
Part III

Application Structure

401

403

The third part of this work is dedicated to application development and describes
two ways of organizing applications: modules and objects. The goal is to easily struc-
ture an application for incremental and rapid development, maintenance facilitated by
the ability to change gracefully, and the possibility of reusing large parts for future
development.

We have already presented the language’s predefined modules (see chapter 8) viewed
as compilation units. Objective Caml’s module language supports on the one hand the
definition of new simple modules in order to build one’s own libraries, perhaps including
abstract types, and on the other hand the definition of modules parameterized by other
modules, called functors. The advantage of this parameterization lies in being able to
“apply” a module to different argument modules in order to create specialized modules.
Communication between modules is thus explicit, via the parameter module signature,
which contains the types of its global declarations. However, nothing stops you from
applying a functor to a module with a more extended signature, as long as it remains
compatible with the specified parameter signature.

Besides, the Objective Caml language has an object-oriented extension. First of all
object-oriented programming permits structured communication between objects. Ra-
ther than applying a function to some arguments, one sends a message (a request) to an
object which knows how to deal with it. The object, an instance of a class (a structure
gathering together data and methods), then executes the corresponding code. The main
relation between classes is inheritance, which lets one describe subclasses which retain
all the declarations of the ancestor class. Late binding between the name of a message
and the corresponding code within the object takes place during program execution.
Nevertheless Objective Caml typing guarantees that the receiving object will always
have a method of this name, otherwise type inference would have raised a compile-time
error. The second important relation is subtyping, where an object of a certain class
can always be used in place of an object of another class. In this way a new type of
polymorphism is introduced: inclusion polymorphism.

Finally the construction of a graphical interface, begun in chapter 5, uses different event
management models. One puts together in an interface several components with respect
to which the user or the system can produce events. The association of a component
with a handler for one or more events taking place on it allows one to easily add to and
modify such interfaces. The component-event-handler association can be cloaked in
several forms: definition of a function (called a callback), inheritance with redefinition
of handler methods, or finally registration of a handling object (delegation model).

Chapter 14 is a presentation of modular programming. The different prevailing termi-
nologies of abstract data types and module languages are explained and illustrated by
simple modules. Then the module language is detailed. The correspondence between
modules (simple or not) and compilation units is made clear.

Chapter 15 contains an introduction to object-oriented programming. It brings a new
way of structuring Objective Caml programs, an alternative to modules. This chap-
ters shows how the notions of object-oriented programming (simple and multiple in-
heritance, abstract classes, parameterized classes, late binding) are articulated with

404

respect to the language’s type system, and extend it by the subtyping relation to
inclusion polymorphism.

Chapter 16 compares the two preceding software models and explains what factors to
consider in deciding between the two, while also demonstrating how to simulate one by
the other. It treats various cases of mixed models. Mixing leads to the enrichment of
each of these two models, in particular with parameterized classes using the abstract
type of a module.

Chapter 17 presents two classes of applications: two-player games, and the construction
of a world of virtual robots. The first example is organized via various parameterized
modules. In particular, a parameterized module is used to represent games for applica-
tion of the minimax αβ algorithm. It is then applied to two specific games: Connect 4
and Stone Henge. The second example uses an object model of a world and of abstract
robots, from which, by inheritence, various simulations are derived. This example is
presented in chapter 21.

14
Programming with

Modules

Modular design and modular programming support the decomposition of a program
into several software units, also called modules, which can be developed largely inde-
pendently. A module can be compiled separately from the other modules comprising
the program. Consequently, the developer of a program that uses a module does not
need access to the source code of the module: the compiled code of the module is
enough for building an executable program. However, the programmer must know the
interface of the modules used, that is, which values, functions, types, exceptions, or
even sub-modules are provided by the module, under which names, and with which
types.

Explicitly writing down the interface of a module hides the details of its implementation
from the programs that use this module. All these programs know about the module
are the names and types of exported definitions; their exact implementations are not
known. Thus, the maintainer of the module has considerable flexibility in evolving the
module implementation: as long as the interface is unchanged and the semantics are
preserved, users of the module will not notice the change in implementation. This can
greatly facilitate the maintenance and evolution of large programs. Like local decla-
rations, a module interface also supports hiding parts of the implementation that the
module designer does not wish to publicize. An important application of this hiding
mechanism is the implementation of abstract data types.

Finally, advanced module systems such as that of Objective Caml support the defini-
tion of parameterized modules, also called generics. These are modules that take other
modules as parameters, thus increasing opportunities for code reuse.

Chapter Outline

Section 1 illustrates Objective Caml modules on the example of the Stack module
from the standard library, and develops an alternate implementation of this module

406 Chapter 14 : Programming with Modules

with the same interface. Section 2 introduces the module language of Objective Caml
in the case of simple modules, and shows some of its uses. In particular, we discuss
type sharing between modules. Section 3 covers parameterized modules, which are
called functors in Objective Caml. Finally, section 4 develops an extended example of
modular programming: managing bank accounts with multiple views (the bank, the
customer) and several parameters.

Modules as Compilation Units

The Objective Caml distribution includes a number of predefined modules. We saw in
chapter 8 how to use these modules in a program. Here, we will show how users can
define similar modules.

Interface and Implementation

The module Stack from the distribution provides the main functions on stacks, that
is, queues with “last in, first out” discipline.
let queue = Stack.create () ; ;

val queue : ’_a Stack.t = <abstr>

Stack.push 1 queue ; Stack.push 2 queue ; Stack.push 3 queue ; ;

- : unit = ()

Stack.iter (fun n → Printf.printf "%d " n) queue ; ;

3 2 1 - : unit = ()

Since Objective Caml is distributed with full source code, we can look at the actual
implementation of stacks.

ocaml-2.04/stdlib/stack.ml

type ’a t = { mutable c : ’a list }
exception Empty

let create () = { c = [] }
let clear s = s.c <- []

let push x s = s.c <- x :: s.c

let pop s = match s.c with hd :: tl → s.c <- tl; hd | [] → raise Empty

let length s = List.length s.c

let iter f s = List.iter f s.c

We see that the type of stacks (written Stack.t outside the Stack module and just t
inside) is a record with one mutable field containing a list. The list holds the contents
of the stack, with the list head corresponding to the stack top. Stack operations are
implemented as the basic list operations applied to the field of the record.

Modules as Compilation Units 407

Armed with this insider’s knowledge, we could try to access directly the list representing
a stack. However, Objective Caml will not let us do this.
let list = queue.c ; ;
Characters 12-19:

Unbound label c

The compiler complains as if it did not know that Stack.t is a record type with a
field c. It is actually the case, as we can see by looking at the interface of the Stack
module.

ocaml-2.04/stdlib/stack.mli

(* Module [Stack]: last-in first-out stacks *)

(* This module implements stacks (LIFOs), with in-place modification. *)

type ’a t (* The type of stacks containing elements of type [’a]. *)

exception Empty (* Raised when [pop] is applied to an empty stack. *)

val create: unit → ’a t

(* Return a new stack, initially empty. *)

val push: ’a → ’a t → unit

(* [push x s] adds the element [x] at the top of stack [s]. *)

val pop: ’a t → ’a

(* [pop s] removes and returns the topmost element in stack [s],

or raises [Empty] if the stack is empty. *)

val clear : ’a t → unit

(* Discard all elements from a stack. *)

val length: ’a t → int

(* Return the number of elements in a stack. *)

val iter: (’a → unit) → ’a t → unit

(* [iter f s] applies [f] in turn to all elements of [s],

from the element at the top of the stack to the element at the

bottom of the stack. The stack itself is unchanged. *)

In addition to comments documenting the functions of the module, this file lists explic-
itly the value, type and exception identifiers defined in the file stack.ml that should
be visible to clients of the Stack module. More precisely, the interface declares the
names and type specifications for these exported definitions. In particular, the type
name t is exported, but the representation of this type (that is, as a record with one
c field) is not given in this interface. Thus, clients of the Stack module do not know
how the type Stack.t is represented, and cannot access directly values of this type.
We say that the type Stack.t is abstract, or opaque.

The interface also declares the functions operating on stacks, giving their names and
types. (The types must be provided explicitly so that the type checker can check that

408 Chapter 14 : Programming with Modules

these functions are correctly used.) Declaration of values and functions in an interface
is achieved via the following construct:

Syntax : val nom : type

Relating Interfaces and Implementations

As shown above, the Stack is composed of two parts: an implementation providing def-
initions, and an interface providing declarations for those definitions that are exported.
All module components declared in the interface must have a matching definition in
the implementation. Also, the types of values and functions as defined in the imple-
mentation must match the types declared in the interface.

The relationship between interface and implementation is not symmetrical. The im-
plementation can contain more definitions than requested by the interface. Typically,
the definition of an exported function can use auxiliary functions whose names will not
appear in the interface. Such auxiliary functions cannot be called directly by a client
of the module. Similarly, the interface can restrict the type of a definition. Consider a
module defining the function id as the identity function (let id x = x). Its interface
can declare id with the type int --> int (instead of the more general ’a --> ’a).
Then, clients of this module can only apply id to integers.

Since the interface of a module is clearly separated from its implementation, it becomes
possible to have several implementations for the same interface, for instance to test
different algorithms or data structures for the same operations. As an example, here is
an alternate implementation for the Stack module, based on arrays instead of lists.

type ’a t = { mutable sp : int; mutable c : ’a array }
exception Empty

let create () = { sp=0 ; c = [||] }
let clear s = s.sp <- 0; s.c <- [||]

let size = 5

let increase s = s.c <- Array.append s.c (Array.create size s.c.(0))

let push x s =

if s.sp >= Array.length s.c then increase s ;
s.c.(s.sp) <- x ;
s.sp <- succ s.sp

let pop s =

if s.sp = 0 then raise Empty

else let x = s.c.(s.sp) in s.sp <- pred s.sp ; x

let length s = s.sp

let iter f s = for i = pred s.sp downto 0 do f s.sc.(i) done

This new implementation satisfies the requisites of the interface file stack.mli. Thus,
it can be used instead of the predefined implementation of Stack in any program.

Modules as Compilation Units 409

Separate Compilation

Like most modern programming languages, Objective Caml supports the decomposi-
tion of programs into multiple compilation units, separately compiled. A compilation
unit is composed of two files, an implementation file (with extension .ml) and an inter-
face file (with extension .mli). Each compilation unit is viewed as a module. Compiling
the implementation file name.ml defines the module named Name1.

Values, types and exceptions defined in a module can be referenced either via the
dot notation (Module.identifier), also known as qualified identifiers, or via the open

construct.

a.ml b.ml

type t = { x:int ; y:int } ; ; let val = { A.x = 1 ; A.y = 2 } ; ;

let f c = c.x + c.y ; ; A.f val ; ;

open A ; ;

f val ; ;

An interface file (.mli file) must be compiled using the ocamlc -c command before
any module that depends on this interface is compiled; this includes both clients of the
module and the implementation file for this module as well.

If no interface file is provided for an implementation file, Objective Caml considers that
the module exports everything; that is, all identifiers defined in the implementation
file are present in the implicit interface with their most general types.

The linking phase to produce an executable file is performed as described in chapter 7:
the ocamlc command (without the -c option), followed by the object files for all
compilation units comprising the program. Warning: object files must be provided on
the command line in dependency order. That is, if a module B references another module
A, the object file a.cmo must precede b.cmo on the linker command line. Consequently,
cross dependencies between two modules are forbidden.

For instance, to generate an executable file from the source files a.ml and b.ml, with
matching interface files a.mli and b.mli, we issue the following commands:

> ocamlc -c a.mli
> ocamlc -c a.ml
> ocamlc -c b.mli
> ocamlc -c b.ml
> ocamlc a.cmo b.cmo

Compilation units, composed of one interface file and one implementation file, sup-
port separate compilation and information hiding. However, their abilities as a gen-
eral program structuring tool are low. In particular, there is a one-to-one connection

1. Both files name.ml and Name.ml result in the same module name.

410 Chapter 14 : Programming with Modules

between modules and files, preventing a program to use simultaneously several imple-
mentations of a given interface, or also several interfaces for the same implementation.
Nested modules and module parameterization are not supported either. To palliate
those weaknesses, Objective Caml offers a module language, with special syntax and
linguistic constructs, to manipulate modules inside the language itself. The remainder
of this chapter introduces this module language.

The Module Language

The Objective Caml language features a sub-language for modules, which comes in
addition to the core language that we have seen so far. In this module language, the
interface of a module is called a signature and its implementation is called a structure.
When there is no ambiguity, we will often use the word “module” to refer to a structure.

The syntax for declaring signatures and structures is as follows:

Syntax :

module type NAME =

sig

interface declarations
end

Syntax :

module Name =

struct

implementation definitions
end

Warning

The name of a module must start with an uppercase
letter. There are no such case restrictions on names of
signatures, but by convention we will use names in up-
percase for signatures.

Signatures and structures do not need to be bound to names: we can also use anony-
mous signature and structure expressions, writing simply

Syntax : sig declarations end

Syntax : struct definitions end

We write signature and structure to refer to either names of signatures and structures,
or anonymous signature and structure expressions.

Every structure possesses a default signature, computed by the type inference system,
which reveals all the definitions contained in the structure, with their most general
types. When defining a structure, we can also indicate the desired signature by adding

The Module Language 411

a signature constraint (similar to the type constraints from the core language), using
one of the following two syntactic forms:

Syntax : module Name : signature = structure

Syntax : module Name = (structure : signature)

When an explicit signature is provided, the system checks that all the components
declared in the signature are defined in the structure structure, and that the types
are consistent. In other terms, the system checks that the explicit signature provided
is “included in”, or implied by, the default signature. If so, Name is viewed in the
remainder of the code with the signature “signature”, and only the components declared
in the signature are accessible to the clients of the module. (This is the same behavior
we saw previously with interface files.)

Access to the components of a module is via the dot notation:

Syntax : Name1.name2

We say that the name name2 is qualified by the name Name1 of its defining module.

The module name and the dot can be omitted using a directive to open the module:

Syntax : open Name

In the scope of this directive, we can use short names name2 to refer to the components
of the module Name. In case of name conflicts, opening a module hides previously
defined entities with the same names, as in the case of identifier redefinitions.

Two Stack Modules

We continue the example of stacks by recasting it in the module language. The signature
for a stack module is obtained by wrapping the declarations from the stack.mli file
in a signature declaration:
module type STACK =

sig

type ’a t

exception Empty

val create: unit → ’a t

val push: ’a → ’a t → unit

val pop: ’a t → ’a
val clear : ’a t → unit

val length: ’a t → int

val iter: (’a → unit) → ’a t → unit

end ; ;
module type STACK =

sig

type ’a t

exception Empty

val create : unit -> ’a t

412 Chapter 14 : Programming with Modules

val push : ’a -> ’a t -> unit

val pop : ’a t -> ’a

val clear : ’a t -> unit

val length : ’a t -> int

val iter : (’a -> unit) -> ’a t -> unit

end

A first implementation of stacks is obtained by reusing the Stack module from the
standard library:
module StandardStack = Stack ; ;
module StandardStack :

sig

type ’a t = ’a Stack.t

exception Empty

val create : unit -> ’a t

val push : ’a -> ’a t -> unit

val pop : ’a t -> ’a

val clear : ’a t -> unit

val length : ’a t -> int

val iter : (’a -> unit) -> ’a t -> unit

end

We then define an alternate implementation based on arrays:
module MyStack =

struct

type ’a t = { mutable sp : int; mutable c : ’a array }
exception Empty

let create () = { sp=0 ; c = [||] }
let clear s = s.sp <- 0; s.c <- [||]

let increase s x = s.c <- Array.append s.c (Array.create 5 x)

let push x s =

if s.sp >= Array.length s.c then increase s x;
s.c.(s.sp) <- x;
s.sp <- succ s.sp

let pop s =

if s.sp =0 then raise Empty

else (s.sp <- pred s.sp ; s.c.(s.sp))

let length s = s.sp

let iter f s = for i = pred s.sp downto 0 do f s.c.(i) done

end ; ;
module MyStack :

sig

type ’a t = { mutable sp: int; mutable c: ’a array }

exception Empty

val create : unit -> ’a t

val clear : ’a t -> unit

val increase : ’a t -> ’a -> unit

val push : ’a -> ’a t -> unit

val pop : ’a t -> ’a

val length : ’a t -> int

val iter : (’a -> ’b) -> ’a t -> unit

The Module Language 413

end

These two modules implement the type t of stacks by different data types.
StandardStack.create () ; ;
- : ’_a StandardStack.t = <abstr>

MyStack.create () ; ;
- : ’_a MyStack.t = {MyStack.sp=0; MyStack.c=[||]}

To abstract over the type representation in Mystack, we add a signature constraint by
the STACK signature.
module MyStack = (MyStack : STACK) ; ;
module MyStack : STACK

MyStack.create () ; ;
- : ’_a MyStack.t = <abstr>

The two modules StandardStack and MyStack implement the same interface, that is,
provide the same set of operations over stacks, but their t types are different. It is
therefore impossible to apply operations from one module to values from the other
module:
let s = StandardStack.create () ; ;
val s : ’_a StandardStack.t = <abstr>

MyStack.push 0 s ; ;
Characters 15-16:

This expression has type ’a StandardStack.t = ’a Stack.t

but is here used with type int MyStack.t

Even if both modules implemented the t type by the same concrete type, constrain-
ing MyStack by the signature STACK suffices to abstract over the t type, rendering it
incompatible with any other type in the system and preventing sharing of values and
operations between the various stack modules.
module S1 = (MyStack : STACK) ; ;
module S1 : STACK

module S2 = (MyStack : STACK) ; ;
module S2 : STACK

let s = S1.create () ; ;
val s : ’_a S1.t = <abstr>

S2.push 0 s ; ;
Characters 10-11:

This expression has type ’a S1.t but is here used with type int S2.t

The Objective Caml system compares abstract types by names. Here, the two types
S1.t and S2.t are both abstract, and have different names, hence they are considered
as incompatible. It is precisely this restriction that makes type abstraction effective,
by preventing any access to the definition of the type being abstracted.

414 Chapter 14 : Programming with Modules

Modules and Information Hiding

This section shows additional examples of signature constraints hiding or abstracting
definitions of structure components.

Hiding Type Implementations

Abstracting over a type ensures that the only way to construct values of this type
is via the functions exported from its definition module. This can be used to restrict
the values that can belong to this type. In the following example, we implement an
abstract type of integers which, by construction, can never take the value 0.
module Int Star =

(struct

type t = int

exception Isnul

let of int = function 0 → raise Isnul | n → n

let mult = (*)

end

:

sig

type t

exception Isnul

val of int : int → t

val mult : t → t → t

end

) ; ;
module Int_Star :

sig type t exception Isnul val of_int : int -> t val mult : t -> t -> t end

Hiding Values

We now define a symbol generator, similar to that of page 103, using a signature
constraint to hide the state of the generator.

We first define the signature GENSYM exporting only two functions for generating sym-
bols.
module type GENSYM =

sig

val reset : unit → unit

val next : string → string

end ; ;

We then implement this signature as follows:
module Gensym : GENSYM =

struct

let c = ref 0

let reset () = c:=0

let next s = incr c ; s ^ (string of int !c)

The Module Language 415

end; ;
module Gensym : GENSYM

The reference c holding the state of the generator Gensym is not accessible outside the
two exported functions.
Gensym.reset () ; ;
- : unit = ()

Gensym.next "T"; ;
- : string = "T1"

Gensym.next "X"; ;
- : string = "X2"

Gensym.reset () ; ;
- : unit = ()

Gensym.next "U"; ;
- : string = "U1"

Gensym.c; ;
Characters 0-8:

Unbound value Gensym.c

The definition of c is essentially local to the structure Gensym, since it is hidden by
the associated signature. The signature constraint achieves more simply the same goal
as the local definition of a reference in the definition of the two functions reset s and
new s on page 103.

Multiple Views of a Module

The module language and its signature constraints support taking several views of
a given structure. For instance, we can have a “super-user interface” for the module
Gensym, allowing the symbol counter to be reset, and a “normal user interface” that
permits only the generation of new symbols, but no other intervention on the counter.
To implement the latter interface, it suffices to declare the signature:
module type USER GENSYM =

sig

val next : string → string

end; ;
module type USER_GENSYM = sig val next : string -> string end

We then implement it by a mere signature constraint.
module UserGensym = (Gensym : USER GENSYM) ; ;
module UserGensym : USER_GENSYM

UserGensym.next "U" ; ;
- : string = "U2"

UserGensym.reset () ; ;
Characters 0-16:

Unbound value UserGensym.reset

416 Chapter 14 : Programming with Modules

The UserGensym module fully reuses the code of the Gensym module. In addition, both
modules share the same counter:
Gensym.next "U" ; ;
- : string = "U3"

Gensym.reset () ; ;
- : unit = ()

UserGensym.next "V" ; ;
- : string = "V1"

Type Sharing between Modules

As we saw on page 411, abstract types with different names are incompatible. This
can be problematic when we wish to share an abstract type between several modules.
There are two ways to achieve this sharing: one is via a special sharing construct in
the module language; the other one uses the lexical scoping of modules.

Sharing via Constraints

The following example illustrates the sharing issue. We define a module M providing an
abstract type M.t. We then restrict M on two different signatures exporting different
subsets of operations.
module M =

(

struct

type t = int ref

let create () = ref 0

let add x = incr x

let get x = if !x>0 then (decr x; 1) else failwith "Empty"

end

:

sig

type t

val create : unit → t

val add : t → unit

val get : t → int

end

) ; ;

module type S1 =

sig

type t

val create : unit → t

val add : t → unit

end ; ;

module type S2 =

sig

type t

The Module Language 417

val get : t → int

end ; ;
module M1 = (M:S1) ; ;
module M1 : S1

module M2 = (M:S2) ; ;
module M2 : S2

As written above, the types M1.t and M2.t are incompatible. However, we would like
to say that both types are abstract but identical. To do this, Objective Caml offers
special syntax to declare a type equality over an abstract type in a signature.

Syntax : NAME with type t1 = t2 and . . .

This type constraint forces the type t1 declared in the signature NAME to be equal to
the type t2.

Type constraints over all types exported by a sub-module can be declared in one
operation with the syntax

Syntax : NAME with module Name1 = Name2

Using these type sharing constraints, we can declare that the two modules M1 and M2
define identical abstract types.
module M1 = (M:S1 with type t = M.t) ; ;
module M1 : sig type t = M.t val create : unit -> t val add : t -> unit end

module M2 = (M:S2 with type t = M.t) ; ;
module M2 : sig type t = M.t val get : t -> int end

let x = M1.create () in M1.add x ; M2.get x ; ;
- : int = 1

Sharing and Nested Modules

Another possibility for ensuring type sharing is to use nested modules. We define two
sub-modules (M1 et M2) sharing an abstract type defined in the enclosing module M.
module M =

(struct

type t = int ref

module M hide =

struct

let create () = ref 0

let add x = incr x

let get x = if !x>0 then (decr x; 1) else failwith "Empty"

end

module M1 = M hide

module M2 = M hide

end

:

sig

type t

418 Chapter 14 : Programming with Modules

module M1 : sig val create : unit → t val add : t → unit end

module M2 : sig val get : t → int end

end) ; ;
module M :

sig

type t

module M1 : sig val create : unit -> t val add : t -> unit end

module M2 : sig val get : t -> int end

end

As desired, values created by M1 can be operated upon by M2, while hiding the repre-
sentation of these values.
let x = M.M1.create () ; ;
val x : M.t = <abstr>

M.M1.add x ; M.M2.get x ; ;
- : int = 1

This solution is heavier than the previous solution based on type sharing constraints:
the functions from M1 and M2 can only be accessed via the enclosing module M.

Extending Simple Modules

Modules are closed entities, defined once and for all. In particular, once an abstract
type is defined using the module language, it is impossible to add further operations
on the abstract type that depend on the type representation without modifying the
module definition itself. (Operations derived from existing operations can of course
be added later, outside the module.) As an extreme example, if the module exports
no creation function, clients of the module will never be able to create values of the
abstract type!

Therefore, adding new operations that depend on the type representation requires
editing the sources of the module and adding the desired operations in its signature and
structure. Of course, we then get a different module, and clients need to be recompiled.
However, if the modifications performed on the module signature did not affect the
components of the original signature, the remainder of the program remains correct
and does not need to be modified, just recompiled.

Parameterized Modules

Parameterized modules are to modules what functions are to base values. Just like a
function returns a new value from the values of its parameters, a parameterized module
builds a new module from the modules given as parameters. Parameterized modules
are also called functors.

The addition of functors to the module language increases the opportunities for code
reuse in structures.

Functors are defined using a function-like syntax:

Parameterized Modules 419

Syntax : functor (Name : signature) –> structure

module Couple = functor (Q : sig type t end) →
struct type couple = Q.t * Q.t end ; ;

module Couple :

functor(Q : sig type t end) -> sig type couple = Q.t * Q.t end

As for functions, syntactic sugar is provided for defining and naming a functor:

Syntax : module Name1 (Name2 : signature) = structure

module Couple (Q : sig type t end) = struct type couple = Q.t * Q.t end ; ;
module Couple :

functor(Q : sig type t end) -> sig type couple = Q.t * Q.t end

A functor can take several parameters:

Syntax :

functor (Name1 : signature1) –>
...

functor (Namen : signaturen) –>
structure

The syntactic sugar for defining and naming a functor extends to multiple-argument
functors:

Syntax : module Name (Name1 : signature1) . . . (Namen : signaturen) =

structure

The application of a functor to its arguments is written thus:

Syntax : module Name = functor (structure1) . . . (structuren)

Note that each parameter is written between parentheses. The result of the application
can be either a simple module or a partially applied functor, depending on the number
of parameters of the functor.

Warning
There is no equivalent to functors at the level of signa-
ture: it is not possible to build a signature by applica-
tion of a “functorial signature” to other signatures.

A closed functor is a functor that does not reference any module except its parameters.
Such a closed functor makes its communications with other modules entirely explicit.
This provides maximal reusability, since the modules it references are determined at
application time only. There is a strong parallel between a closed function (without
free variables) and a closed functor.

420 Chapter 14 : Programming with Modules

Functors and Code Reuse

The Objective Caml standard library provides three modules defining functors. Two
of them take as argument a module implementing a totally ordered data type, that is,
a module with the following signature:
module type OrderedType =

sig

type t

val compare: t → t → int

end ; ;
module type OrderedType = sig type t val compare : t -> t -> int end

Function compare takes two arguments of type t and returns a negative integer if the
first is less than the second, zero if both are equal, and a positive integer if the first is
greater than the second. Here is an example of totally ordered type: pairs of integers
equipped with lexicographic ordering.

module OrderedIntPair =

struct

type t = int * int

let compare (x1,x2) (y1,y2) =

if x1 < y1 then -1

else if x1 > y1 then 1

else if x2 < y2 then -1

else if x2 > y2 then 1

else 0

end ; ;
module OrderedIntPair :

sig type t = int * int val compare : ’a * ’b -> ’a * ’b -> int end

The functor Make from module Map returns a module that implements association tables
whose keys are values of the ordered type passed as argument. This module provides
operations similar to the operations on association lists from module List, but using
a more efficient and more complex data structure (balanced binary trees).

module AssocIntPair = Map.Make (OrderedIntPair) ; ;
module AssocIntPair :

sig

type key = OrderedIntPair.t

and ’a t = ’a Map.Make(OrderedIntPair).t

val empty : ’a t

val add : key -> ’a -> ’a t -> ’a t

val find : key -> ’a t -> ’a

val remove : key -> ’a t -> ’a t

val mem : key -> ’a t -> bool

val iter : (key -> ’a -> unit) -> ’a t -> unit

val map : (’a -> ’b) -> ’a t -> ’b t

val fold : (key -> ’a -> ’b -> ’b) -> ’a t -> ’b -> ’b

Parameterized Modules 421

end

The Make functor allows to construct association tables over any key type for which
we can write a compare function.

The standard library module Set also provides a functor named Make taking an ordered
type as argument and returning a module implementing sets of sets of values of this
type.
module SetIntPair = Set.Make (OrderedIntPair) ; ;
module SetIntPair :

sig

type elt = OrderedIntPair.t

and t = Set.Make(OrderedIntPair).t

val empty : t

val is_empty : t -> bool

val mem : elt -> t -> bool

val add : elt -> t -> t

val singleton : elt -> t

val remove : elt -> t -> t

val union : t -> t -> t

val inter : t -> t -> t

val diff : t -> t -> t

val compare : t -> t -> int

val equal : t -> t -> bool

val subset : t -> t -> bool

val iter : (elt -> unit) -> t -> unit

val fold : (elt -> ’a -> ’a) -> t -> ’a -> ’a

val cardinal : t -> int

val elements : t -> elt list

val min_elt : t -> elt

val max_elt : t -> elt

val choose : t -> elt

end

The type SetIntPair.t is the type of sets of integer pairs, with all the usual set
operations provided in SetIntPair, including a set comparison function SetIntPair.-
compare. To illustrate the code reuse made possible by functors, we now build sets of
sets of integer pairs.
module SetofSet = Set.Make (SetIntPair) ; ;

let x = SetIntPair.singleton (1,2) ; ; (* x = { (1,2) } *)

val x : SetIntPair.t = <abstr>

let y = SetofSet.singleton SetIntPair.empty ; ; (* y = { {} } *)

val y : SetofSet.t = <abstr>

let z = SetofSet.add x y ; ; (* z = { {(1,2)} ; {} } *)

val z : SetofSet.t = <abstr>

The Make functor from module Hashtbl is similar to that from the Map module, but
implements (imperative) hash tables instead of (purely functional) balanced trees. The

422 Chapter 14 : Programming with Modules

argument to Hashtbl.Make is slightly different: in addition to the type of the keys for
the hash table, it must provide an equality function testing the equality of two keys
(instead of a full-fledged comparison function), plus a hash function, that is, a function
associating integers to keys.

module type HashedType =

sig

type t

val equal: t → t → bool

val hash: t → int

end ; ;
module type HashedType =

sig type t val equal : t -> t -> bool val hash : t -> int end

module IntMod13 =

struct

type t = int

let equal = (=)

let hash x = x mod 13

end ; ;
module IntMod13 :

sig type t = int val equal : ’a -> ’a -> bool val hash : int -> int end

module TblInt = Hashtbl.Make (IntMod13) ; ;
module TblInt :

sig

type key = IntMod13.t

and ’a t = ’a Hashtbl.Make(IntMod13).t

val create : int -> ’a t

val clear : ’a t -> unit

val add : ’a t -> key -> ’a -> unit

val remove : ’a t -> key -> unit

val find : ’a t -> key -> ’a

val find_all : ’a t -> key -> ’a list

val mem : ’a t -> key -> bool

val iter : (key -> ’a -> unit) -> ’a t -> unit

end

Local Module Definitions

The Objective Caml core language allows a module to be defined locally to an expres-
sion.

Syntax : let module Name = structure
in expr

For instance, we can use the Set module locally to write a sort function over integer
lists, by inserting each list element into a set and finally converting the set to the sorted
list of its elements.
let sort l =

Extended Example: Managing Bank Accounts 423

let module M =

struct

type t = int

let compare x y =

if x < y then -1 else if x > y then 1 else 0

end

in

let module MSet = Set.Make(M)

in MSet.elements (List.fold right MSet.add l MSet.empty) ; ;
val sort : int list -> int list = <fun>

sort [5 ; 3 ; 8 ; 7 ; 2 ; 6 ; 1 ; 4] ; ;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8]

Objective Caml does not allow a value to escape a let module expression if the type
of the value is not known outside the scope of the expression.
let test =

let module Foo =

struct

type t

let id x = (x:t)

end

in Foo.id ; ;
Characters 15-101:

This ‘let module’ expression has type Foo.t -> Foo.t

In this type, the locally bound module name Foo escapes its scope

Extended Example: Managing Bank

Accounts

We conclude this chapter by an example illustrating the main aspects of modular
programming: type abstraction, multiple views of a module, and functor-based code
reuse.

The goal of this example is to provide two modules for managing a bank account. One
is intended to be used by the bank, and the other by the customer. The approach is
to implement a general-purpose parameterized functor providing all the needed oper-
ations, then apply it twice to the correct parameters, constraining it by the signature
corresponding to its final user: the bank or the customer.

Organization of the Program

The two end modules BManager and CManager are obtained by constraining the module
Manager. The latter is obtained by applying the functor FManager to the modules

424 Chapter 14 : Programming with Modules

Date

BManager CManager

Manager

FManager Account
FStatement

FLog

Figure 14.1: Modules dependency graph.

Account, Date and two additional modules built by application of the functors FLog
and FStatement. Figure 14.1 illustrates these dependencies.

Signatures for the Module Parameters

The module for account management is parameterized by four other modules, whose
signatures we now detail.

The bank account. This module provides the basic operations on the contents of
the account.
module type ACCOUNT = sig

type t

exception BadOperation

val create : float → float → t

val deposit : float → t → unit

val withdraw : float → t → unit

val balance : t → float

end ; ;

This set of functions provide the minimal operations on an account. The creation
operation takes as arguments the initial balance and the maximal overdraft allowed.
Excessive withdrawals may raise the BadOperation exception.

Ordered keys. Operations are recorded in an operation log described in the next
paragraph. Each log entry is identified by a key. Key management functions are de-
scribed by the following signature:
module type OKEY =

Extended Example: Managing Bank Accounts 425

sig

type t

val create : unit → t

val of string : string → t

val to string : t → string

val eq : t → t → bool

val lt : t → t → bool

val gt : t → t → bool

end ; ;

The create function returns a new, unique key. The functions of string and to string
convert between keys and character strings. The three remaining functions are key com-
parison functions.

History. Logs of operations performed on an account are represented by the following
abstract types and functions:
module type LOG =

sig

type tkey

type tinfo

type t

val create : unit → t

val add : tkey → tinfo → t → unit

val nth : int → t → tkey*tinfo

val get : (tkey → bool) → t → (tkey*tinfo) list

end ; ;

We keep unspecified for now the types of the log keys (type tkey) and of the associated
data (type tinfo), as well as the data structure for storing logs (type t). We assume
that new informations added with the add function are kept in sequence. Two access
functions are provided: access by position in the log (function nth) and access following
a search predicate on keys (function get).

Account statements. The last parameter of the manager module provides two
functions for editing a statement for an account:
module type STATEMENT =

sig

type tdata

type tinfo

val editB : tdata → tinfo

val editC : tdata → tinfo

end ; ;

We leave abstract the type of data to process (tdata) as well as the type of informations
extracted from the data (tinfo).

426 Chapter 14 : Programming with Modules

The Parameterized Module for Managing Accounts

Using only the information provided by the signatures above, we now define the general-
purpose functor for managing accounts.
module FManager =

functor (C:ACCOUNT) →
functor (K:OKEY) →
functor (L:LOG with type tkey=K.t and type tinfo=float) →
functor (S:STATEMENT with type tdata=L.t and type tinfo

= (L.tkey*L.tinfo) list) →
struct

type t = { accnt : C.t; log : L.t }
let create s d = { accnt = C.create s d; log = L.create () }
let deposit s g =

C.deposit s g.accnt ; L.add (K.create ()) s g.log

let withdraw s g =

C.withdraw s g.accnt ; L.add (K.create ()) (-.s) g.log

let balance g = C.balance g.accnt

let statement edit g =

let f (d,i) = (K.to string d) ^ ":" ^ (string of float i)

in List.map f (edit g.log)

let statementB = statement S.editB

let statementC = statement S.editC

end ; ;
module FManager :

functor(C : ACCOUNT) ->

functor(K : OKEY) ->

functor

(L : sig

type tkey = K.t

and tinfo = float

and t

val create : unit -> t

val add : tkey -> tinfo -> t -> unit

val nth : int -> t -> tkey * tinfo

val get : (tkey -> bool) -> t -> (tkey * tinfo) list

end) ->

functor

(S : sig

type tdata = L.t

and tinfo = (L.tkey * L.tinfo) list

val editB : tdata -> tinfo

val editC : tdata -> tinfo

end) ->

sig

type t = { accnt: C.t; log: L.t }

val create : float -> float -> t

val deposit : L.tinfo -> t -> unit

val withdraw : float -> t -> unit

val balance : t -> float

val statement : (L.t -> (K.t * float) list) -> t -> string list

val statementB : t -> string list

Extended Example: Managing Bank Accounts 427

val statementC : t -> string list

end

Sharing between types. The type constraint over the parameter L of the FManager
functor indicates that the keys of the log are those provided by the K parameter, and
that the informations stored in the log are floating-point numbers (the transaction
amounts). The type constraint over the S parameter indicates that the informations
contained in the statement come from the log (the L parameter). The signature inferred
for the FManager functor reflects the type sharing constraints in the inferred signatures
for the functor parameters.

The type t in the result of FManager is a pair of an account (C.t) and its transaction
log.

Operations. All operations defined in this functor are defined in terms of lower-level
functions provided by the module parameters. The creation, deposit and withdrawal
operations affect the contents of the account and add an entry in its transaction log.
The other functions return the account balance and edit statements.

Implementing the Parameters

Before building the end modules, we must first implement the parameters to the
FManager module.

Accounts. The data structure for an account is composed of a float representing
the current balance, plus the maximum overdraft allowed. The latter is used to check
withdrawals.
module Account:ACCOUNT =

struct

type t = { mutable balance:float; overdraft:float }
exception BadOperation

let create b o = { balance=b; overdraft=(-. o) }
let deposit s c = c.balance <- c.balance +. s

let balance c = c.balance

let withdraw s c =

let ss = c.balance -. s in

if ss < c.overdraft then raise BadOperation

else c.balance <- ss

end ; ;
module Account : ACCOUNT

428 Chapter 14 : Programming with Modules

Choosing log keys. We decide that keys for transaction logs should be the date of
the transaction, expressed as a floating-point number as returned by the time function
from module Unix.
module Date:OKEY =

struct

type t = float

let create () = Unix.time ()
let of string = float of string

let to string = string of float

let eq = (=)

let lt = (<)

let gt = (>)

end ; ;
module Date : OKEY

The log. The transaction log depends on a particular choice of log keys. Hence we
define logs as a functor parameterized by a key structure.
module FLog (K:OKEY) =

struct

type tkey = K.t

type tinfo = float

type t = { mutable contents : (tkey*tinfo) list }
let create () = { contents = [] }
let add c i l = l.contents <- (c,i) :: l.contents

let nth i l = List.nth l.contents i

let get f l = List.filter (fun (c,_) → (f c)) l.contents

end ; ;
module FLog :

functor(K : OKEY) ->

sig

type tkey = K.t

and tinfo = float

and t = { mutable contents: (tkey * tinfo) list }

val create : unit -> t

val add : tkey -> tinfo -> t -> unit

val nth : int -> t -> tkey * tinfo

val get : (tkey -> bool) -> t -> (tkey * tinfo) list

end

Notice that the type of informations stored in log entries must be consistent with the
type used in the account manager functor.

Statements. We define two functions for editing statements. The first (editB) lists
the five most recent transactions, and is intended for the bank; the second (editC) lists
all transactions performed during the last 10 days, and is intended for the customer.

module FStatement (K:OKEY) (L:LOG with type tkey=K.t) =

Extended Example: Managing Bank Accounts 429

struct

type tdata = L.t

type tinfo = (L.tkey*L.tinfo) list

let editB h =

List.map (fun i → L.nth i h) [0;1;2;3;4]
let editC h =

let c0 = K.of string (string of float ((Unix.time ()) -. 864000.)) in

let f = K.lt c0 in

L.get f h

end ; ;
module FStatement :

functor(K : OKEY) ->

functor

(L : sig

type tkey = K.t

and tinfo

and t

val create : unit -> t

val add : tkey -> tinfo -> t -> unit

val nth : int -> t -> tkey * tinfo

val get : (tkey -> bool) -> t -> (tkey * tinfo) list

end) ->

sig

type tdata = L.t

and tinfo = (L.tkey * L.tinfo) list

val editB : L.t -> (L.tkey * L.tinfo) list

val editC : L.t -> (L.tkey * L.tinfo) list

end

In order to define the 10-day statement, we need to know exactly the implementation of
keys as floats. This arguably goes against the principles of type abstraction. However,
the key corresponding to ten days ago is obtained from its string representation by
calling the K.of string function, instead of directly computing the internal represen-
tation of this date. (Our example is probably too simple to make this subtle distinction
obvious.)

End modules. To build the modules MBank and MCustomer, for use by the bank and
the customer respectively, we proceed as follows:

1. define a common “account manager” structure by application of the FManager
functor;

2. declare two signatures listing only the functions accessible to the bank or to the
customer;

3. constrain the structure obtained in 1 with the signatures declared in 2.

module Manager =

FManager (Account)

(Date)

430 Chapter 14 : Programming with Modules

(FLog(Date))

(FStatement (Date) (FLog(Date))) ; ;
module Manager :

sig

type t =

FManager(Account)(Date)(FLog(Date))(FStatement(Date)(FLog(Date))).t =

{ accnt: Account.t;

log: FLog(Date).t }

val create : float -> float -> t

val deposit : FLog(Date).tinfo -> t -> unit

val withdraw : float -> t -> unit

val balance : t -> float

val statement :

(FLog(Date).t -> (Date.t * float) list) -> t -> string list

val statementB : t -> string list

val statementC : t -> string list

end

module type MANAGER BANK =

sig

type t

val create : float → float → t

val deposit : float → t → unit

val withdraw : float → t → unit

val balance : t → float

val statementB : t → string list

end ; ;

module MBank = (Manager:MANAGER BANK with type t=Manager.t) ; ;
module MBank :

sig

type t = Manager.t

val create : float -> float -> t

val deposit : float -> t -> unit

val withdraw : float -> t -> unit

val balance : t -> float

val statementB : t -> string list

end

module type MANAGER CUSTOMER =

sig

type t

val deposit : float → t → unit

val withdraw : float → t → unit

val balance : t → float

val statementC : t → string list

end ; ;

module MCustomer = (Manager:MANAGER CUSTOMER with type t=Manager.t) ; ;
module MCustomer :

sig

type t = Manager.t

Exercises 431

val deposit : float -> t -> unit

val withdraw : float -> t -> unit

val balance : t -> float

val statementC : t -> string list

end

In order for accounts created by the bank to be usable by clients, we added the type
constraint on Manager.t in the definition of the MBank and MCustomer structures, to
ensure that their t type components are compatible.

Exercises

Association Lists

In this first simple exercise, we will implement a polymorphic abstract type for associ-
ation lists, and present two different views of the implementation.

1. Define a signature ALIST declaring an abstract type with two type parameters
(one for the keys, the other for the associated values), a creation function, an
add function, a lookup function, a membership test, and a deletion function. The
interface should be functional, i.e. without in-place modifications of the abstract
type.

2. Define a module Alist implementing the signature ALIST

3. Define a signature ADM ALIST for “administrators” of association lists. Adminis-
trators can only create association lists, and add or remove entries from a list.

4. Define a signature USER ALIST for “users” of association lists. Users can only
perform lookups and membership tests.

5. Define two modules AdmAlist and UserAlist for administrators and for users.
Keep in mind that users must be able to access lists created by administrators.

Parameterized Vectors

This exercise illustrates the genericity and code reuse abilities of parameterized mod-
ules. We will define a functor for manipulating two-dimensional vectors (pairs of (x, y)
coordinates) that can be instantiated with different types for the coordinates.

Numbers have the following signature:
module type NUMBER =

sig

type a

type t

val create : a → t

val add : t → t → t

val string of : t → string

432 Chapter 14 : Programming with Modules

end ; ;

1. Define the functor FVector, parameterized by a module of signature NUMBER,
and defining a type t of two-dimensional vectors over these numbers, a creation
function, an addition function, and a conversion to strings.

2. Define a signature VECTOR, without parameters, where the types of numbers and
vectors are abstract.

3. Define three structures Rational, Float et Complex implementing the signature
NUMBER.

4. Use these structures to define (by functor application) three modules for vectors
of rationals, reals and complex.

Lexical Trees

This exercise follows up on the lexical trees introduced in chapter 2, page 63. The goal
is to define a generic module for handling lexical trees, parameterized by an abstract
type of words.

1. Define the signature WORD defining an abstract type alpha for letters of the
alphabet, and another abstract type t for words on this alphabet. Declare also
the empty word, the conversion from an alphabet letter to a one-letter word, the
accessor to a letter of a word, the sub-word operation, the length of a word, and
word concatenation.

2. Define the functor LexTree, parameterized by a module implementing WORD, that
defines (as a function of the types and operations over words) the type of lexical
trees and functions exists, insert et select similar to those from chapter 2,
page 63.

3. Define the module Chars implementing the WORD signature for the types alpha

= char and t = string. Use it to obtain a module CharDict implementing
dictionaries whose keys are character strings.

Summary

In this chapter, we introduced all the facilities that the Objective Caml module lan-
guage offers, in particular parameterized modules.

As all module systems, it reflects the duality between interfaces and implementations,
here presented as a duality between signatures and structures. Signatures allow hiding
information about type, value or exception definitions.

By hiding type representation, we can make certain types abstract, ensuring that val-
ues of these types can only be manipulated through the operations provided in the
module signature. We saw how to exploit this mechanism to facilitate sharing of values
hidden in closures, and to offer multiple views of a given implementation. In the latter

To Learn More 433

case, explicit type sharing annotations are sometimes necessary to achieve the desired
behavior.

Parameterized modules, also called functors, go one step beyond and support code reuse
through simple mechanisms similar to function abstraction and function application.

To Learn More

Other examples of modules and functors can be found in chapter 4 of the Objective
Caml manual.

The underlying theory and the type checking for modules can be found in a number
of research articles and course notes by Xavier Leroy, at

Link: http://cristal.inria.fr/˜xleroy

The Objective Caml module system follows the same principles as that of its cousin the
SML language. Chapter 22 compares these two languages in more details and provides
bibliographical references for the interested reader.

Other languages feature advanced module systems, in particular Modula-3 (2 and 3),
and ADA. They support the definition of modules parameterized by types and values.

434 Chapter 14 : Programming with Modules

