Version française
Home     About     Download     Resources     Contact us    
Browse thread
convenient features
[ Home ] [ Index: by date | by threads ]
[ Search: ]

[ Message by date: previous | next ] [ Message in thread: previous | next ] [ Thread: previous | next ]
Date: -- (:)
From: Jean-Christophe Filliatre <filliatr@c...>
Subject: Re: convenient features

In his message of Fri June 30, 2000, Christophe Raffalli writes: 
> 
> I have a problem to define a type ! 
> Whe I want is the following (which is incorrect !)
>
> type index = { 
>   index_key : int; 
>   mutable index_val : index_val
> } 
> and index_val =
>     Noval of index list 
>   | Hasval of index * IndexSet.t
> 
> and module Index =
> struct
>   type t = index
>   let compare i j = i.index_key - j.index_key
> end
> 
> and module IndexSet = Set.Make(Index)

There is  at least one solution,  if you consider a  version of module
Set with a type parameter, which I include at the end of this mail. If
that module is called Pset, then you can define your types like this:

======================================================================
type 'a indexed = {
  index : int;
  mutable value : 'a }

module IndexSet = Pset.Make(
  struct
    type 'a t = 'a indexed
    let compare x y = x.index - y.index
  end)

type index = index_val indexed

and index_val =
    Noval of index list 
  | Hasval of index * index_val IndexSet.t
======================================================================

Remark: to define module Pset, you  don't need to change the code, but
only the  types to add a  type parameter 'a in  both functor arguments
and results.

-- 
Jean-Christophe Filliatre    
  Computer Science Laboratory   Phone (650) 859-5173
  SRI International             FAX   (650) 859-2844
  333 Ravenswood Ave.           email filliatr@csl.sri.com
  Menlo Park, CA 94025, USA     web   http://www.csl.sri.com/~filliatr

= pset.mli ===========================================================
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License.         *)
(*                                                                     *)
(***********************************************************************)

(* $Id: set.mli,v 1.19 2000/04/13 12:16:26 xleroy Exp $ *)

(* Module [Set]: sets over ordered types *)

(* This module implements the set data structure, given a total ordering
   function over the set elements. All operations over sets
   are purely applicative (no side-effects).
   The implementation uses balanced binary trees, and is therefore
   reasonably efficient: insertion and membership take time
   logarithmic in the size of the set, for instance. *)

module type POrderedType =
  sig
    type 'a t
    val compare: 'a t -> 'a t -> int
  end
          (* The input signature of the functor [Set.Make].
             [t] is the type of the set elements.
             [compare] is a total ordering function over the set elements.
             This is a two-argument function [f] such that
             [f e1 e2] is zero if the elements [e1] and [e2] are equal,
             [f e1 e2] is strictly negative if [e1] is smaller than [e2],
             and [f e1 e2] is strictly positive if [e1] is greater than [e2].
             Example: a suitable ordering function is
             the generic structural comparison function [compare]. *)

module type S =
  sig
    type 'a elt
          (* The type of the set elements. *)
    type 'a t
          (* The type of sets. *)
    val empty: 'a t
          (* The empty set. *)
    val is_empty: 'a t -> bool
        (* Test whether a set is empty or not. *)
    val mem: 'a elt -> 'a t -> bool
        (* [mem x s] tests whether [x] belongs to the set [s]. *)
    val add: 'a elt -> 'a t -> 'a t
        (* [add x s] returns a set containing all elements of [s],
           plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
    val singleton: 'a elt -> 'a t
        (* [singleton x] returns the one-element set containing only [x]. *)
    val remove: 'a elt -> 'a t -> 'a t
        (* [remove x s] returns a set containing all elements of [s],
           except [x]. If [x] was not in [s], [s] is returned unchanged. *)
    val union: 'a t -> 'a t -> 'a t
    val inter: 'a t -> 'a t -> 'a t
    val diff: 'a t -> 'a t -> 'a t
        (* Union, intersection and set difference. *)
    val compare: 'a t -> 'a t -> int
        (* Total ordering between sets. Can be used as the ordering function
           for doing sets of sets. *)
    val equal: 'a t -> 'a t -> bool
        (* [equal s1 s2] tests whether the sets [s1] and [s2] are
           equal, that is, contain equal elements. *)
    val subset: 'a t -> 'a t -> bool
        (* [subset s1 s2] tests whether the set [s1] is a subset of
           the set [s2]. *)
    val iter: f:('a elt -> unit) -> 'a t -> unit
        (* [iter f s] applies [f] in turn to all elements of [s].
           The order in which the elements of [s] are presented to [f]
           is unspecified. *)
    val fold: f:('a elt -> 'b -> 'b) -> 'a t -> init:'b -> 'b
        (* [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
           where [x1 ... xN] are the elements of [s].
           The order in which elements of [s] are presented to [f] is
           unspecified. *)
    val for_all: f:('a elt -> bool) -> 'a t -> bool
        (* [for_all p s] checks if all elements of the set
           satisfy the predicate [p]. *)
    val exists: f:('a elt -> bool) -> 'a t -> bool
        (* [exists p s] checks if at least one element of
           the set satisfies the predicate [p]. *)
    val filter: f:('a elt -> bool) -> 'a t -> 'a t
        (* [filter p s] returns the set of all elements in [s]
           that satisfy predicate [p]. *)
    val partition: f:('a elt -> bool) -> 'a t -> 'a t * 'a t
        (* [partition p s] returns a pair of sets [(s1, s2)], where
           [s1] is the set of all the elements of [s] that satisfy the
           predicate [p], and [s2] is the set of all the elements of
           [s] that do not satisfy [p]. *)
    val cardinal: 'a t -> int
        (* Return the number of elements of a set. *)
    val elements: 'a t -> 'a elt list
        (* Return the list of all elements of the given set.
           The returned list is sorted in increasing order with respect
           to the ordering [Ord.compare], where [Ord] is the argument
           given to [Set.Make]. *)
    val min_elt: 'a t -> 'a elt
        (* Return the smallest element of the given set
           (with respect to the [Ord.compare] ordering), or raise
           [Not_found] if the set is empty. *)
    val max_elt: 'a t -> 'a elt
        (* Same as [min_elt], but returns the largest element of the
           given set. *)
    val choose: 'a t -> 'a elt
        (* Return one element of the given set, or raise [Not_found] if
           the set is empty. Which element is chosen is unspecified,
           but equal elements will be chosen for equal sets. *)
  end

module Make(Ord: POrderedType): (S with type 'a elt = 'a Ord.t)
        (* Functor building an implementation of the set structure
           given a totally ordered type. *)

======================================================================

== pset.ml ===========================================================
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License.         *)
(*                                                                     *)
(***********************************************************************)

(* $Id: set.ml,v 1.13 2000/04/13 12:16:26 xleroy Exp $ *)

(* Sets over ordered types *)

module type POrderedType =
  sig
    type 'a t
    val compare: 'a t -> 'a t -> int
  end

module type S =
  sig
    type 'a elt
    type 'a t
    val empty: 'a t
    val is_empty: 'a t -> bool
    val mem: 'a elt -> 'a t -> bool
    val add: 'a elt -> 'a t -> 'a t
    val singleton: 'a elt -> 'a t
    val remove: 'a elt -> 'a t -> 'a t
    val union: 'a t -> 'a t -> 'a t
    val inter: 'a t -> 'a t -> 'a t
    val diff: 'a t -> 'a t -> 'a t
    val compare: 'a t -> 'a t -> int
    val equal: 'a t -> 'a t -> bool
    val subset: 'a t -> 'a t -> bool
    val iter: ('a elt -> unit) -> 'a t -> unit
    val fold: ('a elt -> 'b -> 'b) -> 'a t -> 'b -> 'b
    val for_all: ('a elt -> bool) -> 'a t -> bool
    val exists: ('a elt -> bool) -> 'a t -> bool
    val filter: ('a elt -> bool) -> 'a t -> 'a t
    val partition: ('a elt -> bool) -> 'a t -> 'a t * 'a t
    val cardinal: 'a t -> int
    val elements: 'a t -> 'a elt list
    val min_elt: 'a t -> 'a elt
    val max_elt: 'a t -> 'a elt
    val choose: 'a t -> 'a elt
  end

module Make(Ord: POrderedType) =
  struct
    type 'a elt = 'a Ord.t
    type 'a t = Empty | Node of 'a t * 'a elt * 'a t * int

    (* Sets are represented by balanced binary trees (the heights of the
       children differ by at most 2 *)

    let height = function
        Empty -> 0
      | Node(_, _, _, h) -> h

    (* Creates a new node with left son l, value x and right son r.
       l and r must be balanced and | height l - height r | <= 2.
       Inline expansion of height for better speed. *)

    let create l x r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Same as create, but performs one step of rebalancing if necessary.
       Assumes l and r balanced.
       Inline expansion of create for better speed in the most frequent case
       where no rebalancing is required. *)

    let bal l x r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      if hl > hr + 2 then begin
        match l with
          Empty -> invalid_arg "Set.bal"
        | Node(ll, lv, lr, _) ->
            if height ll >= height lr then
              create ll lv (create lr x r)
            else begin
              match lr with
                Empty -> invalid_arg "Set.bal"
              | Node(lrl, lrv, lrr, _)->
                  create (create ll lv lrl) lrv (create lrr x r)
            end
      end else if hr > hl + 2 then begin
        match r with
          Empty -> invalid_arg "Set.bal"
        | Node(rl, rv, rr, _) ->
            if height rr >= height rl then
              create (create l x rl) rv rr
            else begin
              match rl with
                Empty -> invalid_arg "Set.bal"
              | Node(rll, rlv, rlr, _) ->
                  create (create l x rll) rlv (create rlr rv rr)
            end
      end else
        Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Same as bal, but repeat rebalancing until the final result
       is balanced. *)

    let rec join l x r =
      match bal l x r with
        Empty -> invalid_arg "Set.join"
      | Node(l', x', r', _) as t' ->
          let d = height l' - height r' in
          if d < -2 or d > 2 then join l' x' r' else t'

    (* Merge two trees l and r into one.
       All elements of l must precede the elements of r.
       Assumes | height l - height r | <= 2. *)

    let rec merge t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          bal l1 v1 (bal (merge r1 l2) v2 r2)

    (* Same as merge, but does not assume anything about l and r. *)

    let rec concat t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          join l1 v1 (join (concat r1 l2) v2 r2)

    (* Splitting *)

    let rec split x = function
        Empty ->
          (Empty, None, Empty)
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then (l, Some v, r)
          else if c < 0 then
            let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
          else
            let (lr, vr, rr) = split x r in (join l v lr, vr, rr)

    (* Implementation of the set operations *)

    let empty = Empty

    let is_empty = function Empty -> true | _ -> false

    let rec mem x = function
        Empty -> false
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          c = 0 || mem x (if c < 0 then l else r)

    let rec add x = function
        Empty -> Node(Empty, x, Empty, 1)
      | Node(l, v, r, _) as t ->
          let c = Ord.compare x v in
          if c = 0 then t else
          if c < 0 then bal (add x l) v r else bal l v (add x r)

    let singleton x = Node(Empty, x, Empty, 1)

    let rec remove x = function
        Empty -> Empty
      | Node(l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then merge l r else
          if c < 0 then bal (remove x l) v r else bal l v (remove x r)

    let rec union s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> t2
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          if h1 >= h2 then
            if h2 = 1 then add v2 s1 else begin
              let (l2, _, r2) = split v1 s2 in
              join (union l1 l2) v1 (union r1 r2)
            end
          else
            if h1 = 1 then add v1 s2 else begin
              let (l1, _, r1) = split v2 s1 in
              join (union l1 l2) v2 (union r1 r2)
            end

    let rec inter s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> Empty
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, None, r2) ->
              concat (inter l1 l2) (inter r1 r2)
          | (l2, Some _, r2) ->
              join (inter l1 l2) v1 (inter r1 r2)

    let rec diff s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, None, r2) ->
              join (diff l1 l2) v1 (diff r1 r2)
          | (l2, Some _, r2) ->
              concat (diff l1 l2) (diff r1 r2)

    let rec compare_aux l1 l2 =
        match (l1, l2) with
        ([], []) -> 0
      | ([], _)  -> -1
      | (_, []) -> 1
      | (Empty :: t1, Empty :: t2) ->
          compare_aux t1 t2
      | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
          let c = Ord.compare v1 v2 in
          if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
      | (Node(l1, v1, r1, _) :: t1, t2) ->
          compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
      | (t1, Node(l2, v2, r2, _) :: t2) ->
          compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)

    let compare s1 s2 =
      compare_aux [s1] [s2]

    let equal s1 s2 =
      compare s1 s2 = 0

    let rec subset s1 s2 =
      match (s1, s2) with
        Empty, _ ->
          true
      | _, Empty ->
          false
      | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
          let c = Ord.compare v1 v2 in
          if c = 0 then
            subset l1 l2 && subset r1 r2
          else if c < 0 then
            subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
          else
            subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2

    let rec iter f = function
        Empty -> ()
      | Node(l, v, r, _) -> iter f l; f v; iter f r

    let rec fold f s accu =
      match s with
        Empty -> accu
      | Node(l, v, r, _) -> fold f l (f v (fold f r accu))

    let rec for_all p = function
        Empty -> true
      | Node(l, v, r, _) -> p v && for_all p l && for_all p r

    let rec exists p = function
        Empty -> false
      | Node(l, v, r, _) -> p v || exists p l || exists p r

    let filter p s =
      let rec filt accu = function
        | Empty -> accu
        | Node(l, v, r, _) ->
            filt (filt (if p v then add v accu else accu) l) r in
      filt Empty s

    let partition p s =
      let rec part (t, f as accu) = function
        | Empty -> accu
        | Node(l, v, r, _) ->
            part (part (if p v then (add v t, f) else (t, add v f)) l) r in
      part (Empty, Empty) s

    let rec cardinal = function
        Empty -> 0
      | Node(l, v, r, _) -> cardinal l + 1 + cardinal r

    let rec elements_aux accu = function
        Empty -> accu
      | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l

    let elements s =
      elements_aux [] s

    let rec min_elt = function
        Empty -> raise Not_found
      | Node(Empty, v, r, _) -> v
      | Node(l, v, r, _) -> min_elt l

    let rec max_elt = function
        Empty -> raise Not_found
      | Node(l, v, Empty, _) -> v
      | Node(l, v, r, _) -> max_elt r

    let choose = min_elt

  end
======================================================================