

val get_gc_font : g_context -> string = <fun>

1. The name of the character font may vary according to the system being used.

354 Chapter 13 : Applications

val get_gc_font_size : g_context -> int = <fun>

val get_gc_lw : g_context -> int = <fun>

val get_gc_cur : g_context -> int * int = <fun>

The functions to modify those fields work on the same principle.

let set gc bcol gc c = gc.bcol <- c

let set gc fcol gc c = gc.fcol <- c

let set gc font gc f = gc.font <- f

let set gc font size gc s = gc.font size <- s

let set gc lw gc i = gc.lw <- i

let set gc cur gc (a,b) = gc.x<- a; gc.y<-b; ;

val set_gc_bcol : g_context -> Graphics.color -> unit = <fun>

val set_gc_fcol : g_context -> Graphics.color -> unit = <fun>

val set_gc_font : g_context -> string -> unit = <fun>

val set_gc_font_size : g_context -> int -> unit = <fun>

val set_gc_lw : g_context -> int -> unit = <fun>

val set_gc_cur : g_context -> int * int -> unit = <fun>

We can thus create new contexts, and read and write various fields of a value of the
g context type.

The use gc function applies the data of a graphic context to the graphical window.

let use gc gc =

Graphics.set color (get gc fcol gc);

Graphics.set font (get gc font gc);

Graphics.set text size (get gc font size gc);

Graphics.set line width (get gc lw gc);

let (a,b) = get gc cur gc in Graphics.moveto a b; ;

val use_gc : g_context -> unit = <fun>

Some data, such as the background color, are not directly used by the Graphics library
and do not appear in the use gc function.

Events

The Graphics library only contains a limited number of interaction events: mouse
click, mouse movement and key press. We want to enrich the kind of event that arises
from interaction by integrating events arising at the component level. To this end we
define the type rich event:

type rich event =

Constructing a Graphical Interface 355

MouseDown | MouseUp | MouseDrag | MouseMove

| MouseEnter | MouseExit | Exposure

| GotFocus | LostFocus | KeyPress | KeyRelease; ;

To create such events it is necessary to keep a history of previous events. The MouseDown
and MouseMove events correspond to mouse events (clicking and moving) which are
created by Graphics. Other mouse events are created by virtue of either the previous
event MouseUp, or the last component which handled a physical event MouseExit.
The Exposure event corresponds to a request to redisplay a component. The concept
of focus expresses that a given component is interested in a certain kind of event.
Typically the input of text to a component which has grabbed the focus means that
this component alone will handle KeyPress and KeyRelease events. A MouseDown event
on a text input component hands over the input focus to it and takes it away from the
component which had it before.

These new events are created by the event handling loop described on page 360.

Options

A graphical interface needs rules for describing the creation options for graphical ob-
jects (components, graphics contexts). If we wish to create a graphics context with a
certain color it is currently necessary to construct it with the default values and then
to call the two functions to modify the color fields in that context. In the case of more
complex graphic objects this soon becomes tedious. Since we want to extend these op-
tions as we build up the components of the library, we need an “extensible” sum type.
The only one provided by Objective Caml is the exn type used for exceptions. Because
usingexn for handling options would affect the clarity of our programs we will only use
this type for real exceptions. Instead, we will simulate an extensible sum type using
pseudo constructors represented by character strings. We define the type opt val for
the values of these options. An option is a tuple whose first element is the name of the
option and the second its value. The lopt type encompasses a list of such options.

type opt val = Copt of Graphics.color | Sopt of string

| Iopt of int | Bopt of bool; ;

type lopt = (string * opt val) list ; ;

The decoding functions take as input a list of options, an option name and a default
value. If the name belongs to the list then the associated value is returned, if not then
we get the default value. We show here only the decoding functions for integers and
booleans, the others work on the same principle.

exception OptErr; ;

exception OptErr

let theInt lo name default =

try

356 Chapter 13 : Applications

match List.assoc name lo with

Iopt i → i

| _ → raise OptErr

with Not found → default; ;

val theInt : (’a * opt_val) list -> ’a -> int -> int = <fun>

let theBool lo name default =

try

match List.assoc name lo with

Bopt b → b

| _ → raise OptErr

with Not found → default; ;

val theBool : (’a * opt_val) list -> ’a -> bool -> bool = <fun>

We can now write a function to create a graphics context using a list of options in the
following manner:

let set gc gc lopt =

set gc bcol gc (theColor lopt "Background" (get gc bcol gc));

set gc fcol gc (theColor lopt "Foreground" (get gc fcol gc));

set gc font gc (theString lopt "Font" (get gc font gc));

set gc font size gc (theInt lopt "FontSize" (get gc font size gc));

set gc lw gc (theInt lopt "LineWidth" (get gc lw gc)); ;

val set_gc : g_context -> (string * opt_val) list -> unit = <fun>

This allows us to ignore the order in which the options are passed in.

let dc = make default context () in

set gc dc ["Foreground", Copt Graphics.blue;

"Background", Copt Graphics.yellow];

dc; ;

- : g_context =

{bcol=16776960; fcol=255; font="fixed"; font_size=12; lw=1; x=0; y=0}

This results in a fairly flexible system which unfortunately partially evades the type
system. The name of an option is of the type string and nothing prevents the con-
struction of a nonexistant name. The result is simply that the value is ignored.

Components and Containers

The component is the essential building block of this library. We want to be able to
create components and then easily assemble them to construct interfaces. They must
be able to display themselves, to recognize an event destined for them, and to handle

Constructing a Graphical Interface 357

that event. Containers must be able to receive events from other components or to
hand them on. We assume that a component can only be added to one container.

Construction of Components

A value of type component has a size (w and h), an absolute position in the main window
(x and y), a graphics context used when it is displayed (gc), a flag to show whether it
is a container (container), a parent - if it is itself attached to a container (parent),
a list of child components (children) and four functions to handle positioning of
components. These control how children are positioned within a component (layout),
how the component is displayed (display), whether any given point is considered to
be within the area of the component (mem) and finally a function for event handling
(listener) which returns true if the event was handled and false otherwise. The
parameter of the listener is of type (type rich status) and contains the name of the
event the lowlevel event information coming from the Graphics module, information
on the keyboard focus and the general focus, as well as the last component to have
handled an event. So we arrive at the following mutually recursive declarations:
type component =

{ mutable info : string;

mutable x : int; mutable y : int;

mutable w :int ; mutable h : int;

mutable gc : g context;

mutable container : bool;

mutable parent : component list;

mutable children : component list;

mutable layout options : lopt;

mutable layout : component → lopt → unit;

mutable display : unit → unit;

mutable mem : int * int → bool;

mutable listener : rich status → bool }
and rich status =

{ re : rich event;

stat : Graphics.status;

mutable key focus : component;

mutable gen focus : component;

mutable last : component}; ;

We access the data fields of a component with the following functions.
let get gc c = c.gc; ;

val get_gc : component -> g_context = <fun>

let is container c = c.container; ;

val is_container : component -> bool = <fun>

The following three functions define the default behavior of a component. The function
to test whether a given mouse position applies to a given component (in rect) checks
that the coordinate is within the rectangle defined by the coordinates of the component.

358 Chapter 13 : Applications

The default display function (display rect) fills the rectangle of the component with
the background color found in the graphic context of that component. The default
layout function (direct layout) places components relatively within their containers.
Valid options are "PosX" and "PosY", corresponding to the coordinates relative to the
container.
let in rect c (xp,yp) =

(xp >= c.x) && (xp < c.x + c.w) && (yp >= c.y) && (yp < c.y + c.h) ; ;

val in_rect : component -> int * int -> bool = <fun>

let display rect c () =

let gc = get gc c in

Graphics.set color (get gc bcol gc);

Graphics.fill rect c.x c.y c.w c.h ; ;

val display_rect : component -> unit -> unit = <fun>

let direct layout c c1 lopt =

let px = theInt lopt "PosX" 0

and py = theInt lopt "PosY" 0 in

c1.x <- c.x + px; c1.y <- c.y + py ; ;

val direct_layout :

component -> component -> (string * opt_val) list -> unit = <fun>

It is now possible to define a component using the function create component which
takes width and height as parameters and uses the three preceding functions.
let create component iw ih =

let dc =

{info="Anonymous";
x=0; y=0; w=iw; h=ih;

gc = make default context () ;

container = false;

parent = [] ; children = [] ;

layout options = [] ;

layout = (fun a b → ());

display = (fun () → ());

mem = (fun s → false);

listener = (fun s → false);}
in

dc.layout <- direct layout dc;

dc.mem <- in rect dc;

dc.display <- display rect dc;

dc ; ;

val create_component : int -> int -> component = <fun>

We then define the following empty component:
let empty component = create component 0 0 ; ;

This is used as a default value when we construct values which need to contain at least
one component (for example a value of type rich status).

Constructing a Graphical Interface 359

Adding Child Components

The difficult part of adding a component to a container is how to position the compo-
nent within the container. The layout field contains this positioning function. It takes
a component (a child) and a list of options and calculates the new coordinates of the
child within the container. Different options can be used according to the positioning
function. We describe several layout functions when we talk about about the panel
component (see below, page 366). Here we simply describe the mechanism for propa-
gating the display function through the tree of components, coordinate changes, and
propagating events. The propagation of actions makes intensive use of the List.iter
function, which applies a function to all the elements of a list.

The function change coord applies a relative change to the coordinates of a component
and those of all its children.
let rec change coord c (dx,dy) =

c.x <- c.x + dx; c.y <- c.y + dy;

List.iter (fun s → change coord s (dx,dy)) c.children; ;

val change_coord : component -> int * int -> unit = <fun>

The add component function checks that the conditions for adding a component have
been met and then joins the parent (c) and the child (c1). The list of positioning
options is retained in the child component, which allows us to reuse them when the
positioning function of the parent changes. The list of options passed to this function
are those used by the positioning function. There are three conditions which need to
be prohibited: the child component is already a parent, the parent is not a container
or the child is too large for parent

let add component c c1 lopt =

if c1.parent <> [] then failwith "add_component: already a parent"

else

if not (is container c) then

failwith "add_component: not a container"

else

if (c1.x + c1.w > c.w) || (c1.y + c1.h > c.h)

then failwith "add_component: bad position"

else

c.layout c1 lopt;

c1.layout options <- lopt;

List.iter (fun s → change coord s (c1.x,c1.y)) c1.children;

c.children <- c1 :: c.children;

c1.parent <- [c] ; ;

val add_component : component -> component -> lopt -> unit = <fun>

The removal of a component from some level in the tree, implemented by the following
function, entails both a change to the link between the parent and the child and also
a change to the coordinates of the child and all its own children:

360 Chapter 13 : Applications

let remove component c c1 =

c.children <- List.filter ((!=) c1) c.children;

c1.parent <- List.filter ((!=) c) c1.parent;

List.iter (fun s → change coord s (- c1.x, - c1.y)) c1.children;

c1.x <- 0; c1.y <- 0; ;

val remove_component : component -> component -> unit = <fun>

A change to the positioning function of a container depends on whether it has any
children. If it does not the change is immediate. Otherwise we must first remove the
children of the container, modify the container’s positioning function and then add the
components back in with the same options used when they were originally added.
let set layout f c =

if c.children = [] then c.layout <- f

else

let ls = c.children in

List.iter (remove component c) ls;

c.layout <- f;

List.iter (fun s → add component c s s.layout options) ls; ;

val set_layout : (component -> lopt -> unit) -> component -> unit = <fun>

This is why we kept the list of positioning options. If the list of options is not recognized
by the new function it uses the defaults.

When a component is displayed, the display event must be propagated to its children.
The container is displayed behind its children. The order of display of the children is
unimportant because they never overlap.
let rec display c =

c.display () ;

List.iter (fun cx → display cx) c.children; ;

val display : component -> unit = <fun>

Event Handling

The handling of physical events (mouse click, key press, mouse movement) uses the
Graphics.wait next event function (see page 132) which returns a physical status
(of type Graphics.status) following any user interaction. This physical status is used
to calculate a rich status (of type rich status) containing the event type (of type
rich event), the physical status, the components possessing the keyboard focus and
the general focus along with the last component which successfully handled such an
event. The general focus is a component which accepts all events.

Next we describe the functions for the manipulating of rich events, the propagation
of this status information to components for them to be handled, the creation of the
information and the main event-handling loop.

Constructing a Graphical Interface 361

Functions used on Status

The following functions read the values of the mouse position and the focus. Functions
on focus need a further parameter: the component which is capturing or losing that
focus.

let get event e = e.re; ;

let get mouse x e = e.stat.Graphics.mouse x; ;

let get mouse y e = e.stat.Graphics.mouse y; ;

let get key e = e.stat.Graphics.key; ;

let has key focus e c = e.key focus == c; ;

let take key focus e c = e.key focus <- c; ;

let lose key focus e c = e.key focus <- empty component; ;

let has gen focus e c = e.gen focus == c; ;

let take gen focus e c = e.gen focus <- c; ;

let lose gen focus e c = e.gen focus <- empty component; ;

Propagation of Events

A rich event is sent to a component to be handled. Analogous to the display mechanism
discussed earlier, child components have priority over their parents for handling simple
mouse movement. If a component receives status information associated with an event,
it looks to see if it has a child which can handle it. If so, the child returns true otherwise
false. If no child can handle the event, the parent component tries to use the function
in its own listener field.

Status information coming from keyboard activity is propagated differently. The parent
component looks to see if it possesses the keyboard focus, and if so it handles the event,
otherwise it propagates to its children.

Some events are produced as a result of handling an initial event. For example, if one
component captures the focus, then this means another has lost it. Such events are
handled immediately by the target component. This is the same with the entry and
exit events caused when the mouse is moved between different components.

The send event function takes a value of type rich status and a component. It
returns a boolean indicating whether the event was handled or not.
let rec send event rs c =

match get event rs with

MouseDown | MouseUp | MouseDrag | MouseMove →
if c.mem(get mouse x rs, get mouse y rs) then

if List.exists (fun sun → send event rs sun) c.children then true

else (if c.listener rs then (rs.last <-c; true) else false)

else false

| KeyPress | KeyRelease →
if has key focus rs c then

362 Chapter 13 : Applications

(if c.listener rs then (rs.last<-c; true)

else false)

else List.exists (fun sun → send event rs sun) c.children

| _ → c.listener rs; ;

val send_event : rich_status -> component -> bool = <fun>

Note that the hierarchical structure of the components is really a tree and not a cyclic
graph. This guarantees that the recursion in the send event function cannot cause an
infinite loop.

Event Creation

We differentiate between two kinds of events: those produced by a physical action (such
as a mouse click) and those which arise from some action linked with the previous
history of the system (such as the movement of the mouse cursor out of the screen area
occupied by a component). As a result we define two functions for creating rich events.

The function which deals with the former kind constructs a rich event out of two sets
of physical status information:
let compute rich event s0 s1 =

if s0.Graphics.button <> s1.Graphics.button then

begin

if s0.Graphics.button then MouseDown else MouseUp

end

else if s1.Graphics.keypressed then KeyPress

else if (s0.Graphics.mouse x <> s1.Graphics.mouse x) ||

(s0.Graphics.mouse y <> s1.Graphics.mouse y) then

begin

if s1.Graphics.button then MouseDrag else MouseMove

end

else raise Not found; ;

val compute_rich_event : Graphics.status -> Graphics.status -> rich_event =

<fun>

The function creating the latter kind of event uses the last two rich events:
let send new events res0 res1 =

if res0.key focus <> res1.key focus then

begin

ignore(send event {res1 with re = LostFocus} res0.key focus);

ignore(send event {res1 with re = GotFocus} res1.key focus)

end;

if (res0.last <> res1.last) &&

((res1.re = MouseMove) || (res1.re = MouseDrag)) then

begin

ignore(send event {res1 with re = MouseExit} res0.last);

ignore(send event {res1 with re = MouseEnter} res1.last)

Constructing a Graphical Interface 363

end; ;

val send_new_events : rich_status -> rich_status -> unit = <fun>

We define an initial value for the rich event type. This is used to initialize the history
of the event loop.
let initial re =

{ re = Exposure;

stat = { Graphics.mouse x=0; Graphics.mouse y=0;

Graphics.key = ’ ’;

Graphics.button = false;

Graphics.keypressed = false };
key focus = empty component;

gen focus = empty component;

last = empty component } ; ;

Event Loop

The event loop manages the sequence of interactions with a component, usually the
ancestor component for all the components of the interface. It is supplied with two
booleans indicating whether the interface should be redisplayed after every physical
event has been handled (b disp) and whether to handle mouse movement (b motion).
The final argument (c), is the root of the component tree.
let loop b disp b motion c =

let res0 = ref initial re in

try

display c;

while true do

let lev = [Graphics.Button down; Graphics.Button up;

Graphics.Key pressed] in

let flev = if b motion then (Graphics.Mouse motion) :: lev

else lev in

let s = Graphics.wait next event flev

in

let res1 = {!res0 with stat = s} in

try

let res2 = {res1 with

re = compute rich event !res0.stat res1.stat} in

ignore(send event res2 c);

send new events !res0 res2;

res0 := res2;

if b disp then display c

with Not found → ()

done

with e → raise e; ;

val loop : bool -> bool -> component -> unit = <fun>

364 Chapter 13 : Applications

The only way out of this loop is when one of the handling routines raises an exception.

Test Functions

We define the following two functions to create by hand status information correspond-
ing to mouse and keyboard events.
let make click e x y =

{re = e;

stat = {Graphics.mouse x=x; Graphics.mouse y=y;

Graphics.key = ’ ’; Graphics.button = false;

Graphics.keypressed = false};
key focus = empty component;

gen focus = empty component;

last = empty component}

let make key e ch c =

{re = e;

stat = {Graphics.mouse x=0; Graphics.mouse y=0;

Graphics.key = c; Graphics.button = false;

Graphics.keypressed = true};
key focus = empty component;

gen focus = empty component;

last = empty component}; ;
val make_click : rich_event -> int -> int -> rich_status = <fun>

val make_key : rich_event -> ’a -> char -> rich_status = <fun>

We can now simulate the sending of a mouse event to a component for test purposes.

Defining Components

The various mechanisms for display, coordinate change and, propagating event are now
in place. It remains for us to define some components which are both useful and easy
to use. We can classify components into the following three categories:

• simple components which do not handle events, such as text to be displayed;

• simple components which handle events, such as text entry fields;

• containers and their various layout strategies.

Values are passed between components, or between a component and the application by
modification of shared data. The sharing is implemented by closures which contain in
their environment the data to be modified. Moreover, as the behavior of the component
can change as a result of event handling, components also contain an internal state in
the closures of their handling functions. For example the handling function for an input
field has access to text while it is being written. To this end we implement components
in the following manner:

Constructing a Graphical Interface 365

• define a type to represent the internal state of the component;

• declare functions for the manipulation of this state;

• implement the functions for display, testing whether a coordinate is within the
component and handling events;

• implement the function to create the component, thereby associating those clo-
sures with fields in the component;

• test the component by simulating the arrival of events.

Creation functions take a list of options to configure the graphics context. The calcula-
tion of the size of a component when it is created needs to make use of graphics context
of the graphical window in order to determine the width of the text to be displayed.

We describe the implementation of the following components:

• simple text (label);

• simple container (panel);

• simple button (button);

• choice among a sequence of strings (choice);

• text entry field (textfield);

• rich component (border).

The Label Component

The simplest component, called a label, displays a string of characters on the screen. It
does not handle events. We will start by describing the display function and then the
creation function.

Display must take account of the foreground and background colors and the char-
acter font. It is the job of the display init function to erase the graphical region
of the component, select the foreground color and position the cursor. The function
display label displays the string passed as a parameter immediately after the call to
display init.
let display init c =

Graphics.set color (get gc bcol (get gc c)); display rect c () ;

let gc= get gc c in

use gc gc;

let (a,b) = get gc cur gc in

Graphics.moveto (c.x+a) (c.y+b)

let display label s c () =

display init c; Graphics.draw string s; ;

val display_init : component -> unit = <fun>

val display_label : string -> component -> unit -> unit = <fun>

As this component is very simple it is not necessary to create any internal state. Only
the function display label knows the string to be displayed, which is passed by the

366 Chapter 13 : Applications

creation function.
let create label s lopt =

let gc = make default context () in set gc gc lopt; use gc gc;

let (w,h) = Graphics.text size s in

let u = create component w h in

u.mem <- (fun x → false); u.display <- display label s u;

u.info <- "Label"; u.gc <- gc;

u; ;

val create_label : string -> (string * opt_val) list -> component = <fun>

If we wish to change the colors of this component, we need to manipulate its graphic
context directly.

The display of label l1 below is depicted in figure 13.1.
let courier bold 24 = Sopt "*courier-bold-r-normal-*24*"

and courier bold 18 = Sopt "*courier-bold-r-normal-*18*"; ;

let l1 = create label "Login: " ["Font", courier bold 24;

"Background", Copt gray1]; ;

Figure 13.1: Displaying a label.

The panel Component, Containers and Layout

A panel is a graphical area which can be a container. The function which creates a panel
is very simple. It augments the general function for creating components with a boolean
indicating whether it is a container. The functions for testing location within the panel
and for display are those assigned by default in the create component function.
let create panel b w h lopt =

let u = create component w h in

u.container <- b;

u.info <- if b then "Panel container" else "Panel";

let gc = make default context () in set gc gc lopt; u.gc <- gc;

u; ;

val create_panel :

bool -> int -> int -> (string * opt_val) list -> component = <fun>

The tricky part with containers lies in the positioning of their child components.
We define two new layout functions: center layout and grid layout. The first,
center layout places a component at the center of a container:
let center layout c c1 lopt =

c1.x <- c.x + ((c.w -c1.w) /2); c1.y <- c.y + ((c.h -c1.h) /2); ;

Constructing a Graphical Interface 367

val center_layout : component -> component -> ’a -> unit = <fun>

The second, grid layout divides a container into a grid where each box has the same
size. The layout options in this case are "Col" for the column number and "Row" for
the row number.

let grid layout (a, b) c c1 lopt =

let px = theInt lopt "Col" 0

and py = theInt lopt "Row" 0 in

if (px >= 0) && (px < a) && (py >=0) && (py < b) then

let lw = c.w /a

and lh = c.h /b in

if (c1.w > lw) || (c1.h > lh) then

failwith "grid_placement: too big component"

else

c1.x <- c.x + px * lw + (lw - c1.w)/2;

c1.y <- c.y + py * lh + (lh - c1.h)/2;

else failwith "grid_placement: bad position"; ;

val grid_layout :

int * int -> component -> component -> (string * opt_val) list -> unit =

<fun>

It is clearly possible to define more. One can also customize a container by changing
its layout function (set layout). Figure 13.2 shows a panel, declared as a container,
in which two labels have been added and which corresponds to the following program:

Figure 13.2: A panel component.

let l2 = create label "Passwd: " ["Font", courier bold 24;

"Background", Copt gray1] ; ;

let p1 = create panel true 150 80 ["Background", Copt gray2] ; ;

set layout (grid layout (1,2) p1) p1; ;

add component p1 l1 ["Row", Iopt 1]; ;

add component p1 l2 ["Row", Iopt 0]; ;

Since the components need at least one parent so that they can be integrated into the
interface, and since the Graphics library only supports one window, we must define a

368 Chapter 13 : Applications

principle window which is a container.
let open main window w h =

Graphics.close graph () ;

Graphics.open graph (" "^(string of int w)^"x"^(string of int h));

let u = create component w h in

u.container <- true;

u.info <- "Main Window";

u; ;

val open_main_window : int -> int -> component = <fun>

The Button Component

A button is a component which displays a text in its graphical region and reacts to
mouse clicks which occur there. To support this behavior it retains a piece of state, a
value of type button state, which contains the text and the mouse handling function.

type button state =

{ txt : string; mutable action : button state → unit } ; ;

The function create bs creates this state. The set bs action function changes the
handling function and the function get bs text retrieves the text of a button.
let create bs s = {txt = s; action = fun x → ()}

let set bs action bs f = bs.action <- f

let get bs text bs = bs.txt; ;

val create_bs : string -> button_state = <fun>

val set_bs_action : button_state -> (button_state -> unit) -> unit = <fun>

val get_bs_text : button_state -> string = <fun>

The display function is similar to that used by labels with the exception that the text
derives this time from the state information belonging to the button. By default the
listening function activates the action function when a mouse button is pressed.

let display button c bs () =

display init c; Graphics.draw string (get bs text bs)

let listener button c bs e = match get event e with

MouseDown → bs.action bs; c.display () ; true

| _ → false; ;

val display_button : component -> button_state -> unit -> unit = <fun>

val listener_button : component -> button_state -> rich_status -> bool =

<fun>

We now have all we need to define the creation function for simple buttons:
let create button s lopt =

Constructing a Graphical Interface 369

let bs = create bs s in

let gc = make default context () in

set gc gc lopt; use gc gc;

let w,h = Graphics.text size (get bs text bs) in

let u = create component w h in

u.display <- display button u bs;

u.listener <- listener button u bs;

u.info <- "Button";

u.gc <- gc;

u,bs; ;

val create_button :

string -> (string * opt_val) list -> component * button_state = <fun>

This returns a tuple of which the first element is the button which has been created
and the second is the internal state of the button. The latter value is particularly useful
if we want to change the action function of the button since the button state is not
accessible via the button function.

Figure 13.3 shows a panel to which a button has been added. We have associated an
action function which displays the string contained by the button on the standard
output.

Figure 13.3: Button display and reaction to a mouseclick.

let b,bs = create button "Validation" ["Font", courier bold 24;

"Background", Copt gray1]; ;

let p2 = create panel true 150 60 ["Background", Copt gray2]; ;

set bs action bs (fun bs → print string ((get bs text bs)^ "...");

print newline ()); ;

set layout (center layout p2) p2; ;

add component p2 b [] ; ;

In contrast to labels, a button component knows how to react to a mouse click. To
test this feature we send the event “mouse click” to a central position on the panel p2,
which is occupied by the button. This causes the action associated with the button to
be carried out:
send event (make click MouseDown 75 30) p2; ;

Validation...

- : bool = true

and returns the value true showing that the event has indeed been handled.

370 Chapter 13 : Applications

The choice Component

The choice component allows us to select one of the choices offered using a mouse click.
There is always a current choice. A mouse click on another choice causes the current
choice to change and causes an action to be carried out. We use the same technique we
used previously for simple buttons. We start by defining the state needed by a choice
list:
type choice state =

{ mutable ind : int; values : string array; mutable sep : int;

mutable height : int; mutable action : choice state → unit } ; ;

The index ind shows which string is to be highlighted in the list of values. The sep
and height fields describe in pixels the distance between two choices and the height
of a choice. The action function takes an argument of type choice state as an input
and does its job using the index.

We now define the function to create a set of status information and the function to
change to way it is handled.
let create cs sa = {ind = 0; values = sa; sep = 2;

height = 1; action = fun x → ()}
let set cs action cs f = cs.action <- f

let get cs text cs = cs.values.(cs.ind); ;

val create_cs : string array -> choice_state = <fun>

val set_cs_action : choice_state -> (choice_state -> unit) -> unit = <fun>

val get_cs_text : choice_state -> string = <fun>

The display function shows the list of all the possible choices and accentuates the
current choice in inverse video. The event handling function reacts to a release of the
mouse button.

let display choice c cs () =

display init c;

let (x,y) = Graphics.current point ()

and nb = Array.length cs.values in

for i = 0 to nb-1 do

Graphics.moveto x (y + i*(cs.height+ cs.sep));

Graphics.draw string cs.values.(i)

done;

Graphics.set color (get gc fcol (get gc c));

Graphics.fill rect x (y+ cs.ind*(cs.height+ cs.sep)) c.w cs.height;

Graphics.set color (get gc bcol (get gc c));

Graphics.moveto x (y + cs.ind*(cs.height + cs.sep));

Graphics.draw string cs.values.(cs.ind) ; ;

val display_choice : component -> choice_state -> unit -> unit = <fun>

let listener choice c cs e = match e.re with

MouseUp →

Constructing a Graphical Interface 371

let x = e.stat.Graphics.mouse x

and y = e.stat.Graphics.mouse y in

let cy = c.y in

let i = (y - cy) / (cs.height + cs.sep) in

cs.ind <- i; c.display () ;

cs.action cs; true

| _ → false ; ;

val listener_choice : component -> choice_state -> rich_status -> bool =

<fun>

To create a list of possible choices we take a list of strings and a list of options, and
we return the component itself along with its internal state.

let create choice lc lopt =

let sa = (Array.of list (List.rev lc)) in

let cs = create cs sa in

let gc = make default context () in

set gc gc lopt; use gc gc;

let awh = Array.map (Graphics.text size) cs.values in

let w = Array.fold right (fun (x,y) → max x) awh 0

and h = Array.fold right (fun (x,y) → max y) awh 0 in

let h1 = (h+cs.sep) * (Array.length sa) + cs.sep in

cs.height <- h;

let u = create component w h1 in

u.display <- display choice u cs;

u.listener <- listener choice u cs ;

u.info <- "Choice "^ (string of int (Array.length cs.values));

u.gc <- gc;

u,cs; ;

val create_choice :

string list -> (string * opt_val) list -> component * choice_state = <fun>

The sequence of three pictures in figure 13.4 shows a panel to which a list of choices
has been added. To it we have bound an action function which displays the chosen
string to the standard output. The pictures arise from mouse clicks simulated by the
following program.
let c,cs = create choice ["Helium"; "Gallium"; "Pentium"]

["Font", courier bold 24;

"Background", Copt gray1]; ;

let p3 = create panel true 110 110 ["Background", Copt gray2]; ;

set cs action cs (fun cs → print string ((get cs text cs)^"...");

print newline ()); ;

set layout (center layout p3) p3; ;

add component p3 c [] ; ;

372 Chapter 13 : Applications

Figure 13.4: Displaying and selecting from a choice list.

Here also we can test the component straight away by sending several events. The
following changes the selection, as is shown in the central picture in figure 13.4.
send event (make click MouseUp 60 55) p3; ;

Gallium...

- : bool = true

The sending of the following event selects the first element in the choice list
send event (make click MouseUp 60 90) p3; ;

Helium...

- : bool = true

The textfield Component

The text input field, or textfield, is an area which enables us to input a text string. The
text can be aligned to the left or (typically for a calculator) the right. Furthermore a
cursor shows where the next character will be entered. Here we need a more complex
internal state. This includes the text which is being entered, the direction of the justi-
fication, a description of the cursor, a description of how the characters are displayed
and the action function.
type textfield state =

{ txt : string;

dir : bool; mutable ind1 : int; mutable ind2 : int; len : int;

mutable visible cursor : bool; mutable cursor : char;

mutable visible echo : bool; mutable echo : char;

mutable action : textfield state → unit } ; ;

To create this internal state we need the initial text, the number of characters available
for the text input field and the justification of the text.
let create tfs txt size dir =

let l = String.length txt in

(if size < l then failwith "create_tfs");

let ind1 = if dir then 0 else size-1-l

Constructing a Graphical Interface 373

and ind2 = if dir then l else size-1 in

let n txt = (if dir then (txt^(String.make (size-l) ’ ’))

else ((String.make (size-l) ’ ’)^txt)) in

{txt = n txt; dir=dir; ind1 = ind1; ind2 = ind2; len=size;

visible cursor = false; cursor = ’ ’; visible echo = true; echo = ’ ’;

action= fun x → ()}; ;
val create_tfs : string -> int -> bool -> textfield_state = <fun>

The following functions allow us to access various fields, including the displayed text.
let set tfs action tfs f = tfs.action <- f

let set tfs cursor b c tfs = tfs.visible cursor <- b; tfs.cursor <- c

let set tfs echo b c tfs = tfs.visible echo <- b; tfs.echo <- c

let get tfs text tfs =

if tfs.dir then String.sub tfs.txt tfs.ind1 (tfs.ind2 - tfs.ind1)

else String.sub tfs.txt (tfs.ind1+1) (tfs.ind2 - tfs.ind1); ;

The set tfs text function changes the text within the internal state tfs of the com-
ponent tf with the string txt.
let set tfs text tf tfs txt =

let l = String.length txt in

if l > tfs.len then failwith "set_tfs_text";

String.blit (String.make tfs.len ’ ’) 0 tfs.txt 0 tfs.len;

if tfs.dir then (String.blit txt 0 tfs.txt 0 l;

tfs.ind2 <- l)

else (String.blit txt 0 tfs.txt (tfs.len -l) l;

tfs.ind1 <- tfs.len-l-1);

tf.display () ; ;

val set_tfs_text : component -> textfield_state -> string -> unit = <fun>

Display operations must take account of how the character is echoed and the visibility
of the cursor. The display textfield function calls the display cursor function
which shows where the cursor is.
let display cursor c tfs =

if tfs.visible cursor then

(use gc (get gc c);

let (x,y) = Graphics.current point () in

let (a,b) = Graphics.text size " " in

let shift = a * (if tfs.dir then max (min (tfs.len-1) tfs.ind2) 0

else tfs.ind2) in

Graphics.moveto (c.x+x + shift) (c.y+y);

Graphics.draw char tfs.cursor); ;

val display_cursor : component -> textfield_state -> unit = <fun>

let display textfield c tfs () =

display init c;

let s = String.make tfs.len ’ ’

374 Chapter 13 : Applications

and txt = get tfs text tfs in

let nl = String.length txt in

if (tfs.ind1 >= 0) && (not tfs.dir) then

Graphics.draw string (String.sub s 0 (tfs.ind1+1));

if tfs.visible echo then (Graphics.draw string (get tfs text tfs))

else Graphics.draw string (String.make (String.length txt) tfs.echo);

if (nl > tfs.ind2) && (tfs.dir)

then Graphics.draw string (String.sub s tfs.ind2 (nl-tfs.ind2));

display cursor c tfs; ;

val display_textfield : component -> textfield_state -> unit -> unit = <fun>

The event-listener function for this kind of component is more complex. According to
the input direction (left or right justified) we may need to move the string which has
already been input. Capture of focus is achieved by a mouse click in the input zone.
let listener text field u tfs e =

match e.re with

MouseDown → take key focus e u ; true

| KeyPress →
(if Char.code (get key e) >= 32 then

begin

(if tfs.dir then

((if tfs.ind2 >= tfs.len then (

String.blit tfs.txt 1 tfs.txt 0 (tfs.ind2-1);

tfs.ind2 <- tfs.ind2-1));

tfs.txt.[tfs.ind2] <- get key e;

tfs.ind2 <- tfs.ind2 +1)

else

(String.blit tfs.txt 1 tfs.txt 0 (tfs.ind2);

tfs.txt.[tfs.ind2] <- get key e;

if tfs.ind1 >= 0 then tfs.ind1 <- tfs.ind1 -1

);

)

end

else (

(match Char.code (get key e) with

13 → tfs.action tfs

| 9 → lose key focus e u

| 8 → if (tfs.dir && (tfs.ind2 > 0))

then tfs.ind2 <- tfs.ind2 -1

else if (not tfs.dir) && (tfs.ind1 < tfs.len -1)

then tfs.ind1 <- tfs.ind1+1

| _ → ()

))); u.display () ; true

| _ → false; ;

val listener_text_field :

component -> textfield_state -> rich_status -> bool = <fun>

Constructing a Graphical Interface 375

The function which creates text entry fields repeats the same pattern we have seen in
the previous components.
let create text field txt size dir lopt =

let tfs = create tfs txt size dir

and l = String.length txt in

let gc = make default context () in

set gc gc lopt; use gc gc;

let (w,h) = Graphics.text size (tfs.txt) in

let u = create component w h in

u.display <- display textfield u tfs;

u.listener <- listener text field u tfs ;

u.info <- "TextField"; u.gc <- gc;

u,tfs; ;

val create_text_field :

string ->

int -> bool -> (string * opt_val) list -> component * textfield_state =

<fun>

This function returns a tuple consisting of the component itself, and the internal state
of that component. We can test the creation of the component in figure 13.5 as follows:

let tf1,tfs1 = create text field "jack" 8 true ["Font", courier bold 24]; ;

let tf2,tfs2 = create text field "koala" 8 false ["Font", courier bold 24]; ;

set tfs cursor true ’_’ tfs1; ;

set tfs cursor true ’_’ tfs2; ;

set tfs echo false ’*’ tfs2; ;

let p4 = create panel true 140 80 ["Background", Copt gray2]; ;

set layout (grid layout (1,2) p4) p4; ;

add component p4 tf1 ["Row", Iopt 1]; ;

add component p4 tf2 ["Row", Iopt 0]; ;

Figure 13.5: Text input component.

376 Chapter 13 : Applications

Enriched Components

Beyond the components described so far, it is also possible to construct new ones, for
example components with bevelled edges such as those in the calculator on page 136.
To create this effect we construct a panel larger than the component, fill it out in a
certain way and add the required component to the center.
type border state =

{mutable relief : string; mutable line : bool;

mutable bg2 : Graphics.color; mutable size : int}; ;

The creation function takes a list of options and constructs an internal state.
let create border state lopt =

{relief = theString lopt "Relief" "Flat";

line = theBool lopt "Outlined" false;

bg2 = theColor lopt "Background2" Graphics.black;

size = theInt lopt "Border_size" 2}; ;
val create_border_state : (string * opt_val) list -> border_state = <fun>

We define the profile of the border used in the boxes of figure 5.6 (page 130) by defining
the options "Top", "Bot" and "Flat".
let display border bs c1 c () =

let x1 = c.x and y1 = c.y in

let x2 = x1+c.w-1 and y2 = y1+c.h-1 in

let ix1 = c1.x and iy1 = c1.y in

let ix2 = ix1+c1.w-1 and iy2 = iy1+c1.h-1 in

let border1 g = Graphics.set color g;

Graphics.fill poly [| (x1,y1);(ix1,iy1);(ix2,iy1);(x2,y1) |] ;

Graphics.fill poly [| (x2,y1);(ix2,iy1);(ix2,iy2);(x2,y2) |]

in

let border2 g = Graphics.set color g;

Graphics.fill poly [| (x1,y2);(ix1,iy2);(ix2,iy2);(x2,y2) |] ;

Graphics.fill poly [| (x1,y1);(ix1,iy1);(ix1,iy2);(x1,y2) |]

in

display rect c () ;

if bs.line then (Graphics.set color (get gc fcol (get gc c));

draw rect x1 y1 c.w c.h);

let b1 col = get gc bcol (get gc c)

and b2 col = bs.bg2 in

match bs.relief with

"Top" → (border1 b1 col; border2 b2 col)

| "Bot" → (border1 b2 col; border2 b1 col)

| "Flat" → (border1 b1 col; border2 b1 col)

| s → failwith ("display_border: unknown relief: "^s)

; ;

val display_border : border_state -> component -> component -> unit -> unit =

<fun>

Constructing a Graphical Interface 377

The function which creates a border takes a component and a list of options, it con-
structs a panel containing that component.
let create border c lopt =

let bs = create border state lopt in

let p = create panel true (c.w + 2 * bs.size)

(c.h + 2 * bs.size) lopt in

set layout (center layout p) p;

p.display <- display border bs c p;

add component p c [] ; p; ;

val create_border : component -> (string * opt_val) list -> component = <fun>

Now we can test creating a component with a border on the label component and the
text entry field tf1 defined by in our previous tests. The result is show in figure 13.6.
remove component p1 l1; ;

remove component p4 tf1; ;

let b1 = create border l1 [] ; ;

let b2 = create border tf1 ["Relief", Sopt "Top";

"Background", Copt Graphics.red;

"Border_size", Iopt 4]; ;

let p5 = create panel true 140 80 ["Background", Copt gray2]; ;

set layout (grid layout (1,2) p5) p5; ;

add component p5 b1 ["Row", Iopt 1]; ;

add component p5 b2 ["Row", Iopt 0]; ;

Figure 13.6: An enriched component.

Setting up the Awi Library

The essential parts of our library have now been written. All declarations 2 of types
and values which we have seen so far in this section can be grouped together in one
file. This library consists of one single module. If the file is called awi.ml then we get

2. except for those used in our test examples

378 Chapter 13 : Applications

a module called Awi. The link between the name of the file and that of the module is
described in chapter 14.

Compiling this file will produce a compiled interface file awi.cmi and, depending on
the compiler being used, the bytecode itself awi.cmo or else the native machine code
awi.cmx. To use the bytecode compiler we enter the following command

ocamlc -c awi.ml

To use it at the interactive toplevel, we need to load the bytecode of our new library
with the command #load "awi.cmo";; having also previously ensured that we have
loaded the Graphics library. We can then start calling functions from the module to
create and work with components.

open Awi;;
create_component;;
- : int -> int -> Awi.component = <fun>

The result type of this function is Awi.component, chapter 14 explains more about
this.

Example: A Franc-Euro Converter

We will now build a currency converter between Francs and Euros using this new
library. The actual job of conversion is trivial, but the construction of the interface will
show how the components communicate with each other. While we are getting used to
the new currency we need to convert in both directions. Here are the components we
have chosen:

• a list of two choices to describe the direction of the conversion;

• two text entry fields for inputting values and displaying converted results;

• a simple button to request that the calculation be performed;

• two labels to show the meaning of each text entry field.

These different components are shown in figure 13.7.

Communication between the components is implemented by sharing state. For this
purpose we define the type state conv which hold the fields for francs (a), euros (b),
the direction in which the conversion is to be performed (dir) and the conversion
factors (fa and fb).
type state conv =

{ mutable a:float; mutable b:float; mutable dir : bool;

fa : float; fb : float } ; ;

We define the initial state as follows:
let e = 6.55957074

Constructing a Graphical Interface 379

let fe = { a =0.0; b=0.0; dir = true; fa = e; fb = 1./. e}; ;

The conversion function returns a floating result following the direction of the conver-
sion.
let calculate fe =

if fe.dir then fe.b <- fe.a /. fe.fa else fe.a <- fe.b /. fe.fb; ;

val calculate : state_conv -> unit = <fun>

A mouse click on the list of two choices changes the direction of the conversion. The
text of the choice strings is "->" and "<-".
let action dir fe cs = match get cs text cs with

"->" → fe.dir <- true

| "<-" → fe.dir <- false

| _ → failwith "action_dir"; ;

val action_dir : state_conv -> choice_state -> unit = <fun>

The action associated with the simple button causes the calculation to be performed
and displays the result in one of the two text entry fields. For this to be possible we
pass the two text entry fields as parameters to the action.
let action go fe tf fr tf eu tfs fr tfs eu x =

if fe.dir then

let r = float of string (get tfs text tfs fr) in

fe.a <- r; calculate fe;

let sr = Printf.sprintf "%.2f" fe.b in

set tfs text tf eu tfs eu sr

else

let r = float of string (get tfs text tfs eu) in

fe.b <- r; calculate fe;

let sr = Printf.sprintf "%.2f" fe.a in

set tfs text tf fr tfs fr sr; ;

val action_go :

state_conv ->

component -> component -> textfield_state -> textfield_state -> ’a -> unit =

<fun>

It now remains to build the interface. The following function takes a width, a height and
a conversion state and returns the main container with the three active components.

let create conv w h fe =

let gray1 = (Graphics.rgb 120 120 120) in

let m = open main window w h

and p = create panel true (w-4) (h-4) []

and l1 = create label "Francs" ["Font", courier bold 24;

"Background", Copt gray1]

380 Chapter 13 : Applications

and l2 = create label "Euros" ["Font", courier bold 24;

"Background", Copt gray1]

and c,cs = create choice ["->"; "<-"] ["Font", courier bold 18]

and tf1,tfs1 = create text field "0" 10 false ["Font", courier bold 18]

and tf2,tfs2 = create text field "0" 10 false ["Font", courier bold 18]

and b,bs = create button " Go " ["Font", courier bold 24]

in

let gc = get gc m in

set gc bcol gc gray1;

set layout (grid layout (3,2) m) m;

let tb1 = create border tf1 []

and tb2 = create border tf2 []

and bc = create border c []

and bb =

create border b

["Border_size", Iopt 4; "Relief", Sopt "Bot";

"Background", Copt gray2; "Background2", Copt Graphics.black]

in

set cs action cs (action dir fe);

set bs action bs (action go fe tf1 tf2 tfs1 tfs2);

add component m l1 ["Col",Iopt 0;"Row",Iopt 1];

add component m l2 ["Col",Iopt 2;"Row",Iopt 1];

add component m bc ["Col",Iopt 1;"Row",Iopt 1];

add component m tb1 ["Col",Iopt 0;"Row",Iopt 0];

add component m tb2 ["Col",Iopt 2;"Row",Iopt 0];

add component m bb ["Col",Iopt 1;"Row",Iopt 0];

m,bs,tf1,tf2; ;

val create_conv :

int ->

int -> state_conv -> component * button_state * component * component =

<fun>

The event handling loop is started on the container m constructed below. The resulting
display is shown in figure 13.7.
let (m,c,t1,t2) = create conv 420 150 fe ; ;

display m ; ;

One click on the choice list changes both the displayed text and the direction of the
conversion because all the event handling closures share the same state.

Where to go from here

Closures allow us to register handling methods with graphical components. It is however
impossible to “reopen” these closures to extend an existing handler with additional
behavior. We need to define a completely new handler. We discuss the possibilities for

Finding Least Cost Paths 381

Figure 13.7: Calculator window.

extending handlers in chapter 16 where we compare the functional and object-oriented
paradigms.

In our application many of the structures declared have fields with identical names (for
example txt). The last declaration masks all previous occurences. This means that it
becomes difficult to use the field names directly and this is why we have declared a set
of access functions for every type we have defined. Another possibility would be to cut
our library up into several modules. From then on field names could be disambiguated
by using the module names. Nonetheless, with the help of the access functions, we can
already make full use of the library. Chapter 14 returns to the topic of type overlaying
and introduces abstract data types. The use of overlaying can, among other things,
increase robustness by preventing the modification of sensitive data fields, such as
the parent child relationships between the components which should not allow the
construction of a circular graph.

There are many possible ways to improve this library.

One criterion in our design for components was that it should be possible to write
new ones. It is fairly easy to create components of an arbitrary shape by using new
definitions of the mem and display functions. In this way one could create buttons
which have an oval or tear-shaped form.

The few layout algorithms presented are not as helpful as they could be. One could add
a grid layout whose squares are of variable size and width. Or maybe we want to place
components alongside each other so long as there is enough room. Finally we should
anticipate the possibility that a change to the size of a component may be propagated
to its children.

Finding Least Cost Paths

Many applications need to find least cost paths through weighted directed graphs. The
problem is to find a path through a graph in which non-negative weights are associated
with the arcs. We will use Dijkstra’s algorithm to determine the path.

This will be an opportunity to use several previously introduced libraries. In the order
of appearance, the following modules will be used: Genlex and Printf for input and

382 Chapter 13 : Applications

output, the module Weak to implement a cache, the module Sys to track the time saved
by a cache, and the Awi library to construct a graphical user interface. The module
Sys is also used to construct a standalone application that takes the name of a file
describing the graph as a command line argument.

Graph Representions

A weighted directed graph is defined by a set of nodes, a set of edges, and a mapping
from the set of edges to a set of values. There are numerous implementations of the
data type weighted directed graph.

• adjacency matrices:
each element (m(i, j)) of the matrix represents an edge from node i to j and the
value of the element is the weight of the edge;

• adjacency lists:
each node i is associated with a list [(j1, w1); ..; (jn, wn)] of nodes and each triple
(i, jk, wk) is an edge of the graph, with weight wk;

• a triple:
a list of nodes, a list of edges and a function that computes the weights of the
edges.

The behavior of the representations depends on the size and the number of edges in
the graph. Since one goal of this application is to show how to cache certain previously
executed computations without using all of memory, an adjacency matrix is used to
represent weighted directed graphs. In this way, memory usage will not be increased
by list manipulations.

type cost = Nan | Cost of float; ;

type adj mat = cost array array; ;

type ’a graph = { mutable ind : int;

size : int;

nodes : ’a array;

m : adj mat}; ;
The field size indicates the maximal number of nodes, the field ind the actual number
of nodes.

We define functions to let us create graphs edge by edge.

The function to create a graph takes as arguments a node and the maximal number of
nodes.
let create graph n s =

{ ind = 0; size = s; nodes = Array.create s n;

m = Array.create matrix s s Nan } ; ;

val create_graph : ’a -> int -> ’a graph = <fun>

Finding Least Cost Paths 383

The function belongs to checks if the node n is contained in the graph g.
let belongs to n g =

let rec aux i =

(i < g.size) & ((g.nodes.(i) = n) or (aux (i+1)))

in aux 0; ;

val belongs_to : ’a -> ’a graph -> bool = <fun>

The function index returns the index of the node n in the graph g. If the node does
not exist, a Not found exception is thrown.
let index n g =

let rec aux i =

if i >= g.size then raise Not found

else if g.nodes.(i) = n then i

else aux (i+1)

in aux 0 ; ;

val index : ’a -> ’a graph -> int = <fun>

The next two functions are for adding nodes and edges of cost c to graphs.
let add node n g =

if g.ind = g.size then failwith "the graph is full"

else if belongs to n g then failwith "the node already exists"

else (g.nodes.(g.ind) <- n; g.ind <- g.ind + 1) ; ;

val add_node : ’a -> ’a graph -> unit = <fun>

let add edge e1 e2 c g =

try

let x = index e1 g and y = index e2 g in

g.m.(x).(y) <- Cost c

with Not found → failwith "node does not exist" ; ;

val add_edge : ’a -> ’a -> float -> ’a graph -> unit = <fun>

Now it is easy to create a complete weighted directed graph starting with a list of
nodes and edges. The function test aho constructs the graph of figure 13.8:
let test aho () =

let g = create graph "nothing" 5 in

List.iter (fun x → add node x g) ["A"; "B"; "C"; "D"; "E"];

List.iter (fun (a,b,c) → add edge a b c g)

["A","B",10.;

"A","D",30.;

"A","E",100.0;

"B","C",50.;

"C","E",10.;

"D","C",20.;

"D","E",60.];

for i=0 to g.ind -1 do g.m.(i).(i) <- Cost 0.0 done;

g; ;

384 Chapter 13 : Applications

val test_aho : unit -> string graph = <fun>

let a = test aho () ; ;

val a : string graph =

{ind=5; size=5; nodes=[|"A"; "B"; "C"; "D"; "E"|];

m=[|[|Cost 0; Cost 10; Nan; Cost 30; Cost ...|]; ...|]}

Figure 13.8: The test graph

Constructing Graphs

It is tedious to directly construct graphs in a program. To avoid this, we define a concise
textual representation for graphs. We can define the graphs in text files and construct
them in applications by reading the text files.

The textual representation for a graph consists of lines of the following forms:

• the number of nodes: SIZE number;

• the name of a node: NODE name;

• the cost of an edge: EDGE name1 name2 cost;

• a comment: # comment.

For example, the following file, aho.dat, describes the graph of figure 13.8 :

SIZE 5

Finding Least Cost Paths 385

NODE A
NODE B
NODE C
NODE D
NODE E
EDGE A B 10.0
EDGE A D 30.0
EDGE A E 100.0
EDGE B C 50.
EDGE C E 10.
EDGE D C 20.
EDGE D E 60.

To read graph files, we use the lexical analysis module Genlex. The lexical analyser is
constructed from a list of keywords keywords.

The function parse line executes the actions associated to the key words by modifying
the reference to a graph.
let keywords = ["SIZE"; "NODE"; "EDGE"; "#"]; ;

val keywords : string list = ["SIZE"; "NODE"; "EDGE"; "#"]

let lex line l = Genlex.make lexer keywords (Stream.of string l); ;

val lex_line : string -> Genlex.token Stream.t = <fun>

let parse line g s = match s with parser

[< ’(Genlex.Kwd "SIZE"); ’(Genlex.Int n) >] →
g := create graph "" n

| [< ’(Genlex.Kwd "NODE"); ’(Genlex.Ident name) >] →
add node name !g

| [< ’(Genlex.Kwd "EDGE"); ’(Genlex.Ident e1);

’(Genlex.Ident e2); ’(Genlex.Float c) >] →
add edge e1 e2 c !g

| [< ’(Genlex.Kwd "#") >] → ()

| [<>] → () ; ;

val parse_line : string graph ref -> Genlex.token Stream.t -> unit = <fun>

The analyzer is used to define the function creating a graph from the description in
the file:
let create graph name =

let g = ref {ind=0; size=0; nodes =[||]; m = [||]} in

let ic = open in name in

try

print string ("Loading "^name^": ");

while true do

print string ".";

let l = input line ic in parse line g (lex line l)

done;

!g

with End of file → print newline () ; close in ic; !g ; ;

386 Chapter 13 : Applications

val create_graph : string -> string graph = <fun>

The following command constructs a graph from the file aho.dat.
let b = create graph "PROGRAMMES/aho.dat" ; ;

Loading PROGRAMMES/aho.dat:

val b : string graph =

{ind=5; size=5; nodes=[|"A"; "B"; "C"; "D"; "E"|];

m=[|[|Nan; Cost 10; Nan; Cost 30; Cost 100|]; ...|]}

Dijkstra’s Algorithm

Dijkstra’s algorithm finds a least cost path between two nodes. The cost of a path
between node n1 and node n2 is the sum of the costs of the edges on that path.
The algorithm requires that costs always be positive, so there is no benefit in passing
through a node more than once.

Dijkstra’s algorithm effectively computes the minimal cost paths of all nodes of the
graph which can be reached from a source node n1. The idea is to consider a set
containing only nodes of which the least cost path to n1 is already known. This set
is enlarged successively, considering nodes which can be accessed directly by an edge
from one of the nodes already contained in the set. From these candidates, the one
with the best cost path to the source node is added to the set.

To keep track of the state of the computation, the type comp state is defined, as well
as a function for creating an initial state:
type comp state = { paths : int array;

already treated : bool array;

distances : cost array;

source : int;

nn : int}; ;
let create state () = { paths = [||]; already treated = [||]; distances = [||];

nn = 0; source = 0}; ;
The field source contains the start node. The field already treated indicates the
nodes whose optimal path from the source is already known. The field nn indicates the
total number of the graph’s nodes. The vector distances holds the minimal distances
between the source and the other nodes. For each node, the vector path contains the
preceding node on the least cost path. The path to the source can be reconstructed
from each node by using path.

Cost Functions

Four functions on costs are defined: a cost to test for the existence of an edge,
float of cost to return the floating point value, add cost to add two costs and
less cost to check if one cost is smaller than another.

let a cost c = match c with Nan → false | _-> true; ;

Finding Least Cost Paths 387

val a_cost : cost -> bool = <fun>

let float of cost c = match c with

Nan → failwith "float_of_cost"

| Cost x → x; ;

val float_of_cost : cost -> float = <fun>

let add cost c1 c2 = match (c1,c2) with

Cost x, Cost y → Cost (x+.y)

| Nan, Cost y → c2

| Cost x, Nan → c1

| Nan, Nan → c1; ;

val add_cost : cost -> cost -> cost = <fun>

let less cost c1 c2 = match (c1,c2) with

Cost x, Cost y → x < y

| Cost x, Nan → true

| _, _ → false; ;

val less_cost : cost -> cost -> bool = <fun>

The value Nan plays a special role in the computations and in the comparison. We will
come back to this when we have presented the main function (page 388).

Implementing the Algorithm

The search for the next node with known least cost path is divided into two functions.
The first, first not treated, selects the first node not already contained in the set of
nodes with known least cost paths. This node serves as the initial value for the second
function, least not treated, which returns a node not already in the set with a best
cost path to the source. This path will be added to the set.
exception Found of int; ;

exception Found of int

let first not treated cs =

try

for i=0 to cs.nn-1 do

if not cs.already treated.(i) then raise (Found i)

done;

raise Not found;

0

with Found i → i ; ;

val first_not_treated : comp_state -> int = <fun>

let least not treated p cs =

let ni = ref p

and nd = ref cs.distances.(p) in

for i=p+1 to cs.nn-1 do

if not cs.already treated.(i) then

if less cost cs.distances.(i) !nd then

(nd := cs.distances.(i);

ni := i)

done;

!ni,!nd; ;

388 Chapter 13 : Applications

val least_not_treated : int -> comp_state -> int * cost = <fun>

The function one round selects a new node, adds it to the set of treated nodes and
computes the distances for any next candidates.
exception No way; ;

exception No_way

let one round cs g =

let p = first not treated cs in

let np,nc = least not treated p cs in

if not(a cost nc) then raise No way

else

begin

cs.already treated.(np) <- true;

for i = 0 to cs.nn -1 do

if not cs.already treated.(i) then

if a cost g.m.(np).(i) then

let ic = add cost cs.distances.(np) g.m.(np).(i) in

if less cost ic cs.distances.(i) then (

cs.paths.(i) <- np;

cs.distances.(i) <- ic

)

done;

cs

end; ;

val one_round : comp_state -> ’a graph -> comp_state = <fun>

The only thing left in the implementation of Dijkstra’s algorithm is to iterate the
preceding function. The function dij takes a node and a graph as arguments and
returns a value of type comp state, with the information from which the least cost
paths from the source to all the reachable nodes of the graph can be deduced.
let dij s g =

if belongs to s g then

begin

let i = index s g in

let cs = { paths = Array.create g.ind (-1) ;

already treated = Array.create g.ind false;

distances = Array.create g.ind Nan;

nn = g.ind;

source = i} in

cs.already treated.(i) <- true;

for j=0 to g.ind-1 do

let c = g.m.(i).(j) in

cs.distances.(j) <- c;

if a cost c then cs.paths.(j) <- i

done;

try

Finding Least Cost Paths 389

for k = 0 to cs.nn-2 do

ignore(one round cs g)

done;

cs

with No way → cs

end

else failwith "dij: node unknown"; ;

val dij : ’a -> ’a graph -> comp_state = <fun>

Nan is the initial value of the distances. It represents an infinite distance, which con-
forms to the comparison function less cost. In contrast, for the addition of costs
(function add cost), this value is treated as a zero. This allows a simple implementa-
tion of the table of distances.

Now the search with Dijkstra’s algorithm can be tested.
let g = test aho () ; ;

let r = dij "A" g; ;

The return values are:
r.paths; ;

- : int array = [|0; 0; 3; 0; 2|]

r.distances; ;

- : cost array = [|Cost 0; Cost 10; Cost 50; Cost 30; Cost 60|]

Displaying the Results

To make the results more readable, we now define a display function.

The table paths of the state returned by dij only contains the last edges of the
computed paths. In order to get the entire paths, it is necessary to recursively go back
to the source.
let display state f (g,st) dest =

if belongs to dest g then

let d = index dest g in

let rec aux is =

if is = st.source then Printf.printf "%a" f g.nodes.(is)

else (

let old = st.paths.(is) in

aux old;

Printf.printf " -> (%4.1f) %a" (float of cost g.m.(old).(is))

f g.nodes.(is)

)

in

if not(a cost st.distances.(d)) then Printf.printf "no way\n"

else (

390 Chapter 13 : Applications

aux d;

Printf.printf " = %4.1f\n" (float of cost st.distances.(d))); ;

val display_state :

(out_channel -> ’a -> unit) -> ’a graph * comp_state -> ’a -> unit = <fun>

This recursive function uses the command stack to display the nodes in the right order.
Note that the use of the format "a" requires the function parameter f to preserve the
polymorphism of the graphs for the display.

The optimal path between the nodes ”A” (index 0) and ”E” (index 4) is displayed in
the following way:
display state (fun x y → Printf.printf "%s!" y) (a,r) "E"; ;

A! -> (30.0) D! -> (20.0) C! -> (10.0) E! = 60.0

- : unit = ()

The different nodes of the path and the costs of each route are shown.

Introducing a Cache

Dijkstra’s algorithm computes all least cost paths starting from a source. The idea of
preserving these least cost paths for the next inquiry with the same source suggests
itself. However, this storage could occupy a considerable amount of memory. This
suggests the use of “weak pointers.” If the results of a computation starting from a
source are stored in a table of weak pointers, it will be possible for the next computation
to check if the computation has already been done. Because the pointers are weak, the
memory occupied by the states can be freed by the garbage collector if needed. This
avoids interrupting the rest of the program through the allocation of too much memory.
In the worst case, the computation has to be repeated for a future inquiry.

Implementing a Cache

A new type ’a comp graph is defined:
type ’a comp graph =

{ g : ’a graph; w : comp state Weak.t } ; ;

The fields g and w correspond to the graph and to the table of weak pointers, pointing
to the computation states for each possible source.

Such values are constructed by the function create comp graph.
let create comp graph g =

{ g = g;

w = Weak.create g.ind } ; ;

val create_comp_graph : ’a graph -> ’a comp_graph = <fun>

The function dij quick checks to see if the computation has already been done. If
it has, the stored result is returned. Otherwise, the computation is executed and the
result is registered in the table of weak pointers.
let dij quick s cg =

Finding Least Cost Paths 391

let i = index s cg.g in

match Weak.get cg.w i with

None → let cs = dij s cg.g in

Weak.set cg.w i (Some cs);

cs

| Some cs → cs; ;

val dij_quick : ’a -> ’a comp_graph -> comp_state = <fun>

The display function still can be used:
let cg a = create comp graph a in

let r = dij quick "A" cg a in

display state (fun x y → Printf.printf "%s!" y) (a,r) "E" ; ;

A! -> (30.0) D! -> (20.0) C! -> (10.0) E! = 60.0

- : unit = ()

Performance Evaluation

We will test the performance of the functions dij and dij quick by iterating each one
on a random list of sources. In this way an application which frequently computes least
cost paths is simulated (for example a railway route planning system).

We define the following function to time the calculations:
let exe time f g ss =

let t0 = Sys.time () in

Printf.printf "Start (%5.2f)\n" t0;

List.iter (fun s → ignore(f s g)) ss;

let t1 = Sys.time () in

Printf.printf "End (%5.2f)\n" t1;

Printf.printf "Duration = (%5.2f)\n" (t1 -. t0) ; ;

val exe_time : (’a -> ’b -> ’c) -> ’b -> ’a list -> unit = <fun>

We create a random list of 20000 nodes and measure the performance on the graph a:
let ss =

let ss0 = ref [] in

let i0 = int of char ’A’ in

let new s i = Char.escaped (char of int (i0+i)) in

for i=0 to 20000 do ss0 := (new s (Random.int a.size))::!ss0 done;

!ss0 ; ;

val ss : string list =

["A"; "B"; "D"; "A"; "E"; "C"; "B"; "B"; "D"; "E"; "B"; "E"; "C"; "E"; "E";

"D"; "D"; "A"; "E"; ...]

Printf.printf"Function dij :\n";

exe time dij a ss ; ;

Function dij :

Start (1.09)

392 Chapter 13 : Applications

End (1.41)

Duration = (0.32)

- : unit = ()

Printf.printf"Function dij_quick :\n";

exe time dij quick (create comp graph a) ss ; ;

Function dij_quick :

Start (1.41)

End (1.44)

Duration = (0.03)

- : unit = ()

The results confirm our assumption. The direct access to a result held in the cache is
considerably faster than a second computation of the result.

A Graphical Interface

We use the Awi library to construct a graphical interface to display graphs. The inter-
face allows selection of the source and destination nodes of the path. When the path is
found, it is displayed graphically. We define the type ’a gg, containing fields describing
the graph and the computation, as well as fields of the graphical interface.

#load "PROGRAMMES/awi.cmo"; ;

type ’a gg = { mutable src : ’a * Awi.component;

mutable dest : ’a * Awi.component;

pos : (int * int) array;

cg : ’a comp graph;

mutable state : comp state;

mutable main : Awi.component;

to string : ’a → string;

from string : string → ’a } ; ;

The fields src and dest are tuples (node, component), associating a node and a compo-
nent. The field pos contains the position of each component. The field main is the main
container of the set of components. The two functions to string and from string are
conversion functions between type ’a and strings. The elements necessary to construct
these values are the graph information, the position table and the conversion functions.

let create gg cg vpos ts fs =

{src = cg.g.nodes.(0),Awi.empty component;

dest = cg.g.nodes.(0),Awi.empty component;

pos = vpos;

cg = cg;

state = create state () ;

Finding Least Cost Paths 393

main = Awi.empty component;

to string = ts;

from string = fs}; ;
val create_gg :

’a comp_graph ->

(int * int) array -> (’a -> string) -> (string -> ’a) -> ’a gg = <fun>

Visualisation

In order to display the graph, the nodes have to be drawn, and the edges have to be
traced. The nodes are represented by button components of the Awi library. The edges
are traced directly in the main window. The function display edge displays the edges.
The function display shortest path displays the found path in a different color.

Drawing Edges An edge connects two nodes and has an associated weight. The
connection between two nodes can be represented by a line. The main difficulty is
indicating the orientation of the line. We choose to represent it by an arrow. The
arrow is rotated by the angle the line has with the abscissa (the x-axis) to give it the
proper orientation. Finally, the costs are displayed beside the edge.

To draw the arrow of an edge we define the functions rotate and translate which care
respectively for rotation and shifting. The function display arrow draws the arrow.
let rotate l a =

let ca = cos a and sa = sin a in

List.map (function (x,y) → (x*.ca +. -.y*.sa, x*.sa +. y*.ca)) l; ;

val rotate : (float * float) list -> float -> (float * float) list = <fun>

let translate l (tx,ty) =

List.map (function (x,y) → (x +. tx, y +. ty)) l; ;

val translate :

(float * float) list -> float * float -> (float * float) list = <fun>

let display arrow (mx,my) a =

let triangle = [(5.,0.); (-3.,3.); (1.,0.); (-3.,-3.); (5.,0.)] in

let tr = rotate triangle a in

let ttr = translate tr (mx,my) in

let tt = List.map (function (x,y) → (int of float x, int of float y)) ttr

in

Graphics.fill poly (Array.of list tt); ;

val display_arrow : float * float -> float -> unit = <fun>

The position of the text indicating the weight of an edge depends on the angle of the
edge.
let display label (mx,my) a lab =

let (sx,sy) = Graphics.text size lab in

let pos = [float(-sx/2),float(-sy)] in

let pr = rotate pos a in

394 Chapter 13 : Applications

let pt = translate pr (mx,my) in

let px,py = List.hd pt in

let ox,oy = Graphics.current point () in

Graphics.moveto ((int of float mx)-sx-6)

((int of float my));

Graphics.draw string lab;

Graphics.moveto ox oy; ;

val display_label : float * float -> float -> string -> unit = <fun>

The preceding functions are now used by the function display edge. Parameters are
the graphical interface gg, the nodes i and j, and the color (col) to use.
let display edge gg col i j =

let g = gg.cg.g in

let x,y = gg.main.Awi.x,gg.main.Awi.y in

if a cost g.m.(i).(j) then (

let (a1,b1) = gg.pos.(i)

and (a2,b2) = gg.pos.(j) in

let x0,y0 = x+a1,y+b1 and x1,y1 = x+a2,y+b2 in

let rxm = (float(x1-x0)) /. 2. and rym = (float(y1-y0)) /. 2. in

let xm = (float x0) +. rxm and ym = (float y0) +. rym in

Graphics.set color col;

Graphics.moveto x0 y0;

Graphics.lineto x1 y1;

let a = atan2 rym rxm in

display arrow (xm,ym) a;

display label (xm,ym) a

(string of float(float of cost g.m.(i).(j)))); ;

val display_edge : ’a gg -> Graphics.color -> int -> int -> unit = <fun>

Displaying a Path To display a path, all edges along the path are displayed. The
graphical display of a path towards a destination uses the same technique as the textual
display.
let rec display shortest path gg col dest =

let g = gg.cg.g in

if belongs to dest g then

let d = index dest g in

let rec aux is =

if is = gg.state.source then ()

else (

let old = gg.state.paths.(is) in

display edge gg col old is;

aux old)

in

if not(a cost gg.state.distances.(d)) then Printf.printf "no way\n"

else aux d; ;

Finding Least Cost Paths 395

val display_shortest_path : ’a gg -> Graphics.color -> ’a -> unit = <fun>

Displaying a Graph The function display gg displays a complete graph. If the
destination node is not empty, the path between the source and the destination is
traced.
let display gg gg () =

Awi.display rect gg.main () ;

for i=0 to gg.cg.g.ind -1 do

for j=0 to gg.cg.g.ind -1 do

if i<> j then display edge gg (Graphics.black) i j

done

done;

if snd gg.dest != Awi.empty component then

display shortest path gg Graphics.red (fst gg.dest); ;

val display_gg : ’a gg -> unit -> unit = <fun>

The Node Component

The nodes still need to be drawn. Since the user is allowed to choose the source and
destination nodes, we define a component for nodes.

The user’s main action is choosing the end nodes of the path to be found. Thus a node
must be a component that reacts to mouse clicks, using its state to indicate if it has
been chosen as a source or destination. We choose the button component, which reacts
to mouse clicks.

Node Actions It is necessary to indicate node selection. To show this, the back-
ground color of a node is changed by the function inverse.
let inverse b =

let gc = Awi.get gc b in

let fcol = Awi.get gc fcol gc

and bcol = Awi.get gc bcol gc in

Awi.set gc bcol gc fcol;

Awi.set gc fcol gc bcol; ;

val inverse : Awi.component -> unit = <fun>

The function action click effects this selection. It is called when a node is clicked
on by the mouse. As parameters it takes the node associated with the button and the
graph to modify the source or the destination of the search. When both nodes are
selected, the function dij quick finds a least cost path.
let action click node gg b bs =

let (s1,s) = gg.src

and (s2,d) = gg.dest in

396 Chapter 13 : Applications

if s == Awi.empty component then (

gg.src <- (node,b); inverse b)

else

if d == Awi.empty component then (

inverse b;

gg.dest <- (node,b);

gg.state <- dij quick s1 gg.cg;

display shortest path gg (Graphics.red) node

)

else (inverse s; inverse d;

gg.dest <- (s2,Awi.empty component);

gg.src <- node,b; inverse b); ;

val action_click : ’a -> ’a gg -> Awi.component -> ’b -> unit = <fun>

Creating an Interface The main function to create an interface takes an interface
graph and a list of options, creates the different components and associates them with
the graph. The parameters are the graph (gg), its dimensions (gw and gh), a list of
graph and node options (lopt) and a list of node border options (lopt2).
let main gg gg gw gh lopt lopt2 =

let gc = Awi.make default context () in

Awi.set gc gc lopt;

(* compute the maximal button size *)

let vs = Array.map gg.to string gg.cg.g.nodes in

let vsize = Array.map Graphics.text size vs in

let w = Array.fold right (fun (x,y) → max x) vsize 0

and h = Array.fold right (fun (x,y) → max y) vsize 0 in

(* create the main panel *)

gg.main <- Awi.create panel true gw gh lopt;

gg.main.Awi.display <- display gg gg;

(* create the buttons *)

let vb bs =

Array.map (fun x → x,Awi.create button (" "^(gg.to string x)^" ")

lopt)

gg.cg.g.nodes in

let f act b = Array.map (fun (x,(b,bs)) →
let ac = action click x gg b

in Awi.set bs action bs ac) vb bs in

let bb =

Array.map (function (_,(b,_)) → Awi.create border b lopt2) vb bs

in

Array.iteri

(fun i (b) → let x,y = gg.pos.(i) in

Awi.add component gg.main b

["PosX",Awi.Iopt (x-w/2);

"PosY", Awi.Iopt (y-h/2)]) bb;

Finding Least Cost Paths 397

() ; ;

val main_gg :

’a gg ->

int ->

int -> (string * Awi.opt_val) list -> (string * Awi.opt_val) list -> unit =

<fun>

The buttons are created automatically. They are positioned on the main window.

Testing the Interface Everything is ready to create an interface now. We use a
graph whose nodes are character strings to simplify the conversion functions. We con-
struct the graph gg as follows:
let id x = x; ;

let pos = [| 200, 300; 80, 200 ; 100, 100; 200, 100; 260, 200 |]; ;

let gg = create gg (create comp graph (test aho ())) pos id id; ;

main gg gg 400 400 ["Background", Awi.Copt (Graphics.rgb 130 130 130);

"Foreground",Awi.Copt Graphics.green]

["Relief", Awi.Sopt "Top";"Border_size", Awi.Iopt 2]; ;

Calling Awi.loop true false gg.main;; starts the interaction loop of the Awi li-
brary.

Figure 13.9: Selecting the nodes for a search

398 Chapter 13 : Applications

Figure 13.9 shows the computed path between the nodes "A" and "E". The edges on
the path have changed their color.

Creating a Standalone Application

We will now show the steps needed to construct a standalone application. The appli-
cation takes the name of a file describing the graph as an argument. For standalone
applications, it is not necesary to have an Objective Caml distribution on the execution
machine.

A Graph Description File

The file containes information about the graph as well as information used for the
graphical interface. For the latter information, we define a second format. From this
graphical description, we construct a value of the type g info.
type g info = {npos : (int * int) array;

mutable opt : Awi.lopt;

mutable g w : int;

mutable g h : int}; ;

The format for the graphical information is described by the four key words of list
key2.
let key2 = ["HEIGHT"; "LENGTH"; "POSITION"; "COLOR"]; ;

val key2 : string list = ["HEIGHT"; "LENGTH"; "POSITION"; "COLOR"]

let lex2 l = Genlex.make lexer key2 (Stream.of string l); ;

val lex2 : string -> Genlex.token Stream.t = <fun>

let pars2 g gi s = match s with parser

[< ’(Genlex.Kwd "HEIGHT"); ’(Genlex.Int i) >] → gi.g h <- i

| [< ’(Genlex.Kwd "LENGTH"); ’(Genlex.Int i) >] → gi.g w <- i

| [< ’(Genlex.Kwd "POSITION"); ’(Genlex.Ident s);

’(Genlex.Int i); ’(Genlex.Int j) >] → gi.npos.(index s g) <- (i,j)

| [< ’(Genlex.Kwd "COLOR"); ’(Genlex.Ident s);

’(Genlex.Int r); ’(Genlex.Int g); ’(Genlex.Int b) >] →
gi.opt <- (s, Awi.Copt (Graphics.rgb r g b)) :: gi.opt

| [<>] → () ; ;

val pars2 : string graph -> g_info -> Genlex.token Stream.t -> unit = <fun>

Creating the Application

The function create graph takes the name of a file as input and returns a couple
composed of a graph and associated graphical information.
let create gg graph name =

let g = create graph name in

Finding Least Cost Paths 399

let gi = {npos = Array.create g.size (0,0); opt=[]; g w =0; g h = 0;} in

let ic = open in name in

try

print string ("Loading (pass 2) " ^name ^" : ");

while true do

print string ".";

let l = input line ic in pars2 g gi (lex2 l)

done ;

g,gi

with End of file → print newline () ; close in ic; g,gi; ;

val create_gg_graph : string -> string graph * g_info = <fun>

The function create app constructs the interface of a graph.
let create app name =

let g,gi = create gg graph name in

let size = (string of int gi.g w) ^ "x" ^ (string of int gi.g h) in

Graphics.open graph (" "^size);

let gg = create gg (create comp graph g) gi.npos id id in

main gg gg gi.g w gi.g h

["Background", Awi.Copt (Graphics.rgb 130 130 130) ;

"Foreground", Awi.Copt Graphics.green]

["Relief", Awi.Sopt "Top" ; "Border_size", Awi.Iopt 2] ;

gg; ;

val create_app : string -> string gg = <fun>

Finally, the function main takes the name of the file from the command line, constructs
a graph with an interface and starts the interaction loop on the main component of
the graph interface.
let main () =

if (Array.length Sys.argv) <> 2

then Printf.printf "Usage: dij.exe filename\n"

else

let gg = create app Sys.argv.(1) in

Awi.loop true false gg.main; ;

val main : unit -> unit = <fun>

The last expression of that program starts the function main.

The Executable

The motivation for making a standalone application is to support its distribution. We
collect the types and functions described in this section in the file dij.ml. Then we
compile the file, adding the different libraries which are used. Here is the command to
compile it under Linux.

400 Chapter 13 : Applications

ocamlc -custom -o dij.exe graphics.cma awi.cmo graphs.ml \
-cclib -lgraphics -cclib -L/usr/X11/lib -cclib -lX11

Compiling standalone applications using the Graphics library is described in chapters
5 and 7.

Final Notes

The skeleton of this application is sufficiently general to be used in contexts other than
the search for traveling paths. Different types of problems can be represented by a
weighted graph. For example the search for a path in a labyrinth can be coded in a
graph where each intersection is a node. Finding a solution corresponds to computing
the shortest path between the start and the goal.

To compare the performance betwen C and Objective Caml, we wrote Dijkstra’s algo-
rithm in C. The C program uses the Objective Caml data structures to perform the
calculations.

To improve the graphical interface, we add a textfield for the name of the file and
two buttons to load and to store a graph. The user may then modify the positions of
the nodes by mouse to improve the appearance.

A second improvement of the graphical interface is the ability to choose the form of
the nodes. To display a button, a function tracing a rectangle is called. The display
functions can be specialized to use polygons for nodes.

