This chapter illustrates program structure via two examples: the first uses a modular model; the second, an object model.

The first application provides a set of parametric modules for two player games. A functor implements the minimax-α/β algorithm for the evaluation of a search tree. A second functor allows modifying the human/machine interface for the game. These parametric modules are then applied to two games: a vertical tic-tac-toe game, and another involving the construction of mystic ley-lines.

The second application constructs a world where robots evolve. The world and robots are structured as classes. The different behaviors of robots are obtained by inheritance from a common abstract class. It is then easy to define new behaviors. There, too, the human/machine interface may be modified.

Each of the applications, in its structure, contains reusable components. It is easy to construct a new two player game with different rules that uses the same base classes. Similarly, the general mechanism for the motion of robots in a world may be applied to new types of robots.

Two Player Games

The application presented in this section pursues two objectives. On the one hand, it seeks to resolve problems related to the complexity in searching state spaces, as well as showing that Objective Caml provides useful tools for dealing with symbolic applications. On the other hand, it also explores the benefits of using parametric modules to define a generic scheme for constructing two player games, providing the ability to factor out one part of the search, and making it easy to customize components such as functions for evaluating or displaying a game position.
We first present the problem of games involving two players, then describe the minimax-\(\alpha\beta\) algorithm which provides an efficient search of the tree of possible moves. We present a parametric model for two player games. Then, we apply these functors to implement two games: “Connect Four” (a vertical tic-tac-toe), and Stonehenge (a game that involves constructing ley-lines).

The Problem of Two Player Games

Games involving two players represent one of the classic applications of symbolic programming and provide a good example of problem solving for at least two reasons:

- The large number of solutions to be analyzed to obtain the best possible move necessitates using methods other than brute force. For instance, in the game of chess, the number of possible moves typically is around 30, and a game often involves around 40 moves per player. This would require a search tree of around \(30^{40}\) positions just to explore the complete tree for one player.
- The quality of a solution is easily verifiable. In particular, it is possible to test the quality of a proposed solution from one program by comparing it to that of another.

First, assume that we are able to explore the total list of all possible moves, given, as a starting point, a specific legal game position. Such a program will require a function to generate legal moves based on a starting position, as well as a function to evaluate some “score” for each resulting position. The evaluation function must give a maximum score to a winning position, and a minimal score to a losing position. After picking an initial position, one may then construct a tree of all possible variations, where each node corresponds to a position, the adjacent siblings are obtained by having played a move and with leaves having positions indicating winning, losing, or null results. Once the tree is constructed, its exploration permits determining if there exists a route leading to victory, or a null position, failing that. The shortest path may then be chosen to attain the desired goal.

As the overall size of such a tree is generally too large for it to be fully represented, it is typically necessary to limit what portions of the tree are constructed. A first strategy is to limit the “depth” of the search, that is, the number of moves and responses that are to be evaluated. One thus reduces the breadth of the tree as well as its height. In such cases, leaf nodes will seldom be found until nearly the end of the game.

On the other hand, we may try to limit the number of moves selected for additional evaluation. For this, we try to avoid evaluating any but the most favorable moves, and start by examining the moves that appear to be the very best. This immediately eliminates entire branches of the tree. This leads to the minimax \(\alpha\beta\) algorithm presented in the next subsection.
Minimax $\alpha \beta$

We present the minimax search and describe a variant optimized using $\alpha \beta$ cuts. The implementation of this algorithm uses a parametric module, $\textit{FAlphabeta}$ along with a representation of the game and its evaluation function. We distinguish between the two players by naming them A and B.

Minimax

The minimax algorithm is a depth-first search algorithm with a limit on the depth to which search is done. It requires:

- a function to generate legal moves based on a position, and
- a function to evaluate a game position.

Starting with some initial game position, the algorithm explores the tree of all legal moves down to the requested depth. Scores associated with leaves of the tree are calculated using an evaluation function. A positive score indicates a good position for player A, while a negative score indicates a poor position for player A, and thus a good position for player B. For each player, the transition from one position to another is either maximized (for player A) or minimized (for player B). Each player tries to select his moves in a manner that will be most profitable for him. In searching for the best play for player A, a search of depth 1 tries to determine the immediate move that maximizes the score of the new position.

![Diagram of a game tree with maximizing search at a given location.](image)

Figure 17.1: Maximizing search at a given location.

In figure 17.1, player A starts at position O, finds four legal moves, constructs these new configurations, and evaluates them. Based on these scores, the best position is P2, with a score of 8. This value is propagated to position O, indicating that this position provides a move to a new position, giving a score of 8 when the player moves to C2. The search of depth 1 is, as a general rule, insufficient, as it does not consider the possible response of an adversary. Such a shallow search results in programs that search greedily for immediate material gains (such as the prize of a queen, in chess) without perceiving that the pieces are protected or that the position is otherwise a losing one (such as a gambit of trading one’s queen for a mate). A deeper exploration to depth 2 permits perceiving at least the simplest such countermoves.
Figure 17.2 displays a supplementary analysis of the tree that takes into consideration the possible responses of player B. This search considers B’s best moves. For this, the \textit{minimax} algorithm minimizes scores of depth 2.

Move P2, which provided an immediate position score of 8, leads to a position with a score of -3. In effect, if B plays D5, then the score of Q5 will be -3. Based on this deeper examination, the move C1 limits the losses with a score of -1, and is thus the preferred move.

In most games, it is possible to try to confuse the adversary, making him play forced moves, trying to muddle the situation in the hope that he will make a mistake. A shallow search of depth 2 would be completely inadequate for this sort of tactic. These sorts of strategies are rarely able to be well exploited by a program because it has no particular vision as to the likely evolution of the positions towards the end of the game.

The difficulty of increased depth of search comes in the form of a combinatorial “explosion.” For example, with chess, the exploration of two additional levels adds a factor of around a thousand times more combinations (30×30). Thus, if one searches to a depth of 10, one obtains around 5^{14} positions, which represents too much to search. For this reason, you must try to somehow trim the search tree.

One may note in figure 17.2 that it may be useless to search the branch P3 insofar as the score of this position at depth 1 is poorer than that found in branch P1. In addition the branch P4 does not need to be completely explored. Based on the calculation of Q7, one obtains a score inferior to that of P1, which has already been completely explored. The calculations for Q8 and Q9 cannot improve this situation even if their scores are better than Q7. In a minimizing mode, the poorest score is dropped. The player knows then that these branches provide no useful new options. The minimax variant $\alpha\beta$ uses this approach to decrease the number of branches that must be explored.
Minimax-αβ

We call the α cut the *lower limit* of a maximizing node, and cut β the *upper limit* of a minimizing node. Figure 17.3 shows the cuts carried out in branches P3 and P4 based on knowing the lower limit -1 of P1.

![Figure 17.3: Limit α to one level max-min.](image)

As soon as the tree gets broader or deeper the number of cuts increases, thus indicating large subtrees.

A Parametric Module for $\alpha\beta$ Minimax

We want to produce a parametric module, $F_{\text{Alphabeta}}$, implementing this algorithm, which will be generically reusable for all sorts of two player games. The parameters correspond, on the one hand, to all the information about the proceedings of moves in the game, and on the other hand, to the evaluation function.

Interfaces. We declare two signatures: REPRESENTATION to represent plays; and EVAL to evaluate a position.

```ocaml
# module type REPRESENTATION =
  sig
  type game
  type move
  val game_start : unit -> game
  val legal_moves: bool -> game -> move list
  val play: bool -> move -> game -> game
  end ::
module type REPRESENTATION =
  sig
  type game
  and move
  val game_start : unit -> game
```


Types `game` and `move` represent abstract types. A player is represented by a boolean value. The function `legal_moves` takes a player and position, and returns the list of possible moves. The function `play` takes a player, a move, and a position, and returns a new position. The values `moreI` and `lessI` are the limits of the values returned by function `evaluate`. The predicate `is_leaf` verifies if a player in a given position can play. The predicate `is_stable` indicates whether the position for the player represents a stable position. The results of these functions influence the pursuit of the exploration of moves when one attains the specified depth.

The signature `ALPHABETA` corresponds to the signature resulting from the complete application of the parametric module that one wishes to use. These hide the different auxiliary functions that we use to implement the algorithm.
The function \texttt{alphabeta} takes as parameters the depth of the search, the player, and the game position, returning the next move.

We then define the functional signature \texttt{FALPHABETA} which must correspond to that of the implementation of the functor.

\begin{verbatim}
module type FALPHABETA = functor (Rep : REPRESENTATION) ->
 functor (Eval : sig
type game = Rep.game
 val evaluate : bool -> game -> int
 val moreI : int
 val lessI : int
 val is_leaf : bool -> game -> bool
 val is_stable : bool -> game -> bool
 type state = | G | P | N | C
 val state_of : bool -> game -> state
end) ->
sig
 type game = Rep.game
 and move = Rep.move
 val alphabeta : int -> bool -> game -> move
end
\end{verbatim}

\textbf{Implementation.} The parametric module \texttt{FAlphabetaO} makes explicit the partition of the type \texttt{game} between the two parameters \texttt{Rep} and \texttt{Eval}. This module has six functions and two exceptions. The player \texttt{true} searches to maximize the score while the player \texttt{false} seeks to minimize the score. The function \texttt{maxmin_iter} calculates the maximum of the best score for the branches based on a move of player \texttt{true} and the pruning parameter \texttt{α}.

The function \texttt{maxmin} takes four parameters: \texttt{depth}, which indicates the actual calculation depth, \texttt{node}, a game position, and \texttt{α} and \texttt{β}, the pruning parameters. If the node is a leaf of the tree or if the maximum depth is reached, the function will return its evaluation of the position. If this is not the case, the function applies \texttt{maxmin_iter} to all of the legal moves of player \texttt{true}, passing it the search function, diminishing the depth remaining (\texttt{minmax}). The latter searches to minimize the score resulting from the response of player \texttt{false}.

The movements are implemented using exceptions. If the move \texttt{β} is found in the iteration across the legal moves from the function \texttt{maxmin}, then it is returned immediately, the value being propagated using an exception. The functions \texttt{minmax_iter} and \texttt{minmax} provide the equivalents for the other player. The function \texttt{search} determines the move to play based on the best score found in the lists of scores and moves.
The principal function `alphabeta` of this module calculates the legal moves from a given position for the requested player, searches down to the requested depth, and returns the best move.

```plaintext
# module FAlphabetaO
(Rep : REPRESENTATION) (Eval : EVAL with type game = Rep.game) =
  struct
    type game = Rep.game
    type move = Rep.move
  exception AlphaMovement of int
  exception BetaMovement of int

  let maxmin_iter node minmax_cur beta alpha cp =
    let alpha_resu =
      max alpha (minmax_cur (Rep.play true cp node) beta alpha)
    in if alpha_resu >= beta then raise (BetaMovement alpha_resu) else alpha_resu

  let minmax_iter node maxmin_cur alpha beta cp =
    let beta_resu =
      min beta (maxmin_cur (Rep.play false cp node) alpha beta)
    in if beta_resu <= alpha then raise (AlphaMovement beta_resu) else beta_resu

  let rec maxmin depth node alpha beta =
    if (depth < 1 & Eval.is_stable true node) then Eval.evaluate true node
    else try let prev = maxmin_iter node (minmax (depth - 1)) beta
             in List.fold_left prev alpha (Rep.legal_moves true node)
             with BetaMovement a → a
    and minmax depth node beta alpha =
    if (depth < 1 & Eval.is_stable false node) then Eval.evaluate false node
    else try let prev = minmax_iter node (maxmin (depth - 1)) alpha
             in List.fold_left prev beta (Rep.legal_moves false node)
             with AlphaMovement b → b

  let rec search a l1 l2 = match (l1, l2) with
    (h1::q1, h2::q2) → if a = h1 then h2 else search a q1 q2
    | ([] , []) → failwith "AB: "(string_of_int a)" not found"
    | (_, _ ) → failwith "AB: length differs"

  let alphabeta depth player level =
    let alpha = ref Eval.lessI and beta = ref Eval.moreI in
    let l = ref [] in
    let cpl = Rep.legal_moves player level in
```

Chapter 17 : Applications
let eval = try
 for i = 0 to (List.length cpl) - 1 do
 if player then
 let b = Rep.play player (List.nth cpl i) level in
 let a = minmax (depth-1) b !beta !alpha in
 l := a :: !l ;
 alpha := max !alpha a ;
 (if !alpha >= !beta then raise (BetaMovement !alpha))
 else
 let a = Rep.play player (List.nth cpl i) level in
 let b = maxmin (depth-1) a !alpha !beta in
 l := b :: !l ;
 beta := min !beta b ;
 (if !beta <= !alpha then raise (AlphaMovement !beta))
 done ;
 if player then !alpha else !beta with
 BetaMovement a → a
 | AlphaMovement b → b
 in
 l := List.rev !l ;
 search eval !l cpl
end ::;
module FAlphabetaO :
 functor(Rep : REPRESENTATION) ->
 functor (Eval : sig
 type game = Rep.game
 val evaluate : bool -> game -> int
 val moreI : int
 val lessI : int
 val is_leaf : bool -> game -> bool
 val is_stable : bool -> game -> bool
 type state = | G | P | N | C
 val state_of : bool -> game -> state
 end) ->
sig
 type game = Rep.game
 and move = Rep.move
 exception AlphaMovement of int
 exception BetaMovement of int
 val maxmin_iter :
 Rep.game ->
 (Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int
 val minmax_iter :
 Rep.game ->
 (Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int
 val maxmin : int -> Eval.game -> int -> int -> int
 val minmax : int -> Eval.game -> int -> int -> int
 val search : int -> int list -> 'a list -> 'a
We may close module `FAlphabetaO` by associating with it the following signature:

```ocaml
# module FAlphabeta = (FAlphabetaO : FALPHABETA) ;;
module FAlphabeta : FALPHABETA
```

This latter module may be used with many different game representations and functions to play different games.

Organization of a Game Program

The organization of a program for a two player game may be separated into a portion specific to the game in question as well as a portion applicable to all sorts of games. For this, we propose using several parametric modules parameterized by specific modules, permitting us to avoid the need to rewrite the common portions each time. Figure 17.4 shows the chosen organization.

![Organization of a game application diagram](image)

The modules with no highlighting correspond to the common parts of the application. These are the parametric modules. We see again the functor `FAlphabeta`. The modules with gray highlighting are the modules designed specifically for a given game. The three principal modules are the representation of the game (`J_Repr`), display of the game (`J_Dis`), and the evaluation function (`J_Eval`). The modules with rounded gray borders are obtained by applying the parametric modules to the simple modules specific to the game.
The module `FAlphabeta` has already been described. The two other common modules are `FMain`, containing the main loop, and `FSkeleton`, that manages the players.

Module FMain

Module `FMain` contains the main loop for execution of a game program. It is parameterized using the signature module `SKELETON`, describing the interaction with a player using the following definition:

```ocaml
# module type SKELETON = sig
  val home : unit -> unit
  val init : unit -> ((unit -> unit) * (unit -> unit))
  val again : unit -> bool
  val exit : unit -> unit
  val won : unit -> unit
  val lost : unit -> unit
  val nil : unit -> unit
exception Won
exception Lost
exception Nil
end
;;
module type SKELETON = sig
  val home : unit -> unit
  val init : unit -> (unit -> unit) * (unit -> unit)
  val again : unit -> bool
  val exit : unit -> unit
  val won : unit -> unit
  val lost : unit -> unit
  val nil : unit -> unit
exception Won
exception Lost
exception Nil
end
```

The function `init` constructs a pair of action functions for each player. The other functions control the interactions. Module `FMain` contains two functions: `play_game` which alternates between the players, and `main` which controls the main loop.

```ocaml
# module FMain (P : SKELETON) =
struct
  let play_game movements = while true do
    (fst movements) () ;
    (snd movements) ()
  done

  let main () = let finished = ref false
               in P.home () ;
               while not !finished do
                 (try play_game (P.init ())
                  with P.Won → P.won ()
                  ```
Module FSkeleton

Parametric module FSkeleton controls the moves of each player according to the rules provided at the start of the section based on the nature of the players (automated or not) and the order of the players. It needs various parameters to represent the game, game states, the evaluation function, and the αβ search as described in figure 17.4.

We start with the signature needed for game display.

```plaintext
# module type DISPLAY = sig
  type game
  and move
  val home : unit -> unit
  val exit : unit -> unit
  val won : unit -> unit
  val lost : unit -> unit
  val nil : unit -> unit
  val init : unit -> unit
  val position : bool -> move -> game -> game -> unit
  val choice : bool -> game -> move
  val q_player : unit -> bool
  val q_begin : unit -> bool
  val q_continue : unit -> bool
end ;;
module type DISPLAY =
  sig
  type game
  and move
  val home : unit -> unit
  val exit : unit -> unit
  val won : unit -> unit
  val lost : unit -> unit
  val nil : unit -> unit
  val init : unit -> unit
  val position : bool -> move -> game -> game -> unit
  val choice : bool -> game -> move
  val q_player : unit -> bool
end
```
Two Player Games

It is worth noting that the representation of the game and of the moves must be shared by all the parametric modules, which constrain the types. The two principal functions are playH and playM, respectively controlling the move of a human player (using the function Disp.choice) and that of an automated player. The function init determines the nature of the players and the sorts of responses for Disp.q_player.

module FSkeleton
(Rep : REPRESENTATION)
 (Disp : DISPLAY with type game = Rep.game and type move = Rep.move)
 (Eval : EVAL with type game = Rep.game)
 (Alpha : ALPHABETA with type game = Rep.game and type move = Rep.move) =
struct
 let depth = ref 4
 exception Won
 exception Lost
 exception Nil
 let won = Disp.won
 let lost = Disp.lost
 let nil = Disp.nil
 let again = Disp.q_continue
 let play_game = ref (Rep.game_start())
 let exit = Disp.exit
 let home = Disp.home

let playH player () =
 let choice = Disp.choice player !play_game in
 let old_game = !play_game
 in play_game := Rep.play player choice !play_game ;
 Disp.position player choice old_game !play_game ;
 match Eval.state of player !play_game with
 Eval.P -> raise Lost
 | Eval.G -> raise Won
 | Eval.N -> raise Nil
 | _ -> ()

let playM player () =
 let choice = Alpha.alphabeta !depth player !play_game in
 let old_game = !play_game
 in play_game := Rep.play player choice !play_game ;
 Disp.position player choice old_game !play_game ;
 match Eval.state of player !play_game with
 Eval.G -> raise Won
 | Eval.P -> raise Lost
 | Eval.N -> raise Nil
 | _ -> ()
Chapter 17: Applications

let init () =
 let a = Disp.q_player () in
 let b = Disp.q_player () in
 play_game := Rep.game_start ();
 Disp.init ();
 match (a, b) with
 true, true → playM true, playM false
 | true, false → playM true, playH false
 | false, true → playH true, playM false
 | false, false → playH true, playH false

end ;;
module FSkeleton : functor(Rep : REPRESENTATION) ->
 functor (Disp : sig
 type game = Rep.game
 and move = Rep.move
 val home : unit -> unit
 val exit : unit -> unit
 val won : unit -> unit
 val lost : unit -> unit
 val nil : unit -> unit
 val init : unit -> unit
 val position : bool -> move -> game -> game -> unit
 val choice : bool -> game -> move
 val q_player : unit -> bool
 val q_begin : unit -> bool
 val q_continue : unit -> bool
 end) ->
 functor (Eval : sig
 type game = Rep.game
 val evaluate : bool -> game -> int
 val moreI : int
 val lessI : int
 val is_leaf : bool -> game -> bool
 val is_stable : bool -> game -> bool
 type state = | G | P | N | C
 val state_of : bool -> game -> state
 end) ->
 functor (Alpha : sig
 type game = Rep.game
 and move = Rep.move
 val alphabeta : int -> bool -> game -> move
 end) ->
 sig
 val depth : int ref
 exception Won
 exception Lost
 exception Nil
 val won : unit -> unit
The independent parts of the game are thus implemented. One may then begin programming different sorts of games. This modular organization facilitates making modifications to the movement scheme or to the evaluation function for a game as we shall soon see.

Connect Four

We will next examine a simple game, a vertical tic-tac-toe, known as Connect Four. The game is represented by seven columns each consisting of six lines. In turn, a player places on a column a piece of his color, where it then falls down to the lowest free location in this column. If a column is completely filled, neither player is permitted to play there. The game ends when one of the players has built a line of four pieces in a row (horizontal, vertical, or diagonal), at which point this player has won, or when all the columns are filled with pieces, in which the outcome is a draw. Figure 17.5 shows a completed game.

![An example of Connect Four.](image)

Note the “winning” line of four gray pieces in a diagonal, going down and to the right.
Game Representation: module C4_rep. We choose for this game a matrix-based representation. Each element of the matrix is either empty, or contains a player’s piece. A move is numbered by the column. The legal moves are the columns in which the final (top) row is not filled.

```plaintext
# module C4_rep = struct
  type cell = A | B | Empty
  type game = cell array array
  type move = int
  let col = 7 and row = 6
  let game_start () = Array.create_matrix row col Empty

  let legal_moves b m =
    let l = ref [] in
    for c = 0 to col-1 do if m.(row-1).(c) = Empty then l := (c+1) :: !l done;
    !l

  let augment mat c =
    let l = ref row in
    while !l > 0 & mat.(!l-1).(c-1) = Empty do decr l done; !l + 1

  let player_gen cp m e =
    let mj = Array.map Array.copy m
    in mj.((augment mj cp)-1).(cp-1) <- e : mj

  let play b cp m = if b then player_gen cp m A else player_gen cp m B
end ;;
module C4_rep :
  sig
    type cell = | A | B | Empty
    and game = cell array array
    and move = int
    val col : int
    val row : int
    val game_start : unit -> cell array array
    val legal_moves : 'a -> cell array array -> int list
    val augment : cell array array -> int -> int
    val player_gen : int -> cell array array -> cell -> cell array array
    val play : bool -> int -> cell array array -> cell array array
  end

We may easily verify if this module accepts the constraints of the signature REPRESENTATION.

# module C4_rep_T = (C4_rep : REPRESENTATION) ;;
module C4_rep_T : REPRESENTATION
Game Display: Module C4_text. Module C4_text describes a text-based interface for the game Connect Four that is compatible with the signature DISPLAY. It is not particularly sophisticated, but, nonetheless, demonstrates how modules are assembled together.

```
module C4_text = struct
 open C4_rep
 type game = C4_rep.game
 type move = C4_rep.move

 let print_game mat =
 for l = row - 1 downto 0 do
 for c = 0 to col - 1 do
 match mat.(l).(c) with
 A → print_string "X ",
 B → print_string "O ",
 Empty → print_string ". ",
 done;
 done;
 print_newline ();
 done;

 let home () = print_string "C4 ...
";
 let exit () = print_string "Bye for now ...
"

 let question s =
 print_string s;
 print_string " y/n ? ";
 read_line() = "y"

 let g.begin () = question "Would you like to begin?"
 let g.continue () = question "Play again?"
 let g.player () = question "Is there to be a machine player ?"

 let won () = print_string "The first player won" ;
 let lost () = print_string "The first player lost" ;
 let nil () = print_string "Stalemate" ;

 let init () =
 print_string "X: 1st player O: 2nd player"
 ;
 print_newline ();
 print_newline ();
 print_newline ();
 print_game (game_start ());

 let position b c aj j = print_game j

 let is_move = function '1'..'7' → true | _ → false

exception Move of int

 let rec choice player game =
 print_string ("Choose player" ^ (if player then "1" else "2") ^ " : ");
 let i = legal_moves player game
 in try while true do
 let i = read_line()
```
We may immediately verify that this conforms to the constraints of the signature DISPLAY

module C4_text :
sig
  type game = C4_rep.game
  and move = C4_rep.move
  val print_game : C4_rep.cell array array -> unit
  val home : unit -> unit
  val exit : unit -> unit
  val question : string -> bool
  val q_begin : unit -> bool
  val q_continue : unit -> bool
  val q_player : unit -> bool
  val won : unit -> unit
  val lost : unit -> unit
  val nil : unit -> unit
  val init : unit -> unit
  val position : 'a -> 'b -> 'c -> C4_rep.cell array array -> unit
  val is_move : char -> bool
  exception Move of int
  val choice : bool -> C4_rep.cell array array -> int
end

Evaluation Function: module C4_eval. The quality of a game player depends primarily on the position evaluation function. Module C4_eval defines evaluate, which evaluates the value of a position for the specified player. This function calls eval_bloc for the four compass directions as well as the diagonals. eval_bloc then calls eval_four to calculate the number of pieces in the requested line. Table value provides the value of a block containing 0, 1, 2, or 3 pieces of the same color. The exception Four is raised when 4 pieces are aligned.

module C4_eval = struct
  open C4_rep
  type game = C4_rep.game
  let value =
    Array.of_list [0; 2; 10; 50]
  exception Four of int
exception Nil_Value
exception Arg_invalid
let lessI = -10000
let moreI = 10000
let eval_four m l dep delta_l delta_c =
let n = ref 0 and e = ref Empty
and z = ref c_dep and y = ref l_dep
in try
    for i = 1 to 4 do
        if !(y < 0) or !(y >= row) or !(x < 0) or !(x >= col) then raise Arg_invalid;
        (match m.(!(y).(!(x)) with
        A → if !e = B then raise Nil_Value;
            incr n;
            if !n = 4 then raise (Four moreI);
            e := A
        | B → if !e = A then raise Nil_Value;
            incr n;
            if !n = 4 then raise (Four lessI);
            e := B;
        | Empty → () );
        x := !x + delta_c;
        y := !y + delta_l
    done;
    value.(!n) * (if !e = A then 1 else -1)
with Nil_Value | Arg_invalid → 0

let eval_bloc m e cmin cmax lmin lmax dx dy =
    for c=cmin to cmax do for l=lmin to lmax do
        e := !e + eval_four m l c dx dy
    done done

let evaluate b m =
    try let evaluation = ref 0
    in (* evaluation of rows *)
        eval_bloc m evaluation 0 (row-1) 0 (col-4) 0 1 ;
        (* evaluation of columns *)
        eval_bloc m evaluation 0 (col-1) 0 (row-4) 1 0 ;
        (* diagonals coming from the first line (to the right) *)
        eval_bloc m evaluation 0 (col-4) 0 (row-4) 1 1 ;
        (* diagonals coming from the first line (to the left) *)
        eval_bloc m evaluation 1 (row-4) 0 (col-4) 1 1 ;
        (* diagonals coming from the last line (to the right) *)
        eval_bloc m evaluation 3 (col-1) 0 (row-4) 1 (-1) ;
        (* diagonals coming from the last line (to the left) *)
        eval_bloc m evaluation 1 (row-4) 3 (col-1) 1 (-1) ;
        !evaluation
    with Four v → v

let is_leaf b m = let v = evaluate b m
    in v=moreI or v=lessI or legal_moves b m = []
let is_stable b j = true

type state = G | P | N | C

let state_of player m =
  let v = evaluate player m
  in if v = moreI then if player then G else P
  else if v = lessI then if player then P else G
  else if legal_moves player m = [] then N else C
end ;;

module C4_eval : sig
  type game = C4_rep.game
  val value : int array
  exception Four of int
  exception Nil_Value
  exception Arg_invalid
  val lessI : int
  val moreI : int
  val eval_four : C4_rep.cell array array -> int -> int -> int -> int
  val eval_bloc : C4_rep.cell array array ->
    int ref -> int -> int -> int -> int -> int
    -> unit
  val evaluate : 'a -> C4_rep.cell array array -> int
  val is_leaf : 'a -> C4_rep.cell array array -> bool
  val is_stable : 'a -> 'b -> bool
  type state = | G | P | N | C
  val state_of : bool -> C4_rep.cell array array -> state
end

Module C4_eval is compatible with the constraints of signature EVAL.

# module C4_eval_T = (C4_eval : EVAL) ;;

module C4_eval_T : EVAL

To play two evaluation functions against one another, it is necessary to modify evaluate to apply the proper evaluation function for each player.

Assembly of the modules All the components needed to realize the game of Connect Four are now implemented. We only need assemble them together based on the schema of diagram 17.4. First, we construct C4_skeleton, which is the application of parameter module FSkeleton to modules C4_rep, C4_text, C4_eval and the result of the application of parametric module FAlphaBeta to C4_rep and C4_eval.

# module C4_skeleton =
We then obtain the principal module \texttt{C4\_main} by applying parametric module \texttt{FMain} on the result of the preceding application \texttt{C4\_skeleton}.

```
module C4_main = FMain(C4_skeleton) ;;
module C4_main :
 sig
 val play_game : (unit -> 'a) * (unit -> 'b) -> unit
 val main : unit -> unit
 end
```

The game is initiated by the application of function \texttt{C4\_main.main} on ()

\textbf{Testing the Game.} Once the general game skeleton has been written, games may be played in various ways. Two human players may play against each other, with the program merely verifying the validity of the moves; a person may play against a programmed player; or programs may play against each other. While this last mode might not be interesting for the human, it does make it easy to run tests without having to wait for a person's responses. The following game demonstrates this scenario.

```
C4_main.main () ;;
C4 ...
Is there to be a machine player? y/n? y
Is there to be a machine player? y/n? y
X: 1st player O: 2nd player

.
.
.
.
.
.
.
```
Once the initial position is played, player 1 (controlled by the program) calculates its move which is then applied.

Player 2 (always controlled by the program) calculates its response and the game proceeds, until a game-ending move is found. In this example, player 1 wins the game based on the following final position:

```
 . X X X . X .
 X O O X . O .
 X X X O . X .
 X O O X X O .
 X O O O X X O
```

Player 1 wins

Play again(y/n) ? n

Good-bye ...

- : unit = ()

Graphical Interface. To improve the enjoyment of the game, we define a graphical interface for the program, by defining a new module, C4_graph, compatible with the signature DISPLAY, which opens a graphical window, controlled by mouse clicks. The text of this module may be found in the subdirectory Applications on the CD-ROM (see page 1).

```ml
module C4_graph = struct
 open C4_rep
 type game = C4_rep.game
 type move = C4_rep.move
 let r = 20 (* color of piece *)
 let ec = 10 (* distance between pieces *)
 let dec = 30 (* center of first piece *)
 let cote = 2*r + ec (* height of a piece looked at like a checker *)
 let htexte = 25 (* where to place text *)
 let width = col * cote + ec (* width of the window *)
 let height = row * cote + ec + htexte (* height of the window *)
```
let height_of_game = row * cote + ec (* height of game space *)
let hec = height_of_game + 7 (* line for messages *)
let lec = 3 (* columns for messages *)
let margin = 4 (* margin for buttons *)
let xbl = width / 2 (* position x of button1 *)
let xbr = xbl + 30 (* position x of button2 *)
let yb = hec - margin (* position y of the buttons *)
let wb = 25 (* width of the buttons *)
let hb = 16 (* height of the buttons *)

(* Convert a matrix coordinate into a graphical coordinate *)
let t2e i = dec + (i-1)*cote

(* The Colors *)
let cN = Graphics.black (* trace *)
let cA = Graphics.red (* Human player *)
let cB = Graphics.yellow (* Machine player *)
let cF = Graphics.blue (* Game Background color *)

(* val draw_table : unit -> unit : Trace an empty table *)
let draw_table () =
  Graphics.clear_graph();
  Graphics.set_color cF;
  Graphics.fill_rect 0 0 width height_of_game;
  Graphics.set_color cN;
  Graphics.moveto 0 height_of_game;
  Graphics.lineto width height_of_game;
  for l = 1 to row do
    for c = 1 to col do
      Graphics.draw_circle (t2e c) (t2e l) r
    done
  done

(* val draw_piece : int -> int -> Graphics.color -> unit *)
(* 'draw_piece l c co' draws a piece of color co at coordinates l c *)
let draw_piece l c col =
  Graphics.set_color col;
  Graphics.fill_circle (t2e c) (t2e l) (r+1)

(* val augment : Rep.item array array -> int -> Rep.move *)
(* 'augment m c' redoes the line or drops the piece for c in m *)
let augment mat c =
  let l = ref row in
  while !l > 0 & mat.(!l-1).(c-1) = Empty do
    decr l
  done;
  !l

(* val conv : Graphics.status -> int *)
(* convert the region where player has clicked in controlling the game *)
let conv st =
(st.Graphics.mouse_x - 5) / 50 + 1

(* val wait_click : unit -> Graphics.status *)
(* wait for a mouse click *)
let wait_click () = Graphics.wait_next_event [Graphics.Button_down]

(* val choice : Rep.game -> Rep.move *)
(* give opportunity to the human player to choose a move *)
(* the function offers possible moves *)
let rec choice player game =
  let c = ref 0 in
  while not (List.mem !c (legal_moves player game)) do
    c := conv (wait_click())
  done;
  !c

(* val home : unit -> unit : home screen *)
let home () =
  Graphics.open_graph
  ("\"" ^ (string_of_int width) ^ "x" ^ (string_of_int height) ^ "+50+50")
  Graphics.moveto (height/2) (width/2); Graphics.set_color cF;
  Graphics.draw_string "C4";
  Graphics.set_color cN;
  Graphics.moveto 2 2;
  Graphics.draw_string "by Romuald COEFFIER & Mathieu DESPIERRE";
  ignore (wait_click ());
  Graphics.clear_graph()

(* val end : unit -> unit , the end of the game *)
let exit () = Graphics.close_graph()

(* val draw_button : int -> int -> int -> int -> string -> unit *)
(* 'draw_button x y w h s' draws a rectangular button at coordinates *)
(* x,y with width w and height h and appearance s *)
let draw_button x y w h s =
  Graphics.set_color cN;
  Graphics.moveto x y;
  Graphics.lineto x (y+h);
  Graphics.lineto (x+w) (y+h);
  Graphics.lineto (x+w) y;
  Graphics.lineto x y;
  Graphics.moveto (x+margin) (hec);
  Graphics.draw_string s

(* val draw_message : string -> unit * position message s *)
let draw_message s =
  Graphics.set_color cN;
  Graphics.moveto lec hec;
  Graphics.draw_string s

(* val erase_message : unit -> unit erace the starting position *)
let erase_message () =
  Graphics.set_color Graphics.white;
  Graphics.fill_rect 0 (height_of_game+1) width htexte

(* val question : string -> bool *)
(* 'question s' poses the question s, the response being obtained by *)
(* selecting one of two buttons, 'yes' (=true) and 'no' (=false) *)
let question s =
  let rec attente () =
    let e = wait_click () in
    if (e.Graphics.mouse_y < (yb+hb)) \&\& (e.Graphics.mouse_y > yb) then
      if (e.Graphics.mouse_x > xb1) \&\& (e.Graphics.mouse_x < (xb1+wb)) then
        true
      else
        if (e.Graphics.mouse_x > xb2) \&\& (e.Graphics.mouse_x < (xb2+wb)) then
          false
        else
          attente()
    else
      attente () in
    draw_message s;
    draw_button xb1 yb wb hb "yes";
    draw_button xb2 yb wb hb "no";
    attente()

(* val q_begin : unit -> bool *)
(* Ask, using function 'question', if the player wishes to start *)
(* (yes=true) *)
let q_begin () =
  let b = question "Would you like to begin ?" in
  erase_message();
  b

(* val q_continue : unit -> bool *)
(* Ask, using function 'question', if the player wishes to play again *)
(* (yes=true) *)
let q_continue () =
  let b = question "Play again ?" in
  erase_message();
  b

let q_player () =
  let b = question "Is there to be a machine player?" in
  erase_message();
  b

(* val won : unit -> unit *)
(* val lost : unit -> unit *)
(* val nil : unit -> unit *)
(* Three functions for these three cases *)
let won () =
  draw_message "I won :-)"); ignore (wait_click ());
  erase_message()
let lost () =
  draw_message "You won :-("; ignore (wait_click ()); erase_message()
let nil () =
  draw_message "Stalemate"; ignore (wait_click ()); erase_message()

(* This is called at every start of the game for the position *)
let init = draw_table

let position b c aj nj =
  if b then
    draw_piece (augment nj c) cA
  else
    draw_piece (augment nj c) cB

module C4_graph :
sig
  type game = C4_rep.game
  and move = C4_rep.move
  val r : int
  val ec : int
  val dec : int
  val cote : int
  val htexte : int
  val width : int
  val height : int
  val height_of_game : int
  val hec : int
  val lec : int
  val margin : int
  val xb1 : int
  val xb2 : int
  val yb : int
  val wb : int
  val hb : int
  val t2e : int -> int
  val cN : Graphics.color
  val cA : Graphics.color
  val cB : Graphics.color
  val cF : Graphics.color
  val draw_table : unit -> unit
  val draw_piece : int -> int -> Graphics.color -> unit
  val augment : C4_rep.cell array array -> int -> int
  val conv : Graphics.status -> int
We may also create a new skeleton \((\text{C4\_skeletonG})\) which results from the application of parametric module \(\text{FSkeleton}\).

\[
\text{module C4\_skeletonG} = \text{FSkeleton (C4\_rep) (C4\_graph) (C4\_eval) (FAlphabeta (C4\_rep) (C4\_eval))};
\]

Only the display parameter differs from the text version application of \(\text{FSkeleton}\). We may thereby create a principal module for Connect Four with a graphical user interface.

\[
\text{module C4\_mainG} = \text{FMain(C4\_skeletonG) }\;; \text{ module C4\_mainG : sig}
\]
\[
\text{val play\_game : (unit -> 'a) * (unit -> 'b) -> unit}
\]
\[
\text{val main : unit -> unit}
\]

The evaluation of the expression \(\text{C4\_mainG.main}\) opens a graphical window as in figure 17.5 and controls the interaction with the user.

**Stonehenge**

Stonehenge, created by Reiner Knizia, is a game involving construction of “ley-lines.” The rules are simple to understand but our interest in the game lies in its high number of possible moves. The rules may be found at:
The initial game position is represented in figure 17.6.

**Game Presentation**

The purpose of the game is to win at least 8 “ley-lines” (clear lines) out of the 15 available. One gains a line by positioning pieces (or megaliths) on gray positions along a ley-line.

In turn, each player places one of his 9 pieces, numbered from 1 to 6, on one of the 18 gray internal positions. They may not place a piece on a position that is already occupied. Each time a piece is placed, one or several ley-lines may be won or lost.

A ley-line is won by a player if the total of the values of his pieces on the line is greater than the total of the pieces for the other player. There may be empty spaces left if the opponent has no pieces left that would allow winning the line.

For example in figure 17.7, the black player starts by placing the piece of value 3, the red player his “2” piece, then the black player plays the “6” piece, winning a line.

Red then plays the “4” piece, also winning a ley-line. This line has not been completely filled, but red has won because there is no way for black to overcome red’s score.
Note that the red player might just as well have played “3” rather than “4,” and still won the line. In effect, there is only one free case for this ley-line where the strongest black piece has a value of 5, and so black cannot beat red for this particular line.

In the case where the scores are equal across a full line, whoever placed the last piece without having beaten his adversary’s score, loses the line. Figure 17.8 demonstrates such a situation.

The last red move is piece “4”. On the full line where the “4” is placed, the scores are equal. Since red was the last player to have placed a piece, but did not beat his adversary, red loses the line, as indicated by a black block.

We may observe that the function play fills the role of arbitrating and accounting for these subtleties in the placement of lines.

There can never be a tie in this game. There are 15 lines, each of which will be accounted for at some point in the game, at which point one of the players will have won at least 8 lines.

**Search Complexity**

Before completely implementing a new game, it is important to estimate the number of legal moves between two moves in a game, as well as the number of possible moves.
for each side. These values may be used to estimate a reasonable maximum depth for the minimax-$\alpha\beta$ algorithm.

In the game Stonehenge, the number of moves for each side is initially based on the number of pieces for the two players, that is, 18. The number of possible moves diminishes as the game progresses. At the first move, the player has 6 different pieces and 18 positions free. At the second move, the second player has 6 different pieces, and 17 positions in which they may be placed (102 legal moves). Moving from a depth of 2 to 4 for the initial moves of the game results in the number of choices going from about $10^4$ to about $10^8$.

On the other hand, near the end of the game, in the final 8 moves, the complexity is greatly reduced. If we take a pessimistic calculation (where all pieces are different), we obtain about 23 million possibilities:

$$4 \times 8 \times 4 \times 7 \times 3 \times 6 \times 3 \times 2 \times 4 \times 2 \times 3 \times 1 \times 2 \times 1 \times 1 = 23224320$$

It might seem appropriate to calculate with a depth of around 2 for the initial set of moves. This may depend on the evaluation function, and on its ability to evaluate the positions at the start of the game, when there are few pieces in place. On the other
hand, near the end of the game, the depth may readily be increased to around 4 or 6, but this would probably be too late a point to recover from a weak position.

**Implementation**

We jump straight into describing the game representation and arbitration so that we may concentrate on the evaluation function.

The implementation of this game follows the architecture used for Connect Four, described in figure 17.4. The two principal difficulties will be to follow the game rules for the placement of pieces, and the evaluation function, which must be able to evaluate positions as quickly as possible while remaining useful.

**Game Representation.** There are four notable data structures in this game:

- the pieces of the players (type `piece`),
- the positions (type `placement`),
- the 15 ley-lines,
- the 18 locations where pieces may be placed.

We provide a unique number for each location:

```
1---2
 / \ / \
3---4---5
 / \ / \ /
6---7---8---9
 / \ / \ / /
10---11---12---13---14 \
 / \ / \ / / /
15---16---17---18
```

Each location participates in 3 ley-lines. We also number each ley-line. This description may be found in the declaration of the list `lines`, which is converted to a vector (`vector_1`). A location is either empty, or contains a piece that has been placed, and the piece’s possessor. We also store, for each location, the number of the lines that pass through it. This table is calculated by `lines_per_case` and is named `num_line_per_case`.

The game is represented by the vector of 18 cases, the vector of 15 ley-lines either won or not, and the lists of pieces left for the two players. The function `game_start` creates these four elements.

The calculation of a player’s legal moves resolves into a Cartesian product of the pieces available against the free positions. Various utility functions allow counting the score of a player on a line, calculating the number of empty locations on a line, and verifying
if a line has already been won. We only need to implement play which plays a move and decides which pieces to place. We write this function at the end of the listing of module Stone_rep.

```ocaml
module Stone_rep = struct
 type player = bool
 type piece = P of int
 let int_of_piece = function P x -> x
 type placement = None | M of player
 let value_on_case = function
 Empty -> 0
 | Occup (j, x) -> int_of_piece x

 type move = int * piece

 let lines = [
 [0;1]; [2;3;4]; [5; 6; 7; 8]; [9; 10; 11; 12; 13]; [14; 15; 16; 17];
 [0; 2; 5; 9]; [1; 3; 6; 10; 14]; [4; 7; 11; 15]; [8; 12; 16]; [13; 17];
 [9; 14]; [5; 10; 15]; [2; 6; 11; 16]; [0; 3; 7; 12; 17]; [1; 4; 8; 13]]

 let vector_l = Array.of_list lines

 let lines_per_case v =
 let t = Array.length v in
 let r = Array.create 18 [| |] in
 for i = 0 to 17 do
 let w = Array.create 3 0
 and p = ref 0 in
 for j=0 to t-1 do if List.mem i v.(j) then (w.(!p) <- j; incr p)
 done; r.(i) <- w
 done; r

 let num_line_per_case = lines_per_case vector_l
 let rec lines_of_i i l = List.filter (fun t -> List.mem i t) l

 let lines_of_cases l =
 let a = Array.create 18 l in
 for i=0 to 17 do
 a.(i) <- (lines_of_i i l)
 done; a

 let ldc = lines_of_cases lines

 let game_start ()= let lp = [6; 5; 4; 3; 3; 2; 2; 1; 1] in
 J (Array.create 18 Empty, Array.create 15 None,
 List.map (fun x -> P x) lp, List.map (fun x -> P x) lp)

 let rec unicity l = match l with
```
let legal_moves player (J (ca, m, r1, r2)) =
  let r = if player then r1 else r2 in
  if r = [] then []
  else
    let l = ref [] in
    for i = 0 to 17 do
      if value_on_case ca.(i) = 0 then l := i :: !l
    done;
    let l2 = List.map (fun x -> List.map (fun y -> x, y) (List.rev(unicity r))) !l in
    List.flatten l2

let copy_board p = Array.copy p
let carn_copy m = Array.copy m
let rec play_piece stone l = match l with
  [] → []
  | x :: q → if x=stone then q
  else x :: (play_piece stone q)

let count_case player case = match case with
  Empty → 0
  | Occup (j, p) → if j = player then (int_of_piece p) else 0

let count_line player line pos =
  List.fold_left (fun x y → x + count_case player pos.(y)) 0 line

let rec count_max n = function
  [] → 0
  | t :: q →
    if (n>0) then
      (int_of_piece t) + count_max (n-1) q
    else
      0

let rec nbr_cases_free ca l = match l with
  [] → 0
  | t :: q → let c = ca.(t) in
    match c with
      Empty → 1 + nbr_cases_free ca q
    | _ → nbr_cases_free ca q

let a_placement i ma =
  match ma.(i) with
    None → false
    | _ → true

let which_placement i ma =
  match ma.(i) with
None → failwith "which_placement"
| M j → j

let is_filled l ca = nbr_cases_free ca l = 0

(* function play : arbitrates the game *)
let play player move game =
  let (c, i) = move in
  let J (p, m, r1, r2) = game in
  let nr1, nr2 = if player then play_piece i r1, r2 else r1, play_piece i r2 in
  let np = copy_board p in
  let nm = carn_copy m in
  np.(c) <- Occup(player, i); (* on play le move *)
  let lines_of_the_case = num_line_per_case.(c) in

  (* calculation of the placements of the three lines *)
  for k=0 to 2 do
    let l = lines_of_the_case.(k) in
    if not (a_placement l nm) then (
      if is_filled vector_l.(l) np then (
        let c1 = count_line player vector_l.(l) np
        and c2 = count_line (not player) vector_l.(l) np in
        if (c1 > c2) then nm.(l) <- M player
        else (if c2 > c1 then nm.(l) <- M (not player)
          else nm.(l) <- M (not player)))
    done;

  (* calculation of other placements *)
  for k=0 to 14 do
    if not (a_placement k nm) then
      if is_filled vector_l.(k) np then failwith "player"
    else
      let c1 = count_line player vector_l.(k) np
      and c2 = count_line (not player) vector_l.(k) np in
      let cases_free = nbr_cases_free np vector_l.(k) in
      let maxi = count_max cases_free
        (if player then nr1 else nr2)
      and max2 = count_max cases_free
        (if player then nr2 else nr1) in
      if c1 >= c2 + maxi then nm.(k) <- M player
      else if c2 >= c1 + max2 then nm.(k) <- M (not player)
    done;
    J(np, nm, nr1, nr2)
  done;

module Stone_rep :
  sig
    type player = bool
    and piece = | P of int
    val int_of_piece : piece -> int
    type placement = | None | M of player
    and case = | Empty | Occup of player * piece
The function `play` decomposes into three stages:

1. Copying the game position and placing a move onto this position;
2. Determination of the placement of a piece on one of the three lines of the case played;
3. Treatment of the other ley-lines.

The second stage verifies that, of the three lines passing through the position of the move, none has already been won, and then checks if they are able to be won. In the latter case, it counts scores for each player and determines which strictly has the greatest score, and attributes the line to the appropriate player. In case of equality, the line goes to the most recent player’s adversary. In effect, there are no lines with just one case. A filled line has at least two pieces. Thus if the player which just played has just matched the score of his adversary, he cannot expect to win the line which then goes to his adversary. If the line is not filled, it will be analyzed by “stage 3.”

The third stage verifies for each line not yet attributed that it is not filled, and then checks if a player cannot be beaten by his opponent. In this case, the line is immediately given to the opponent. To perform this test, it is necessary to calculate the maximum total potential score of a player on the line (that is, by using his best pieces). If the line is still under dispute, nothing more is done.
Evaluation. The evaluation function must remain simple due to the large number of cases to deal with near the beginning of the game. The idea is not to excessively simplify the game by immediately playing the strongest pieces which would then leave the remainder of the game open for the adversary to play his strong pieces.

We will use two criteria: the number of lines won and an estimate of the potential of future moves by calculating the value of the remaining pieces. We may use the following formula for player 1:

$$\text{score} = 50 \times (c_1 - c_2) + 10 \times (pr_1 - pr_2)$$

where $c_i$ is the number of lines won, and $pr_i$ is the sum of the pieces remaining for player $i$.

The formula returns a positive result if the differences between won lines $(c_1 - c_2)$ and the potentials $(pr_1 - pr_2)$ turn to the advantage of player 1. We may see thus that a placement of piece 6 is not appropriate unless it provides a win of at least 2 lines. The gain of one line provides 50, while using the “6” piece costs $10 \times 6$ points, so we would thus prefer to play “1” which results in the same score, namely a loss of 10 points.

```ocaml
module Stone_eval = struct
 open Stone_rep
 type game = Stone_rep.game

 exception Done of bool
 let moreI = 1000 and lessI = -1000

 let nbr_lines_won (J (ca, m, r1, r2)) =
 let c1, c2 = ref 0, ref 0 in
 for i=0 to 14 do
 if a_placement i m then
 if which_placement i m then incr c1 else incr c2
 done;
 !c1, !c2

 let rec nbr_points_remaining lig = match lig with
 [] → 0
 | t::q → (int_of_piece t) + nbr_points_remaining q

 let evaluate player game =
 let (J (ca, ma, r1, r2)) = game in
 let c1, c2 = nbr_lines_won game in
 let pr1, pr2 = nbr_points_remaining r1, nbr_points_remaining r2 in
 match player with
 true → if c1 > 7 then moreI else 50 * (c1 - c2) + 10 * (pr1 - pr2)
 false → if c2 > 7 then lessI else 50 * (c1 - c2) + 10 * (pr1 - pr2)

 let is_leaf player game =
 let v = evaluate player game in
 v = moreI or v = lessI or legal_moves player game = []
```
let is_stable player game = true

type state = G | P | N | C
let state_of player m =
  let v = evaluate player m in
  if v = moreI then if player then G else P else
    if v = lessI then if player then P else G else
      if legal_moves player m = [] then N else C
end:

module Stone_eval :
sig
  type game = Stone_rep.game
exception Done of bool
val moreI : int
val lessI : int
val nbr_lines_won : Stone_rep.game -> int * int
val nbr_points_remaining : Stone_rep.piece list -> int
val evaluate : bool -> Stone_rep.game -> int
val is_leaf : bool -> Stone_rep.game -> bool
val is_stable : 'a -> 'b -> bool
  type state = | G | P | N | C
val state_of : bool -> Stone_rep.game -> state
end

# module Stone_graph = struct
open Stone_rep
  type piece = Stone_rep.piece
  type placement = Stone_rep.placement
  type case = Stone_rep.case
  type game = Stone_rep.game
  type move = Stone_rep.move

(* brightness for a piece *)
  let brightness = 20

(* the colors *)
  let cBlack = Graphics.black
  let cRed = Graphics.rgb 165 43 24
  let cYellow = Graphics.yellow
  let cGreen = Graphics.rgb 31 155 33 (*Graphics.green*)
  let cWhite = Graphics.white
  let cGray = Graphics.rgb 128 128 128
  let cBlue = Graphics.rgb 196 139 25 (*Graphics.blue*)

(* width and height *)
  let width = 600
  let height = 500
(* the border at the top of the screen from which drawing begins *)
  let top_offset = 30
let bounds = 5

let virtual_table_offset = 145

let choice_black_offset = 40

let choice_red_offset = 560

let virtual_case_size = 60

let corresp cp = match cp with
                 0 → (4,1)
              | 1 → (6,1)
              | 2 → (3,2)
              | 3 → (5,2)
              | 4 → (7,2)
              | 5 → (2,3)
              | 6 → (4,3)
              | 7 → (6,3)
              | 8 → (8,3)
              | 9 → (1,4)
              | 10 → (3,4)
              | 11 → (5,4)
              | 12 → (7,4)
              | 13 → (9,4)
              | 14 → (2,5)
              | 15 → (4,5)
              | 16 → (6,5)
              | 17 → (8,5)
              | _ → (0,0)

let corresp2 ((x,y) as cp) = match cp with
                           (0,0) → 0
                        | (0,1) → 1
                        | (1,0) → 2
                        | (1,1) → 3
                        | (1,2) → 4
                        | (2,0) → 5
                        | (2,1) → 6
                        | (2,2) → 7
| (2,3) → 8 |
| (3,0) → 9 |
| (3,1) → 10 |
| (3,2) → 11 |
| (3,3) → 12 |
| (3,4) → 13 |
| (4,0) → 14 |
| (4,1) → 15 |
| (4,2) → 16 |
| (4,3) → 17 |
| (x, y) → print_string "Err "; |
| print_int x; print_string " "; |
| print_int y; print_newline() ; 0 |

let col = 5
let lig = 5

(* draw_background : unit -> unit *)
(* draw the screen background *)
let draw_background () =
  Graphics.clear_graph();
  Graphics.set_color cBlue;
  Graphics.fill_rect bounds bounds width (height-top_offset)

(* draw_places : unit -> unit *)
(* draw the pieces at the start of the game *)
let draw_places () =
  for l = 0 to 17 do
    let cp = corresp l in
    if cp <> (0,0) then
      begin
        Graphics.set_color cBlack ;
        Graphics.draw_circle
          (((fst cp)*30 + virtual_table_xoffset)
            (height - ((snd cp)*55 + 25)-50) (brightness*1) ;
        Graphics.set_color cGray ;
        Graphics.fill_circle
          (((fst cp)*30 + virtual_table_xoffset)
            (height - ((snd cp)*55 + 25)-50) brightness
      end
  done

(* draw_force_lines : unit -> unit *)
(* draws ley-lines *)
let draw_force_lines () =
  Graphics.set_color cYellow :
  let lst = [((2,1),(6,1)); ((1,2),(7,2)); ((0,3),(8,3));
            ((-1,4),(9,4)); (0,5),(8,5)); ((5,0),(1,4));
            (7,0),(2,5)); ((8,1),(4,5)); ((9,2),(6,5));
            ((10,3),(8, 5)); ((3,6),(1,4)); ((5,6),(2,3));]
let rec lines l =
    match l with
    | [] → ()
    | h::t → let deb = fst h and complete = snd h in
        Graphics.moveto ((fst deb) * 30 + virtual_table_zoffset)
        (height - ((snd deb) * 55 + 25) -50);
        Graphics.lineto ((fst complete) * 30 + virtual_table_zoffset)
        (height - ((snd complete) * 55 + 25) -50);
        lines t
    in lines lst

(* draw_final_places : unit -> unit *)
(* draws final cases for each ley-line *)
(* coordinates represent in the virtual array
used for positioning *)

let draw_final_places ()=
    let lst = [(2,1); (1,2); (0,3); (-1,4); (0,5); (3,6); (5,6);
               (7,6); (9,6); (10,5); (10,3); (9,2); (8,1); (7,0);
               (5,0)] in
    let rec final l=
        match l with
        | [] → ()
        | h::t → Graphics.set_color cBlack;
            Graphics.draw_circle ((fst h)*30 + virtual_table_zoffset)
            (height - ((snd h)*55 + 25) -50) (brightness+1);
            Graphics.set_color cGreen;
            Graphics.fill_circle ((fst h)*30 + virtual_table_zoffset)
            (height - ((snd h)*55 + 25) -50) brightness;
            final t
        in final lst

(* draw_table : unit -> unit *)
(* draws the whole game *)

let draw_table ()=
    Graphics.set_color cYellow;
    draw_background ();
    Graphics.set_line_width 5;
    draw_force_lines ();
    Graphics.set_line_width 2;
    draw_places ();
    draw_final_places ();
    Graphics.set_line_width 1

(* move -> couleur -> unit *)
let draw_piece player {n, case, P cp} = (* (n_ca0cup(c,v),cp) col =*)
  Graphics.set_color (if player then cBlack else cRed); (*col;*)
let co = corresp n, case in
let z = ((fst co)*30 + 145) and y = (height - ((snd co)*55 + 25)-50) in
Graphics.fill_circle z y brightness;
Graphics.set_color cWhite;
Graphics.moveto (x - 3) (y - 3);
let dummy = 5 in
Graphics.draw_string (string_of_int cp) (*;*)

(* conv : Graphics.status -> int *)
(* convert a mouse click into a position on a virtual table permitting *)
(* its drawing *)
let conv st =
  let xx = st.Graphics.mouse_x and yy = st.Graphics.mouse_y in
  let y = (yy+10)/virtual_case_size - 6 in
  let dec =
    if y = ((y/2)*2) then 60 else 40 in
  let offset = match (-1*y) with
    0 → -2
    | 1 → -1
    | 2 → 0
    | 4 → -1
    | _ → 12 in
  let x = (xx+dec)/virtual_case_size - 3 + offset in
    (-1*y, x)

(* line_number_to_aff : int -> int*int *)
(* convert a line number into a position on the virtual table serving *)
(* for drawing *)
(* the coordinate returned corresponds to the final case for the line *)
let line_number_to_aff n =
  match n with
    0 → (2,1)
    | 1 → (1,2)
    | 2 → (0,3)
    | 3 → (-1,4)
    | 4 → (0,5)
    | 5 → (5,0)
    | 6 → (7,0)
    | 7 → (8,1)
    | 8 → (9,2)
    | 9 → (10,3)
    | 10 → (3,6)
    | 11 → (5,6)
    | 12 → (7,6)
    | 13 → (9,6)
    | 14 → (10,5)
(* draw_lines_won : game -> unit *)
(* position a marker indicating the player which has taken the line *)
(* this is done for all lines *)
let draw_lines won l i =
  match l with
  | None -> failwith "draw"
  | M j -> let pos = line_number_to_aff i in
    (* print_string "''''
    print_int i;
    print_string "---";
    Printf.printf "%d,%d\n" (fst pos) (snd pos);
    *)
    Graphics.set_color (if j then cBlack else cRed);
    Graphics.fill_rect ((fst pos)*30 + virtual_table_xoffset-bounds)
    (height - ((snd pos)*55 + 25)-60) 20 40
  done
let draw_lines_won om nm =
  for i=0 to 14 do
    if om.(i) <> nm.(i) then drawb nm.(i) i
  done

let black_lines = Rep.lines_won_by_player mat Rep.Noir
                  and red_lines = Rep.lines_won_by_player mat Rep.Rouge
in
print_string "black : "; print_int (Rep.list_size black_lines);
print_newline () ;
print_string "red : "; print_int (Rep.list_size red_lines);
print_newline() ;

let rec draw l col =
  match l with
  | [] -> ()
  | h::t -> let pos = line_number_to_aff h in
    Graphics.set_color col ;
    Graphics.fill_rect ((fst pos)*30 + virtual_table_xoffset-bounds)
    (height - ((snd pos)*55 + 25)-60) 20 40 ;
    draw t col
    in draw black_lines cBlack ;
    draw red_lines cRed
  done

(* draw_poss : item list -> int -> unit *)
(* draw the pieces available for a player based on a list *)
(* the parameter "off" indicates the position at which to place the list *)
let draw_poss player lst off =
  let c = ref (1) in
  let rec draw l =
    match l with
    | [] -> ()
    | v::t -> if player then Graphics.set_color cBlack
      else Graphics.set_color cRed;
      let x = off   and

Two Player Games

\[ y = 0 + (\textcolor{red}{c}) \times 50 \quad \text{in} \]
\[ \text{Graphics.fill} \_\text{circle} \ x \ y \ \text{brightness} ; \]
\[ \text{Graphics.set} \_\text{color} \ c\text{White} ; \]
\[ \text{Graphics.moveto} \ (x - 3) \ (y - 3) ; \]
\[ \text{Graphics.draw} \_\text{string} \ (\text{string} \_\text{of} \_\text{int} \ v) ; \]
\[ c := \textcolor{red}{c} + 1 ; \]
\[ \text{draw} \ t \]
\[ \text{in} \ \text{draw} \ (\text{List.map} \ (\text{function} \ P \ x \ \to \ x) \ \text{lst}) \]

(* draw_choice : game -> unit *)
(* draw the list of pieces still available for each player *)
\[ \text{let} \ \text{draw} \_\text{choice} \ (J (ca, ma, r1, r2)) = \]
\[ \text{Graphics.set} \_\text{color} \ c\text{Blue} ; \]
\[ \text{Graphics.fill} \_\text{rect} \ \text{choice} \_\text{black} \_\text{offset} - 30 \ 10 \ 60 \]
\[ (\text{height} - (\text{top} \_\text{offset} + \text{bounds})) ; \]
\[ \text{Graphics.fill} \_\text{rect} \ \text{choice} \_\text{red} \_\text{offset} - 30 \ 10 \ 60 \]
\[ (\text{height} - (\text{top} \_\text{offset} + \text{bounds})) ; \]
\[ \text{draw} \_\text{poss} \ \text{true} \ r1 \ \text{choice} \_\text{black} \_\text{offset} ; \]
\[ \text{draw} \_\text{poss} \ \text{false} \ r2 \ \text{choice} \_\text{red} \_\text{offset} \]

(* wait_click : unit -> unit *)
(* wait for a mouse click *)
\[ \text{let} \ \text{wait} \_\text{click} () = \text{Graphics.wait} \_\text{next} \_\text{event} [\text{Graphics.Button.down}] \]

(* item list -> item *)
(* return, for play, the piece chosen by the user *)
\[ \text{let} \ \text{select} \_\text{pion} \ \text{pion} \ \text{player} \ \text{lst} = \]
\[ \text{let} \ \text{ok} = \text{ref} \ \text{false} \ \text{and} \]
\[ \text{choice} = \text{ref} \ 99 \ \text{and} \]
\[ \text{pion} = \text{ref} \ (P(-1)) \]
\[ \text{in} \]
\[ \text{while} \ \text{not} !\text{ok} \ \text{do} \]
\[ \text{let} \ \text{st} = \text{wait} \_\text{click} () \ \text{in} \]
\[ \text{let} \ \text{size} = \text{List} \_\text{length} \ \text{lst} \ \text{in} \]
\[ \text{let} \ z = \text{st}.\text{Graphics.mouse} \_\text{x} \ \text{and} \ y = \text{st}.\text{Graphics.mouse} \_\text{y} \ \text{in} \]
\[ \text{choice} := (y + 25)/50 - 1 ; \]
\[ \text{if} !\text{choice} <= \text{size} \&& \ (\text{player} \&& \ (z < 65)) \]
\[ \quad \|| \ (\text{not} \ \text{player}) \&& \ (z > 535)) \quad \text{then} \ \text{ok} := \text{true} \]
\[ \text{else} \ \text{ok} := \text{false} ; \]
\[ \text{if} !\text{ok} \ \text{then} \]
\[ \text{try} \]
\[ \text{pion} := \text{(List.nth} \ \text{lst}!\text{choice}) ; \]
\[ \text{Graphics.set} \_\text{color} \ c\text{Green} ; \]
\[ \text{Graphics.set} \_\text{line} \_\text{width} \ 2 ; \]
\[ \text{Graphics.draw} \_\text{circle} \]
\[ (\text{if} \ \text{player} \ \text{then} \ \text{choice} \_\text{black} \_\text{offset} \ \text{else} \ \text{choice} \_\text{red} \_\text{offset}) \]
\[ ((!\text{choice} + 1)*50) \ (\text{brightness} + 1) \]
\[ \text{with} _\rightarrow \ \text{ok} := \text{false} ; \]
\[ \text{done} ; \]
(* choiceH : game -> move *)
(* return a move for the human player.
return the choice of the number, the case, and the piece *)

let rec choice player game = match game with (J(ca,ma,r1,r2)) ->
let choice = ref (P(-1))
and c = ref (-1, P(-1)) in

let lcl = legal_moves player game in
while not (List.mem !c lcl) do
  print_newline();
  print_string "CHOICE";
  List.iter (fun (c, P p) -> print_int c; print_string " ";
            print_int p; print_string "]")
  (legal_moves player game);
  draw_choice game;
  choice := select_pion player (if player then r1 else r2);
  (* print_string "choice "; print_piece !choice;*)
  c := (corresp2 (conv (wait_click())), !choice)
  (* let (x,y) = !c in
  print_string ".
  print_string ";
  print_int x; print_string " "; print_int y; print_string " ";
  print_string "-> ";
  print_string "END_CHOICE"; print_newline())
  done;

(* home : unit -> unit *)
(* place a message about the game *)
let home () =
  Graphics.open_graph
  (" *" ^ (string_of_int (width + 10)) ^ "x" ^ (string_of_int (height + 10))
   ^ "*50+50") ;
  Graphics.moveto (height / 2) (width / 2);
  Graphics.set_color cBlue;
  Graphics.draw_string "Stonehenge";
  Graphics.set_color cBlack;
  Graphics.moveto 2 2;
  Graphics.draw_string "Mixte Projets Maîtrise & DESS GLA" ;
  wait_click () ;
  Graphics.clear_graph ()

(* exit : unit -> unit *)
(* close everything ! *)
let exit () =
  Graphics.close_graph ()

(* draw_button : int -> int -> int -> int -> string -> unit *)
(* draw a button with a message *)

let draw_button x y w h s =
  Graphics.set_line_width 1 ;
  Graphics.set_color cBlack ;
  Graphics.moveto x y ;
Two Player Games

Graphics.lineto x (y+h) ;
Graphics.lineto (x+w) (y+h) ;
Graphics.lineto (x+w) y ;
Graphics.lineto x y ;
Graphics.moveto (x+bounds) (height - (top_offset/2)) ;
Graphics.draw_string s

(* draw_message : string -> unit *)
(* position a message *)
let draw_message s =
  Graphics.set_color cBlack;
  Graphics.moveto 3 (height - (top_offset/2)) ;
  Graphics.draw_string s

(* erase_message : unit -> unit *)
(* as the name indicates *)
let erase_message () =
  Graphics.set_color Graphics.white;
  Graphics.fill_rect 0 (height-top_offset+bounds) width top_offset

(* question : string -> bool *)
(* pose the user a question, and wait for a yes/no response *)
let question s =
  let xb1 = (width/2) and xb2 = (width/2 + 30) and wb = 25 and hb = 16
  and yb = height - 20 in
  let rec attente () =
    let e = wait_click () in
    if (e.Graphics.mouse_y < (yb+hb)) & (e.Graphics.mouse_y > yb) then
      if (e.Graphics.mouse_x > xb1) & (e.Graphics.mouse_x < (xb1+wb)) then
        true
      else
        false
    else
      attente ()
    else
      attente ()
  in
draw_message s;
draw_button xb1 yb wb hb "yes";
draw_button xb2 yb wb hb "no";
attente()

(* q_begin : unit -> bool *)
(* Ask if the player wishes to be the first player or not *)
let q_begin () =
  let b = question "Would you like to play first ?" in
  erase_message();
  b

(* q_continue : unit -> bool *)
(* Ask if the user wishes to play the game again *)
let q_continue () =
  let b = question "Play again?" in
  erase_message();
  b

(* won : unit -> unit *)
(* a message indicating the machine has won *)
let won () = draw_message "I won :-)"; wait_click(); erase_message()

(* lost : unit -> unit *)
(* a message indicating the machine has lost *)
let lost () = draw_message "You won :-("; wait_click(); erase_message()

(* nil : unit -> unit *)
(* a message indicating stalemate *)
let nil () = draw_message "Stalemate"; wait_click(); erase_message()

(* init : unit -> unit *)
(* draw the initial game board *)
let init () = let game = game_start () in
draw_table ();
draw_choice game

(* drawH : move -> game -> unit *)
(* draw a piece for the human player *)
(* let drawH cp j = draw_piece cp cBlack ; draw_lines_won j *)

(* drawM : move -> game -> unit *)
(* draw a piece for the machine player *)
(* let drawM cp j = draw_piece cp cRed ; draw_lines_won j *)

let print_placement m = match m with
  None → print_string "None ";
  | M j → print_string ("P1 "^ (if j then "1 " else "2 "))

let position player move
  (J(ca1,m1,r11,r12))
  (J(ca2,m2,r21,r22) as new_game) =
draw_piece player move;
draw_choice new_game;

(* print_string "________OLD___________________\n";
Array.iter print_placement m1; print_newline();
List.iter print_piece r11; print_newline();
List.iter print_piece r12; print_newline();
print_string "________NEW___________________\n";
Array.iter print_placement m2; print_newline();
List.iter print_piece r21; print_newline();
List.iter print_piece r22; print_newline();
)

draw_lines_won m1 m2

(*
Two Player Games

if player then draw_piece move cBlack
else draw_piece move cRed
*)

let q_player () =
  let b = question "Is there a machine playing?" in
  erase_message ();
  b
end:

Characters 11114-11127:
Warning: this expression should have type unit.
Characters 13197-13209:
Warning: this expression should have type unit.
Characters 13345-13357:
Warning: this expression should have type unit.
Characters 13478-13490:
Warning: this expression should have type unit.

module Stone_graph :
  sig
    type piece = Stone_rep.piece
    and placement = Stone_rep.placement
    and case = Stone_rep.case
    and game = Stone_rep.game
    and move = Stone_rep.move
    val brightness : int
    val cBlack : Graphics.color
    val cRed : Graphics.color
    val cYellow : Graphics.color
    val cGreen : Graphics.color
    val cWhite : Graphics.color
    val cGray : Graphics.color
    val cBlue : Graphics.color
    val width : int
    val height : int
    val top_offset : int
    val bounds : int
    val virtual_table_xoffset : int
    val choice_black_offset : int
    val choice_red_offset : int
    val virtual_case_size : int
    val corresp : int -> int * int
    val corresp2 : int * int -> int
    val col : int
    val lig : int
    val draw_background : unit -> unit
    val draw_places : unit -> unit
    val draw_force_lines : unit -> unit
    val draw_final_places : unit -> unit
    val draw_table : unit -> unit
    val draw_piece : bool -> int * Stone_rep.piece -> unit
    val conv : Graphics.status -> int * int
    val line_number_to_aff : int -> int * int
    val drawb : Stone_rep.placement -> int -> unit
val draw_lines_won : Stone_rep.placement array -> Stone_rep.placement array -> unit
val draw_pos : bool -> Stone_rep.piece list -> int -> unit
val draw_choice : Stone_rep.game -> unit
val wait_click : unit -> Graphics.status
val select_pion : bool -> Stone_rep.piece list -> Stone_rep.piece
val choice : bool -> Stone_rep.game -> int * Stone_rep.piece
val home : unit -> unit
val exit : unit -> unit
val draw_button : int -> int -> int -> int -> string -> unit
val draw_message : string -> unit
val erase_message : unit -> unit
val question : string -> bool
val q_begin : unit -> bool
val q_continue : unit -> bool
val won : unit -> unit
val lost : unit -> unit
val nil : unit -> unit
val init : unit -> unit
val print_placement : Stone_rep.placement -> unit
val position : bool -> int * Stone_rep.piece -> Stone_rep.game -> Stone_rep.game -> unit
val q_player : unit -> bool

Assembly. We thus write module Stone_graph which describes a graphical interface compatible with signature DISPLAY. We construct Stone_skeletonG similar to C4_skeletonG, passing in the arguments appropriate for the Stonehenge game, applying the parametric module FSkeleton.

# module Stone_skeletonG = FSkeleton (Stone_rep)

module Stone_skeletonG : sig
val depth : int ref
exception Won
exception Lost
exception Nil
val won : unit -> unit
val lost : unit -> unit
val nil : unit -> unit
val again : unit -> bool
val play_game : Stone_graph.game ref
val exit : unit -> unit
val home : unit -> unit
val playH : bool -> unit -> unit
end
We may thus construct the principal module \texttt{Stone\_mainG}.

\begin{verbatim}
# module Stone\_mainG = FMain(Stone\_skeletonG) ;
module Stone\_mainG :
  sig
    val play\_game : (unit -> 'a) * (unit -> 'b) -> unit
    val main : unit -> unit
  end
\end{verbatim}

Launching \texttt{Stone\_mainG.main ()} opens the window shown in figure 17.6. After displaying a dialogue to show who is playing, the game begins. A human player will select a piece and place it.

\section*{To Learn More}

This organization of these applications involves using several parametric modules that permit direct reuse of \texttt{FAlphabeta} and \texttt{FSkeleton} for the two games we have written. With Stonehenge, some of the functions from \texttt{Stone\_rep}, needed for \texttt{play}, which do not appear in \texttt{REPRESENTATION}, are used by the evaluation function. That is why the module \texttt{Stone\_rep} was not closed immediately by \texttt{REPRESENTATION}. This partitioning of modules for the specific aspects of games allows incremental development without making the game schema dependencies (presented in figure 17.4) fragile.

A first enhancement involves games where given a position and a move, it is easy to determine the preceding position. In such cases, it may be more efficient to not bother making a copy of the game for function \texttt{play}, but rather to conserve a history of moves played to allow \textit{backtracking}. This is the case for Connect 4, but not for Stonehenge.

A second improvement is to capitalize on a player’s response time by evaluating future positions while the other player is selecting his next move. For this, one may use threads (see chapter 19), which allow concurrent calculation. If the player’s response is one that has already been explored, the gain in time will be immediate, if not we must start again from the new position.

A third enhancement is to build and exploit dictionaries of opening moves. We have been able to do so with Stonehenge, but it is also useful for many other games where the set of legal moves to explore is particularly large and complex at the start of the game. There is much to be gained from estimating and precalculating some “best” moves from the starting positions and retaining them in some sort of database. One may add a bit of “spice” (and perhaps unpredictability) to the games by introducing an element of chance, by picking randomly from a set of moves with similar or identical values.
A fourth view is to not limit the search depth to a fixed depth value, but rather to limit the search by a calculation time period that is not to be exceeded. In this manner, the program will be able to efficiently search to deeper depths when the number of remaining moves becomes limited. This modification requires slight modification to minmax in order to be able to re-examine a tree to increase its depth.

A game-dependent heuristic, parameterized by minmax, may be to choose which branches in the search should be pursued and which may be quickly abandoned.

There are also many other games that require little more than to be implemented or reimplemented. We might cite many classic games: Checkers, Othello, Abalone, . . . , but also many lesser-known games that are, nevertheless, readily playable by computer. You may find on the web various student projects including Checkers or the game Nuba.

**Link:** [http://www.gamecabinet.com/rules/Nuba.html](http://www.gamecabinet.com/rules/Nuba.html)

Games with stochastic qualities, such as card games and dice games, necessitate a modification of the minimax-αβ algorithm in order to take account of the probabilities of the selections.

We will return to the interfaces of games in chapter 21 in constructing web-based interfaces, providing without further cost the ability to return to the last move. This also allows further benefits from the modular organization that allows modifying no more than just an element, here the game state and interactions, to extend the functionality to support two player games.

### Fancy Robots

The example in this section illustrates the use of objects from the graphics library. We will revisit the concepts of simple inheritance, overriding methods and dynamic dispatch. We also see how parametric classes may be profitably used.

The application recognizes two principal categories of objects: a world and robots. The world represents a state space within which the robots evolve. We will have various classes of robots, each possessing its own strategy to move around in the world.

The principle of interaction between robots and the world here is extremely simple. The world is completely in control of the game: it asks, turn by turn, each of the robots if they know their next position. Each robot determines its next position fairly blindly. They do not know the geometry of the world, nor what other robots may be present. If the position requested by a robot is legal and open, the world will place the robot at that position.

The world displays the evolution of the robots via an interface. The (relative) complexity of the conception and development of this example is in the always-necessary separation between a behavior (here the evolution of the robots) and its interface (here the tracking of this evolution).
General Description  The application is developed in two stages.
1. A group of definitions providing pure calculation classes for the world and for
the diverse set of envisaged robots.
2. A group of definitions using the preceding set, adding whatever is necessary to
add in an interface.
We provide two examples of such interfaces: a rudimentary text-based interface,
and a more elaborate one using a graphical library.

In the first section, we provide the abstract definitions for the robots. Then (page 553),
we provide the pure abstract definition for the world. In the next section (page 554),
we introduce the text interface for the robots, and in the fourth section (page 556), the
interface for the world. On page 559 we introduce a graphical interface for the robots
and finally (page 562) we define a world for the graphical interface.

“Abstract” Robots

The first thing to do is to examine robots abstractly, independent of any consideration
of the environment in which they will move, that is to say, the interface that displays
them.

```plaintext
class virtual robot (i0:int) (j0:int) =
 object
 val mutable i = i0
 val mutable j = j0
 method get_pos = (i, j)
 method set_pos (i', j') = i <- i'; j <- j'
 method virtual next_pos : unit -> (int * int)
 end ;;
```

A robot is an entity which knows, or believes it knows, its position (i and j), is
capable of communicating that position to a requester (get_pos), is able to modify
this knowledge if it knows precisely where it should be (set_pos) and may decide to
move towards a new position (next_pos).

To improve the readability of the program, we define relative movements based on
absolute directions:

```plaintext
type dir = North | East | South | West | Nothing ;;

let walk (x,y) = function
 North -> (x,y+1) | South -> (x,y-1)
 | West -> (x-1,y) | East -> (x+1,y)
 | Nothing -> (x,y) ;;
val walk : int * int -> dir -> int * int = <fun>

let turn_right = function
```
The schema is shown by the virtual class `robots` from which we define four distinct species of robots (see figure 17.9) to more precisely see their manner of motion:

- Fixed robots which never move:

```ocaml
class fix_robot i0 j0 =
object
 inherit robot i0 j0
 method next_pos() = (i, j)
end ;;
```

- Crazy robots which move at random:

```ocaml
class crazy_robot i0 j0 =
object
 inherit robot i0 j0
 method next_pos() = (i+(Random.int 3)-1, j+(Random.int 3)-1)
end ;;
```

- Obstinate robots which keep trying to advance in one direction whenever they are able to do so,

```ocaml
class obstinate_robot i0 j0 =
object(self)
 inherit robot i0 j0
 val mutable wanted_pos = (i0, j0)
 val mutable dir = West

 method private set_wanted_pos d = wanted_pos <- walk (i, j) d
 method private change_dir = dir <- turn_right dir
```
Interactive robots which obey the commands of an exterior operator:

```plaintext
class virtual interactive_robot i0 j0 =
 object(self)
 inherit robot i0 j0
 method virtual private get_move : unit → dir
 method next_pos () = walk (i, j) (self#get_move ())
end ::;
```

The case of the interactive robot is different from the others in that its behavior is controlled by an interface that permits communicating orders to it. To deal with this, we provide a virtual method to communicate this order. As a consequence, the class `interactive_robot` remains abstract.

Note that not only do the four specialized robot classes inherit from class `robot`, but also any others that have the same type. In effect, the only methods that we have added are the private methods that therefore do not appear in the type signatures of the instances of these classes (see page 449). This property is indispensable if we wish to consider all the robots to be objects of the same type.

**Pure World**

A pure world is a world that is independent of an interface. It is understood as the state space of positions which a robot may occupy. It takes the form of a grid of size \( l \times h \), with a method `is_legal` to assure that a coordinate is a valid position in the world, and a method `is_free` indicates whether or not a robot occupies a given position.

In practice, a world manages the list of robots present on its surface while a method, `add`, allows new robots to enter the world.

Finally, a world is made visible by the method `run`, allowing the world to come to life.
in if (self#is_legal p) & (self#is_free p) then r#set_pos p

method run () =
    while true do List.iter (function r → self#run_robot r) robots done
end ;;
class virtual ['a] world :
    int ->
    int ->
    object
        constraint 'a =
            < get_pos : int * int; next_pos : unit -> int * int;
                set_pos : int * int -> unit; .. >
        val h : int
        val l : int
        val mutable robots : 'a list
        method add : 'a -> unit
        method is_free : int * int -> bool
        method virtual is_legal : int * int -> bool
        method run : unit -> unit
        method private run_robot : 'a -> unit
    end

The Objective Caml type system does not permit leaving the types of robots undetermined (see page 460). To resolve this problem, we might consider restraining the type to those of the class robot. But that would forbid populating a world with objects other than those having exactly the same type as robot. As a result, we have instead decided to parameterize world with the type of the robots that populate it. We may thereby instantiate this type parameter with textual robots or graphical robots.

**Textual Robots**

**Text Objects** To obtain robots controllable via a textual interface, we define a class of text objects (txt_object).

```ocaml
class txt_object (s0:string) =
 object
 val name = s0
 method get_name = name
 end ;;
```

**An Interface Class: Abstract Textual Robots** By double inheritance from robots and txt_object, we obtain the abstract class txt_robot of textual robots.

```ocaml
class virtual txt_robot i0 j0 =
 object
```
This class defines a world with a textual interface (see page 556). The inhabitants of this world will not be objects of `txt_robot` (since this class is abstract) nor inheritors of this class. The class `txt_robot` is, in a way, an interface class permitting the compiler to identify the method types (calculations and interfaces) of the inhabitants of the text interface world. The use of such a specification class provides the separation we wish to maintain between calculations and interface.

Concrete Text Robots These are simply obtained via double inheritance; figure 17.10 shows the hierarchy of classes.

The interactive robots require, for a workable implementation, defining their method of interacting with the user.
Figure 17.10: Hierarchy of classes for text mode robots

```plaintext
class interactive_txt_robot i0 j0 =
 object
 inherit interactive_robot i0 j0
 inherit txt_object "Interactive robot"
 method private get_move () =
 print_string "Which dir : (n)orth (e)ast (s)outh (w)est ? ";
 match read_line() with
 "n" → North | "s" → South
 | "e" → East | "w" → West
 | _ → Nothing
 end ;

Textual World

The text interface world is derived from the pure world by:

1. Inheritance from the generic class world by instantiating its type parameter with
 the class specified by txt_robot, and
2. Redefinition of the method run to include the different textual methods.
```
# class virtual txt_world (l0:int) (h0:int) =
    object(self)
    inherit [txt_robot] world l0 h0 as super

method private display_robot_pos r =
    let (i, j) = r#get_pos in printf "(\%d,\%d)" i j

method private run_robot r =
    let p = r#next_pos ()
    in if (self#is_legal p) & (self#is_free p)
        then begin
            printf "%s is moving from " r#get_name ;
            self#display_robot_pos r ;
            print_string " to " ;
            r#set_pos p ;
            self#display_robot_pos r ;
        end
    else begin
        printf "%s is staying at " r#get_name ;
        self#display_robot_pos r ;
    end
    printf_newline () ;
    print_string "next - ";
    ignore (read_line())

method run () =
    let print_robot r =
        printf "%s is at " r#get_name ;
        self#display_robot_pos r ;
        printf_newline ()
    in
    print_string "Initial state :\n";
    List.iter print_robot robots;
    print_string "Running :\n";
    super#run() (* 1 *)
end ;

We direct the reader's attention to the call to run of the ancestor class (this method call is marked (* 1 *) in the code) in the redefinition of the same method. There we have an illustration of the two possible types of method dispatch: static or dynamic (see page 446). The call to super#run is static. This is why we name the superclass: to be able to call the methods when they are redefined. On the other hand, in super#run we find a call to self#run_robot. This is a dynamic dispatch; the method defined in class txt_world is executed, not that of world. Were the method from world executed, nothing would be displayed, and the method in txt_world would remain useless.
The planar rectangular text world is obtained by implementing the final method that still remains abstract: is_legal.

```plaintext
class closed_txt_world l0 h0 =
 object(self)
 inherit txt_world l0 h0
 method is_legal (i, j) = (0<=i) & (i<l) & (0<=j) & (j<h)
end ;
```

![Hierarchy of classes in the textual planar rectangular world](image)

We may proceed with a small essay in typing:
```plaintext
let w = new closed_txt_world 5 5
and r1 = new fix_txt_robot 3 3
and r2 = new crazy_txt_robot 2 2
and r3 = new obstinate_txt_robot 1 1
and r4 = new interactive_txt_robot 0 0
in w#add r1; w#add r2; w#add r3; w#add r4; w#run () ;;
```

We may skip, for the moment, the implementation of a graphical interface for our world of robots. In due course, we will obtain an application having an appearance like figure 17.12.
Graphical Robots

We may implement robots in a graphical mode by following the same approach as with the text mode:

1. define a generic graphical object,
2. define an abstract class of graphical robots by double inheritance from robots and graphical objects (analogous to the interface class of page 554),
3. define, through double inheritance, the particular behavior of robots.

Generic Graphical Objects

A simple graphical object is an object possessing a display method which takes, as arguments, the coordinates of a pixel and displays it.

```python
class virtual graph_object =
object
 method virtual display : int → int → unit
end ;;
```

From this specification, it would be possible to implement graphical objects with extremely complex behavior. We will content ourselves for now with a class `graph_item`, displaying a bitmap that serves to represent the object.

```python
class graph_item x y im =
object (self)
```
val size_box.x = x
val size_box.y = y
val bitmap = im
val mutable last = None

method private erase = match last with
  Some (x,y,img) → Graphics.draw_image img x y
  | None → ()

method private draw i j = Graphics.draw_image bitmap i j
method private keep i j =
  last <- Some (i,j,Graphics.get_image i j size_box.x size_box.y);

method display i j = match last with
  Some (x,y,img) → if x<>i || y<>j
                  then ( self#erase; self#keep i j; self#draw i j )
                  | None → ( self#keep i j; self#draw i j )
  end ; ;

An object of graph_item stores the portion of the image upon which it is drawn in order to restore it in subsequent redraws. In addition, if the image has not been moved, it will not be redrawn.

# let foo_bitmap = [[ | Graphics.black | ]]] ; ;
# class square_item x col =
  object
    inherit graph_item x x (Graphics.make_image foo_bitmap)
    method private draw i j =
      Graphics.set_color col ;
      Graphics.fill_rect (i+1) (j+1) (x-2) (x-2)
  end ; ;

# class disk_item r col =
  object
    inherit graph_item (2*r) (2*r) (Graphics.make_image foo_bitmap)
    method private draw i j =
      Graphics.set_color col ;
      Graphics.fill_circle (i+r) (j+r) (r-2)
  end ; ;

# class file_bitmap_item name =
  let ch = open_in name
  in let x = Marshal.from_channel ch
  in let y = Marshal.from_channel ch
  in let im = Marshal.from_channel ch
  in let () = close_in ch
  in object
    inherit graph_item x y (Graphics.make_image im)
  end ; ;
We specialize the graph_item with instances of crosses, disks, and other bitmaps, read from a file.

The abstract graphical robot is both a robot and a graphical object.

```plaintext
class virtual graph_robot i0 j0 =
 object
 inherit robot i0 j0
 inherit graph_object
 end ;;
```

Graphical robots that are fixed, crazy, and obstinate are specialized graphical objects.

```plaintext
class fix_graph_robot i0 j0 =
 object
 inherit fix_robot i0 j0
 inherit disk_item 7 Graphics.green
 end ;;

class crazy_graph_robot i0 j0 =
 object
 inherit crazy_robot i0 j0
 inherit file_bitmap_item "crazy_bitmap"
 end ;;

class obstinate_graph_robot i0 j0 =
 object
 inherit obstinate_robot i0 j0
 inherit square_item 15 Graphics.black
 end ;;
```

The interactive graphical robot uses the primitives key_pressed and read_key of module Graphics to determine its next move. We again see the key presses 8, 6, 2 and 4 on the numeric keypad (NumLock button active). In this manner, the user is not obliged to provide direction at each step in the simulation.

```plaintext
class interactive_graph_robot i0 j0 =
 object
 inherit interactive_robot i0 j0
 inherit file_bitmap_item "interactive_bitmap"
 method private get_move () =
 if not (Graphics.key_pressed ()) then Nothing
 else match Graphics.read_key() with
```
'8' → North | '2' → South | '4' → West | '6' → East | _ → Nothing

end ; ;

**Graphical World**

We obtain a world with a graphical interface by inheriting from the pure world, instantiating the parameter *a_robot* with the graphical robot abstract class `graph_robot`. As with the text mode world, the graphical world provides its own method, `run_robot`, to implement the robot’s behavior as well as the general activation method `run`.

```ocaml
let delay x = let t = Sys.time () in while (Sys.time ()) -. t < x do () done ;;

class virtual graph_world l0 h0 = object(self)
 inherit [graph_robot] world l0 h0 as super
 initializer
 let gl = (l+2)*15 and gh = (h+2)*15 and lw=7 and cw=7
 in Graphics.open_graph (""+(string_of_int gl)""+(string_of_int gh)) ;
 Graphics.set_color (Graphics.rgb 170 170 170) ;
 Graphics.fill_rect 0 lw gl lw ;
 Graphics.fill_rect (gl-2*lw) 0 lw gh ;
 Graphics.fill_rect 0 (gh-2*cw) gl cw ;
 Graphics.fill_rect lw 0 lw gh

 method run_robot r = let p = r#next_pos ()
 in delay 0.001 :
 if (self#is_legal p) & (self#is_free p)
 then (r#set_pos p ; self#display_robot r)

 method display_robot r = let (i,j) = r#get_pos
 in r#display (i*15+15) (j*15+15)

 method run() = List.iter self#display_robot robots ;
 super#run()
 end ;;
```

Note that the graphical window is created at the time that an object of this class is initialized.

The rectangular planar graphical world is obtained in much the same manner as with the rectangular planar textual world.

```ocaml
class closed_graph_world l0 h0 = object(self)
 inherit graph_world l0 h0
```

```
method is_legal (i, j) = (0<=i) & (i<l) & (0<=j) & (j<h)
end ; ;
class closed_graph_world :
 int ->
 int ->
 object
 val h : int
 val l : int
 val mutable robots : graph_robot list
 method add : graph_robot -> unit
 method display_robot : graph_robot -> unit
 method is_free : int * int -> bool
 method is_legal : int * int -> bool
 method run : unit -> unit
 method run_robot : graph_robot -> unit
end

We may then test the graphical application by typing in:

let w = new closed_graph_world 10 10 ; ;
w#add (new fix_graph_robot 3 3) ; ;
w#add (new crazy_graph_robot 2 2) ; ;
w#add (new obstinate_graph_robot 1 1) ; ;
w#add (new interactive_graph_robot 5 5) ; ;
w#run () ; ;

To Learn More

The implementation of the method run_robot in different worlds suggests that the robots are potentially able to move to any point on the world the moment it is empty and legal. Unfortunately, nothing prevents a robot from modifying its position arbitrarily; the world cannot prevent it. One remedy would consist of having robot positions being controlled by the world; when a robot attempts to move, the world verifies not only that the new position is legal, but also that it constitutes an authorized move. In that case, the robot must be capable of asking the world its actual position, with the result that the robot class must become dependent on the world’s class. The robot class would take, as a type parameter, the world class.

This modification permits defining robots capable of querying the world in which they run, thus behaving as dependents of the world. We may then implement robots which follow or avoid other robots, try to block them, and so forth.

Another extension would be to permit robots to communicate with one another, exchanging information, perhaps constituting themselves into teams of robots.

The chapters of the next section allow making execution of robots independent from one another: by making use of Threads (see page 599), each may execute as a distinct
process. They may profit from the possibilities of distributed computing (see 623) where the robots become clients executing on remote machines that announce their movements or request other information from a world that behaves as a server. This problem is dealt with on page 656.