Browse thread
[Caml-list] Objects or modules ?
[
Home
]
[ Index:
by date
|
by threads
]
[ Message by date: previous | next ] [ Message in thread: previous | next ] [ Thread: previous | next ]
[ Message by date: previous | next ] [ Message in thread: previous | next ] [ Thread: previous | next ]
Date: | 2002-07-04 (23:54) |
From: | Nicolas FRANCOIS <nicolas.francois@f...> |
Subject: | Re: [Caml-list] Objects or modules ? |
Le Thu, 4 Jul 2002 01:16:11 +0200 Nicolas FRANCOIS (AKA El Bofo) <nicolas.francois@free.fr> a écrit : > Le Sat, 29 Jun 2002 12:22:52 +0200 Markus Mottl <markus@oefai.at> a > écrit: > > > You might also want to take a look at Christophe Raffalli's library > > for formal and numerical calculus to grab a few ideas: > > > > http://lama-d134.univ-savoie.fr/sitelama/Membres/pages_web/RAFFALLI/formel.html > > OK, I got it. If I really understand this, this is a pre-project for > FOC. Am I right ? > > Now that I adapted it to OCaml 3.04 (Streams not recognized by standard > OCaml now), I have a new problem : this is a definition for a quotient > ring (there's a similar one for a quotient field in case the ideal is > primitive) ; > > (in algebra.mli) > module Quotient : > functor(R : Euclidian_Ring) -> > functor(Elt : One_element with type elem = R.elem) -> > Ring with type elem = R.elem > > (in algebra.ml) > module Quotient = > functor (R : Euclidian_Ring) -> > functor (Elt : One_element with type elem = R.elem) -> > struct > type elem = R.elem > let zero = R.zero > let one = R.one > let t_of_int = R.t_of_int > let (++) = R.(++) > let (--) = R.(--) > let ( ** ) = R.( ** ) > let (==) a b = R.(==) (R.(mod) (R.(--) a b) Elt.elt) R.zero > let opp = R.opp > let normalize x = R.(mod) (R.normalize x) Elt.elt > let print x = R.print (normalize x) > let write ch x = R.write ch (normalize x) > let parse = R.parse > let read = R.read > let write_bin ch x = R.write_bin ch (normalize x) > let read_bin = R.read_bin > let conjugate = R.conjugate > end > > I'd like to use this functor to create a ring Z/pZ, providing a > (possibliy prime) integer p. My problem is : what is the correct way to > use this ? OK, I found a way : (file essai.ml) open Algebra module Five : (One_element with type elem = Ring_MZ.elem) = struct type elem = Ring_MZ.elem let elt = Ring_MZ.t_of_int 5 end open Five module Z5Z = Quotient_prime (Ring_MZ) (Five) open Polynomial module P = Make(Z5Z) open P let p1 = monome (Z5Z.t_of_int 8) 0 ++ monome (Z5Z.t_of_int 4) 1 ++ monome (Z5Z.t_of_int 1) 2;; let p2 = monome (Z5Z.t_of_int 3) 1 ++ monome (Z5Z.t_of_int 1) 12 ++ monome (Z5Z.t_of_int 2) 14;; print (p1 ** (p2 // p1) ++ (p2 mod p1) -- p2) (The end for the ones how know the package Formel) Is there a way to do things simpler ? \bye -- Nicolas FRANCOIS http://nicolas.francois.free.fr A TRUE Klingon programmer does NOT comment his code ------------------- To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ Beginner's list: http://groups.yahoo.com/group/ocaml_beginners