Part 11

Development Tools

193

195

We describe the set of elements of the environment included in the language distribu-
tion. There one finds different compilers, numerous libraries, program analysis tools,
lexical and syntactic analysis tools, and an interface with the C language.

Objective Caml is a compiled language offering two types of code generation:

1. bytecode to be executed by a virtual machine;

2. native code to be executed directly by a microprocessor.

The Objective Caml toplevel uses bytecode to execute the phrases submitted to it.
It constitutes the primary development aid, offering the possibility of rapid typing,
compilation and testing of function definitions. Moreover, it offers a trace mechanism
visualizing parameter values and return values of functions.

The other usual development tools are supplied by the distribution as well: file de-
pendency computation, debugging and profiling. The debugger allows one to execute
programs step-by-step, use breakpoints and inspect values. The profiling tool gives
measurements of the number of calls or the amount of time spent in a particular
function or a particular part of the code. These two tools are only available for Unix
platforms.

The richness of a language derives from its core but also from the libraries, sets of
reusable programs, which come with it. Objective Caml is no exception to the rule.
We have already portrayed to a large extent the graphical library that comes with
the distribution. There are many others which we will describe. Libraries bring new
functionality to the language, but they are not without drawbacks. In particular, they
can present some difficulty vis-a-vis the type discipline.

However rich a language’s set of libraries may be, it will always be necessary that
it be able to communicate with another language. The Objective Caml distribution
includes an interface with the C language allowing Objective Caml to call C functions
or be called by them. The difficulty of understanding and implementing this interface
lies in the fact that the memory models of Objective Caml and C are different. The
essential reason for this difference is that an Objective Caml program includes a garbage
collection mechanism.

C as well as Objective Caml allow dynamic memory allocation, and thus fine control
over space according to the needs of a program. This only makes sense if unused space
can be reclaimed for other use during the course of execution. Garbage collection frees
the programmer from responsibility for managing deallocation, a frequent source of
execution errors. This feature constitutes one of the safety elements of the Objective
Caml language.

However, this mechanism has an impact on the representation of data. Also, knowl-
edge of the guiding principles of memory management is indispensable in order to use
communication between the Objective Caml world and the C world correctly.

196

Chapter 7 presents the basic elements of the Objective Caml system: virtual ma-
chine, compilers, and execution library. It describes the language’s different compilation
modes and compares their portability and efficiency.

Chapter 8 gives a bird’s-eye view of the set of predefined types, functions, and excep-
tions that come with the system distribution. It does not do away with the need to
read the reference manual ([LRVD99]) which describes these libraries very well. On
the contrary it focuses on the new functionalities supplied by some of them. In partic-
ular we may mention output formatting, persistence of values and interfacing with the
operating system.

Chapter 9 presents different garbage collection methods in order to then describe the
mechanism used by Objective Caml.

Chapter 10 presents debugging tools for Objective Caml programs. Although still some-
what frustrating in some respects, these tools quite often allow one to understand why
a program does not work.

Chapter 11 describes the language’s different approaches to lexical and syntactic anal-
ysis problems: a regular expression library, the ocamlex and ocamlyacc tools, but also
the use of streams.

Chapter 12 describes the interface with the C language. It is no longer possible for a
language to be completely isolated from other languages. This interface lets an Objec-
tive Caml program call a C function, while passing it values from the Objective Caml
world, and vice-versa. The main difficulty with this interface stems from the memory
model. For this reason it is recommended that you read the 9 chapter beforehand.

Chapter 13 covers two applications: an improved graphics library based on a hierarchi-
cal model of graphical components inspired by the JAVA AWT?: and a classic program
to find least-cost paths in a graph using our new graphical interface as well as a cache
memory mechanism.

2. Abstract Windowing Toolkit

Compilation and
Portability

The transformation from human readable source code to an executable requires a
number of steps. Together these steps constitute the process of compilation. The com-
pilation process produces an abstract syntax tree (for an example, see page 159) and a
sequence of instructions for a cpu or virtual machine. In Objective Caml, the product of
compilation is linked with the Objective Caml runtime library. The library is provided
with the compiler distribution and is adapted to different host environments (operating
system and CPU). The runtime library contains primitive functions such as operations
over numbers, the interface to the operating system, and memory management.

Objective Caml has two compilers. The first compiler produces bytecode for the Objec-
tive Caml virtual machine. The second compiler generates instructions for a number
of “real” processors, such as the INTEL, MoTOROLA, SPARC, HP-PA, POWER-PC
and ALPHA CPUs. The Objective Caml bytecode compiler produces compact portable
code, while the native-code compiler generates high performance architecture depen-
dent code. The Objective Caml toplevel system, which appeared in the first part of
this book, uses the bytecode compiler; each user input is compiled and executed in the
symbolic environment defined by the current interactive session.

Chapter Overview

This chapter presents the different ways to compile an Objective CAML program
and compares their portability and efficiency. The first section explains the different
steps of Objective Caml compilation. The second section describes the different types
of compilation and the syntax for the production of executables. The third section
shows how to construct standalone executables - programs which are independent of
an installation of the Objective Caml system. Finally the fourth section compares the
different types of compilation with respect to portability and efficiency of execution.

198 Chapter 7 : Compilation and Portability

Steps of Compilation

An executable file is obtained by translating and linking as described in figure 7.1.

’ Source program ‘

preprocessing l

’ Source program ‘

compiling l

’ Assembly program ‘

assembling !

’ Machine instructions ‘

linking 1

’ Executable code ‘

Figure 7.1: Steps in the production of an executable.

To start off, preprocessing replaces certain pieces of text by other text according to
a system of macros. Next, compilation translates the source program into assembly
instructions, which are then converted to machine instructions. Finally, the linking
process establishes a connection to the operating system for primitives. This includes
adding the runtime library, which mainly consists of memory management routines.

The Objective Caml Compilers

The code generation phases of the Objective Caml compiler are detailed in figure
7.2. The internal representation of the code generated by the compiler is called an
intermediate language (IL).

The lexical analysis stage transforms a sequence of characters to a sequence of lexical
elements. These lexical entities correspond principally to integers, floating point num-
bers, characters, strings of characters and identifiers. The message I1legal character
might be generated by this analysis.

The parsing stage constructs a syntax tree and verifies that the sequence of lexi-
cal elements is correct with respect to the grammar of the language. The message
Syntax error indicates that the phrase analyzed does not follow the grammar of the
language.

The semantic analysis stage traverses the syntax tree, checking another aspect of pro-
gram correctness. The analysis consists principally of type inference, which if successful,
produces the most general type of an expression or declaration. Type error messages
may occur during this phase. This stage also detects whether any members of a sequence
are not of type unit. Other warnings may result, including pattern matching analy-

Steps of Compilation 199

’ Sequence of characters ‘

lexical analysis

’ Sequence of lexical elements ‘

parsing l
Syntax tree
semantic analysis l

’ Annotated syntax tree ‘

generation of intermediate code !

Sequence of IL

optimization of intermediate code l

Sequence of IL

generation of pseudo code !

’ Assembly program ‘

Figure 7.2: Compilation stages.

sis (e.g pattern matching is not exhaustive, part of pattern matching will
not be used).

Generation and the optimization of intermediate code does not produce errors or warn-
ing messages.

The final step in the compilation process is the generation of a program binary. Details
differ from compiler to compiler.

Description of the Bytecode Compiler

The Objective Caml virtual machine is called Zinc (“Zinc Is Not Caml”). Originally
created by Xavier Leroy, Zinc is described in ([Ler90]). Zinc’s name was chosen to
indicate its difference from the first implementation of Caml on the virtual machine
CAM (Categorical Abstract Machine, see [CCM8T]).

Figure 7.3 depicts the bytecode compiler. The first part of this figure shows the Zinc
machine interpreter, linked to the runtime library. The second part corresponds to the
Objective Caml bytecode compiler which produces instructions for the Zinc machine.
The third part contains the set of libraries that come with the compiler. They will be
described in Chapter 8. Standard compiler graphical notation is used for describing
the components in figure 7.3. A simple box represents a file written in the language
indicated in the box. A double box represents the interpretation of a language by a
program written in another language. A triple box indicates that a source language
is compiled to a machine language by using a compiler written in a third language.
Figure 7.4 gives the legend of each box.

The legend of figure 7.3 is as follows:

200 Chapter 7 : Compilation and Portability

BC
Zinc
u
ocamlrun

runtime

library
O'CAML BC
compiler

vl->v2

library of ocvz| | ocwv2 BC| ——— = | BC
modules
.Cmo
BC

BC

u

Figure 7.3: Virtual machine.

program written in source language (SL)

interpreter of source language SL written in the implementation language IL

compilation of source language SL towards target language TL
written in the implementation language 1L

Figure 7.4: Graphical notation for interpreters and compilers.

° BC : Zinc bytecode;
° C : C code;
. .0 : object code

° /4 MiCro-processor;

Compilation 201

. OC (vl or v2) : Objective Caml code.

Note
The majority of the Objective Caml compiler is written in Objective Caml.
The second part of figure 7.3 shows how to pass from version vl of a
compiler to version v2.

Compilation

The distribution of a language depends on the processor and the operating system. For
each architecture, a distribution of Objective Caml contains the toplevel system, the
bytecode compiler, and in most cases a native compiler.

Command Names

The figure 7.5 shows the command names of the different compilers in the various Ob-
jective Caml distributions. The first four commands are available for all distributions.

ocaml toplevel loop

ocamlrun bytecode interpreter

ocamlc bytecode batch compiler

ocamlopt native code batch compiler
ocamlc.opt optimized bytecode batch compiler
ocamlopt.opt | optimized native code batch compiler

ocamlmktop new toplevel constructor

Figure 7.5: Commands for compiling.

The optimized compilers are themselves compiled with the Objective Caml native com-
piler. They compile faster but are otherwise identical to their unoptimized counterparts.

Compilation Unit

A compilation unit corresponds to the smallest piece of an Objective Caml program
that can be compiled. For the interactive system, the unit of compilation corresponds
to a phrase of the language. For the batch compiler, the unit of compilation is two files:
the source file, and the interface file. The interface file is optional - if it does not exist,
then all global declarations in the source file will be visible to other compilation units.
The construction of interface files is described in the chapter on module programming
(see chapter 14). The two file types (source and interface) are differentiated by separate
file extensions.

202 Chapter 7 : Compilation and Portability

Naming Rules for File Extensions

Figure 7.6 presents the extensions of different files used for Objective CAML and C
programs.

extension | meaning

.ml source file

.mli interface file

.cmo object file (bytecode)

.cma library object file (bytecode)
.cmi compiled interface file

.cmx object file (native)

.cmxa library object file (native)
.c C source file

.0 C object file (native)

.a C library object file (native)

Figure 7.6: File extensions.

The files example.ml and example.mli form a compilation unit. The compiled inter-
face file (example.cmi) is used for both the bytecode and native code compiler. The
C language related files are used when integrating C code with Objective Caml code.
(see chapter 12).

The Bytecode Compiler

The general form of the batch compiler commands are:
command options file_name

For example:
ocamlc -c example.ml

The command-line options for both the native and bytecode compilers follow typical
Unix conventions. Each option is prefixed by the character -. File extensions are inter-
preted in the manner described by figure 7.6. In the above example, the file example.ml
is considered an Objective Caml source file and is compiled. The compiler will produce
the files example.cmo and example.cmi. The option -c informs the compiler to gen-
erate individual object files, which may be linked at a later time. Without this option,
the compiler will produce an executable file named a.out.

The table in figure 7.7 describes the principal options of the bytecode compiler. The
table in figure 7.8 indicates other possible options.

Compilation

203

Principal options

-a

-c

-0 name_of_executable
-linkall

-i

-pp command
-unsafe

-v

-w list

-impl file
-intf file
-1 directory

construct a runtime library

compile without linking

specify the name of the executable

link with all libraries used

display all compiled global declarations
uses command as Preprocessor

turn off index checking

display the version of the compiler

choose among the list the level of warning message (see
fig. 7.9)

indicate that file is a Caml source (.ml)
indicate that file is a Caml interface (.mli)

add directory in the list of directories

Figure 7.7: Principal options of the bytecode compiler.

Other options

light process
linking

runtime

C interface

standalone executable

-thread (see chapter 19, page 599)
-g, -noassert (see chapter 10, page 271)
-custom, —cclib, —ccopt, —cc (see page 207)

-make-runtime , -use-runtime

-output-obj (see chapter 12, page 315)

Figure 7.8: Other options for the bytecode compiler.

To display the list of bytecode compiler options, use the option -help.

The different levels of warning message are described in figure 7.9. A message level is
a switch (enable/disable) represented by a letter. An upper case letter activates the
level and a lower case letter disables it.

Principal levels

A/a
F/f
P/p
U/u
X/x

enable/disable all messages

partial application in a sequence

for incomplete pattern matching

for missing cases in pattern matching
enable/disable all other messages

for hidden object

M/m and V/v (see chapter 15)

Figure 7.9: Description of compilation warnings.

204 Chapter 7 : Compilation and Portability

By default, the highest level (4) is chosen by the compiler.

Example usage of the bytecode compiler is given in figure 7.10.

O | %tenm

bou: cat t.ml
let f x=x+1
print_int {f 18
print_newlinedl::
bou: ocamlc —-i -custom —o th,exe t.ml
wal f ¢ int =% int

+
El

+ m w
EEET Y

bou: L, rSth,exe

13

Figure 7.10: Session with the bytecode compiler.

Native Compiler

The native compiler has behavior similar to the bytecode compiler, but produces dif-
ferent types of files. The compilation options are generally the same as those described
in figures 7.7 and 7.8. It is necessary to take out the options related to runtime in
figure 7.8. Options specific to the native compiler are given in figure 7.11. The different
warning levels are same.

—-compact optimize the produced code for space
-S keeps the assembly code in a file
-inline level | set the aggressiveness of inlining

Figure 7.11: Options specific to the native compiler.

Inlining is an elaborated version of macro-expansion in the preprocessing stage. For
functions whose arguments are fixed, inlining replaces each function call with the body
of the function called. Several different calls produce several copies of the function
body. Inlining avoids the overhead that comes with function call setup and return, at
the expense of object code size. Principal inlining levels are:

° 0 : The expansion will be done only when it will not increase the size of the object
code.

° 1 : This is the default value; it accepts a light increase on code size.

. n > 1 : Raise the tolerance for growth in the code. Higher values result in more

inlining.

Compilation 205

Toplevel Loop

The toplevel loop provides only two command line options.

° -I directory: adds the indicated directory to the list of search paths for compiled
source files.

° -unsafe: instructs the compiler not to do bounds checking on array and string
accesses.

The toplevel loop provides several directives which can be used to interactively modify
its behavior. They are described in figure 7.12. All these directives begin with the
character # and are terminated by ; ;.

#quit ;; quit from the toplevel interaction
#directory directory ;; add the directory to the search path
#cd directory ;; change the working directory
#load object_file ;; load an object file (.cmo)

#use source_file ; ; compile and load a source file
#print_depth depth ;; modify the depth of printing
#print_length width ;; modify the length of printing
#install _printer function ;; | specify a printing function
#remove_printer function ;; remove a printing function

#trace function ;; trace the arguments of the function
#untrace function ;; stop tracing the function
#untrace_all ;; stop all tracing

Figure 7.12: Toplevel loop directives.

The directives dealing with directories respect the conventions of the operating system
used.

The loading directives do not have exactly the same behavior. The directive #use reads
the source file as if it was typed directly in the toplevel loop. The directive #load loads
the file with the extension .cmo. In the later case, the global declarations of this file are
not directly accessible. If the file example.ml contains the global declaration f, then
once the bytecode is loaded (#load "example.cmo";;), it is assumed that the value of
f could be accessed by Example.f, where the first letter of the file is capitalized. This
notation comes from the module system of Objective Caml (see chapter 14, page 405).

The directives for the depth and width of printing are used to control the display of
values. This is useful when it is necessary to display the contents of a value in detail.

The directives for printer redefinition are used to install or remove a user defined print-
ing function for values of a specified type. In order to integrate these printer functions
into the default printing procedure, it is necessary to use the Format library(see chapter
8) for the definition.

206 Chapter 7 : Compilation and Portability

The directives for tracing arguments and results of functions are particularly useful for
debugging programs. They will be discussed in the chapter on program analysis (see
chapter 10).

Figure 7.13 shows a session in the toplevel loop.

0| xterm

boui ocaml
lbjective Caml wersion 2,01

let £ x=x+ 12

val £ ¢ int -» int = <fun>
f 18::

-+ int =19

#quit::

bouz []

Figure 7.13: Session with the toplevel loop.

Construction of a New Interactive System

The command ocamlmktop can be used to construct a new toplevel executable which
has specific library modules loaded by default. For example, ocamlmktop is often used
for pulling native object code libraries (typically written in C) into a new toplevel.

ocamlmktop options are a subset of those used by the bytecode compiler (ocamlc):

-cclib libname, —ccopt option, —custom, -I directory -o executable_name

The chapter on graphics programming (see chapter 5, page 117) uses this command
for constructing a toplevel system containing the Graphics library in the following
manner:

ocamlmktop -custom -o mytoplevel graphics.cma -cclib \
-I/usr/X11/1ib -cclib -1X11

This command constructs an executable with the name mytoplevel, containing the
bytecode library graphics.cma. This standalone executable (-custom, see the following
section) will be linked to the library X11 (1ibX11.a) which in turn will be looked up
in the path /usr/X11/1ib.

Standalone Executables 207

Standalone Executables

A standalone executable is a program that does not depend an Objective Caml instal-
lation to run. This facilitates the distribution of binary applications and robustness
against runtime library changes across Objective Caml versions.

The Objective Caml native compiler produces standalone executables by default. But
without the -custom option, the bytecode compiler produces an executable which
requires the bytecode interpreter ocamlirun. Imagine the file example.ml is as follows:

let £ x =x + 1;;
print_int (f 18);;
print_newline();;

Then the following command produces the (approximately 8k) file example.exe:
ocamlc -o example.exe example.ml
This file can be executed by the Objective Caml bytecode interpreter:

$ ocamlrun example.exe
19

The interpreter executes the Zinc machine instructions contained in the file example . exe.
Under Unix, the first line of the file example.exe contains the location of the inter-
preter, for example:

#!/usr/local/bin/ocamlrun

This means the file can be executed directly (without using ocamlrun. Like a shell-
script, executing the file in turn runs the program specified on the first line, which is
then used to interpret the remainder of the file. If ocamlrun can’t be found, execution
will fail and the error message Command not found will be displayed.

The same compilation with the option —custom produces a standalone executable with
name exauto.exe:

ocamlc -custom -o exauto.exe example.ml

This time the file is about 85K, as it contains the Zinc interpreter as well as the program
bytecode. This file can be executed directly or copied to another machine (using the
same CPU/Operating System) for execution.

208 Chapter 7 : Compilation and Portability

Portability and Efficiency

One reason to compile to an abstract machine is to produce an executable independent
of the architecture of the real machine where it runs. A native compiler will produce
more efficient code, but the binary can only be executed on the architecture it was
compiled for.

Standalone Files and Portability

To produce a standalone executable, the bytecode compiler links the bytecode object
file example.cmo with the runtime library, the bytecode interpreter and some C code.
It is assumed that there is a C compiler on the host system. The inclusion of machine
code means that stand-alone bytecode executables are not portable to other systems
or other architectures.

This is not the case for the non-standalone version. Since the Zinc machine is not
included, the only things generated are the platform independent bytecode instructions.
Bytecode programs will run on any platform that has the interpreter. Ocamlrun is
part of the default Objective Caml distribution for Sparc running SOLARIS, INTEL
running Windows, etc. It is always preferable to use the same version of interpreter
and compiler.

The portability of bytecode object files makes it possible to directly distribute Objective
Caml libraries in bytecode form.

Efficiency of Execution

The bytecode compiler produces a sequence of instructions for the Zinc machine, which
at the moment of the execution, will be interpreted by ocamlrun. Interpretation has
a moderately negative linear effect on speed of execution. It is possible to view Zinc’s
bytecode interpretation as a big pattern matching machine (matching match ... with)
where each instruction is a trigger and the computation branch modifies the stack and
the counter (address of the next instruction).

Without testing all parts of the language, the following small example which com-
putes Fibonacci numbers shows the difference in execution time between the bytecode
compiler and the native compiler. Let the program fib.ml as follows:

let rec fib n =
if n < 2 then 1
else (fib (n-1)) + (£fib(n-2));;

and the following program main.ml as follows:

for i = 1 to 10 do

FExercises 209

print_int (Fib.fib 30);
print_newline()
done; ;

Their compilation is as follows:

$ ocamlc -o fib.exe fib.ml main.ml
$ ocamlopt -o fibopt.exe fib.ml main.ml

These commands produce two executables: fib.exe and fibopt.exe. Using the Unix
command time in Pentium 350 under Linux, we get the following data:

fib.exe (bytecode) | fibopt.exe (native)
7s ls

This corresponds to a factor 7 between the two versions of the same program. This
program does not test all characteristics of the language. The difference depends heavily
on the type of application, and is typically much smaller.

Exercises

Creation of a Toplevel and Standalone Executable

Consider again the Basic interpreter. Modify it to make a new toplevel.

1. Split the Basic application into 4 files, each with the extension .ml. The files
will be organized like this: abstract syntax (syntax.ml), printing (pprint.ml),
parsing (alexsynt.ml) and evaluation of instructions (eval.ml). The head of
each file should contain the open statements to load the modules required for
compilation.

2. Compile all files separately.

Add a file mainbasic.ml which contains only the statement for calling the main
function.

4. Create a new toplevel with the name topbasic, which starts the Basic interpreter.

Create a standalone executable which runs the Basic interpreter.

Comparison of Performance

Try to compare the performance of code produced by the bytecode compiler and by
the native compiler. For this purpose, write an application for sorting lists and arrays.

210 Chapter 7 : Compilation and Portability

1. Write a polymorphic function for sorting lists. The order relation should be passed
as an argument to the sort function. The sort algorithm can be selected by the
reader. For example: bubble sort, or quick sort. Write this function as sort.ml.

2. Create the main function in the file trilist.ml, which uses the previous func-
tion and applies it to a list of integers by sorting it in increasing order, then in
decreasing order.

3. Create two standalone executables - one with the bytecode compiler, and another
with the native compiler. Measure the execution time of these two programs.
Choose lists of sufficient size to get a good idea of the time differences.

4. Rewrite the sort program for arrays. Continue using an order function as argu-
ment. Perform the test on arrays filled in the same manner as for the lists.

5. What can we say about the results of these tests?

Summary

This chapter has shown the different ways to compile an Objective Caml program. The
bytecode compiler is favorable for portable code, allowing for the system independent
distribution of programs and libraries. This property is lost in the case of standalone
bytecode executables. The native compiler trades producing efficient architecture de-
pendent code for a loss of portability.

To Learn More

The techniques to compile for abstract machines were used in the first generation of
SmallTalk, then in the functional languages LISP and ML. The argument that the use
of abstract machines will hinder performance has put a shadow on this technique for a
long time. Now, the JAVA language has shown that the opposite is true. An abstract
machine provides several advantages. The first is to facilitate the porting of a compiler
to different architectures. The part of the compiler related to portability has been
well defined (the abstract machine interpreter and part of runtime library). Another
benefit of this technique is portable code. It is possible to compile an application on
one architecture and execute it on another. Finally, this technique simplifies compiler
construction by adding specific instructions for the type of language to compile. In
the case of functional languages, the abstract machines make it easy to create the
closures (packing environment and code together) by adding the notion of execution
environment to the abstract machine.

To compensate for the loss in efficiency caused by the use of the bytecode interpreter,
one can expand the set of abstract machine instructions to include those of a real
machine at runtime. This type of expansion has been found in the implementation of
Lisp (lm3) and JAVA (JIT). The performance increases, but does not reach the level
of a native C compiler.

To Learn More 211

One difficulty of functional language compilation comes from closures. They contain
both the executable code and execution environment (see page 23).

The choice of implementation for the environment and the access of values in the en-
vironment has a significant influence on the performance of the code produced. An
important function of the environment consists of obtaining access to values in con-
stant time; the variables are viewed as indexes in an array containing their values.
This requires the preprocessing of functional expressions. An example can be found in
L. Cardelli’s book - Functional Abstract Machine. Zinc uses this technique. Another
crucial optimization is to avoid the construction of useless closures. Although all func-
tions in ML can be viewed as functions with only one argument, it is necessary to
not create intermediate closures in the case of application on several arguments. For
example, when the function add is applied with two integers, it is not useful to create
the first closure corresponding to the function of applying add to the first argument.
It is necessary to note that the creation of a closure would allocate certain memory
space for the environment and would require the recovery of that memory space in the
future (see chapter 9). Automatic memory recovery is the second major performance
concern, along with environment.

Finally, bootstrapping allows us to write the majority of a compiler with the same
language which it is going to compile. For this reason, like the chicken and the egg,
it is necessary to define the minimal part of the language which can be expanded
later. In fact, this property is hardly appreciable for classifying the languages and their
implementations. This property is also used as a measure of the capability of a language
to be used in the implementation of a compiler. A compiler is a large program, and
bootstrapping is a good test of it’s correctness and performance. The following are
links to the references:

Link: ’ http://caml.inria.fr/camlstone.txt

At that time, Caml was compiled over fifty machines, these were antecedent versions
of Objective Caml. We can get an idea of how the present Objective Caml has been
improved since then.

212 Chapter 7 : Compilation and Portability

