Previous Contents Next

Exercises

Doubly Linked Lists

Functional programming lends itself well to the manipulation of non-cyclic data structures, such as lists for example. For cyclic structures, on the other hand, there are real implementation difficulties. Here we propose to define doubly linked lists, i.e., where each element of a list knows its predecessor and its successor.
  1. Define a parameterized type for doubly linked lists, using at least one record with mutable fields. A cell is a record containing a value, the list of the following cells, and the list of the preceding cells.

    # type 'a cell = {
    info : 'a ;
    mutable prev : 'a dlist ;
    mutable next : 'a dlist }


    A list is either empty or a cell.

    and 'a dlist = Empty | Cell of 'a cell ;;
    type 'a cell = { info: 'a; mutable prev: 'a dlist; mutable next: 'a dlist }
    type 'a dlist = | Empty | Cell of 'a cell


  2. Write the functions add and remove which add and remove an element of a doubly linked list. To add a cell containing x to the list, insert it between the cell indicated by the current list and its preceding cell.

    # let add x = function
    Empty -> Cell { info=x ; prev=Empty ; next=Empty }
    | Cell c as l ->
    let new_cell = { info=x ; prev=c.prev ; next=l } in
    let new_dlist = Cell new_cell in
    c.prev <- new_dlist ;
    ( match new_cell.prev with
    Empty -> ()
    | Cell pl -> pl.next <- new_dlist ) ;
    new_dlist ;;
    val add : 'a -> 'a dlist -> 'a dlist = <fun>
    To remove the cell indicated by the current list, simply readjust any remaining non-empty cells.

    # let remove_cell = function
    Empty -> failwith "Already empty"
    | Cell c -> match (c.prev , c.next) with
    Empty , Empty -> Empty
    | Cell c1 as l , Empty -> c1.next <- Empty ; l
    | Empty , ((Cell c2) as l) -> c2.prev <- Empty ; l
    | Cell c1 as l1 , (Cell c2 as l2) -> c1.next <- l2; c2.prev <- l1; l1 ;;
    val remove_cell : 'a dlist -> 'a dlist = <fun>


    To remove all the cells containing x, traverse the list in both directions and use remove_cell on any instance of x.

    # let rec remove x l =
    let rec remove_left = function
    Empty -> ()
    | Cell c as l -> let pl = c.prev in
    if c.info = x then ignore (remove_cell l) ;
    remove_left pl
    and remove_right = function
    Empty -> ()
    | Cell c as l -> let nl = c.next in
    if c.info = x then ignore (remove_cell l) ;
    remove_right nl
    in match l with
    Empty -> Empty
    | Cell c as l -> if c.info = x then remove x (remove_cell l)
    else (remove_left c.prev ; remove_right c.next ; l) ;;
    val remove : 'a -> 'a dlist -> 'a dlist = <fun>

Solving linear systems

This exercise has to do with matrix algebra. It solves a system of equations by Gaussian elimination (i.e., pivoting). We write the system of equations A   X = Y with A, a square matrix of dimension n, Y, a vector of constants of dimension n and X, a vector of unknowns of the same dimension.

This method consists of transforming the system A   X = Y into an equivalent system C   X = Z such that the matrix C is upper triangular. We diagonalize C to obtain the solution.
  1. Define a type vect, a type mat, and a type syst .

    # type vect = float array ;;
    type vect = float array
    # type mat = vect array ;;
    type mat = vect array
    # type syst = { m:mat ; v:vect } ;;
    type syst = { m: mat; v: vect }


  2. Write utility functions for manipulating vectors: to display a system on screen, to add two vectors, to multiply a vector by a scalar. To print floats, limiting the output to five characters.

    # let my_print_float s =
    let x = string_of_float s
    in let y = match String.length x with
    5 -> x
    | n when n<5 -> (String.make (5-n) ' ') ^ x
    | n -> String.sub x 0 5
    in print_string y ;;
    val my_print_float : float -> unit = <fun>


    To print a system.

    # let print_syst s =
    let l = Array.length s.m
    in for i=0 to l-1 do
    print_string " | " ;
    for j=0 to l-1 do
    my_print_float s.m.(i).(j) ;
    print_string " "
    done ;
    if i=l/2 then print_string " | * | x"
    else print_string " | | x" ;
    print_int (i+1) ;
    if i=l/2 then print_string " | = | "
    else print_string " | | " ;
    my_print_float s.v.(i) ;
    print_string " |" ;
    print_newline ()
    done ;;
    val print_syst : syst -> unit = <fun>

    # let add_vect v1 v2 =
    let l = Array.length v1
    in let res = Array.create l 0.0
    in for i=0 to l-1 do res.(i) <- v1.(i) +. v2.(i) done ;
    res ;;
    val add_vect : float array -> float array -> float array = <fun>

    # let mult_scal_vect x v =
    let l = Array.length v
    in let res = Array.create l 0.0
    in for i=0 to l-1 do res.(i) <- v.(i) *. x done ;
    res ;;
    val mult_scal_vect : float -> float array -> float array = <fun>


  3. Write utility functions for matrix computations: multiplication of two matrices, product of a matrix with a vector.

    # let mult_mat m1 m2 =
    let l1 = Array.length m1 and l2 = Array.length m2.(0)
    and l3 = Array.length m2
    in let res = Array.create_matrix l1 l2 0.0
    in for i=0 to l1-1 do
    for j=0 to l2-1 do
    for k=0 to l3-1 do
    res.(i).(j) <- res.(i).(j) +. m1.(i).(k) *. m2.(k).(j)
    done done done ;
    res ;;
    val mult_mat : float array array -> float array array -> float array array =
    <fun>

    # let mult_mat_vect m v =
    let l1 = Array.length m and l2 = Array.length v
    in let res = Array.create l1 0.0
    in for i=0 to l1-1 do
    for j=0 to l2-1 do
    res.(i) <- res.(i) +. m.(i).(j) *. v.(j)
    done done ;
    res ;;
    val mult_mat_vect : float array array -> float array -> float array = <fun>


  4. Write utility functions for manipulating systems: division of a row of a system by a pivot, (Aii), swapping two rows.

    # let div_syst s i =
    let p = s.m.(i).(i)
    in s.m.(i).(i) <- 1.0 ;
    for j=i+1 to (Array.length s.m.(0)) - 1 do
    s.m.(i).(j) <- s.m.(i).(j) /. p
    done ;
    s.v.(i) <- s.v.(i) /. p ;;
    val div_syst : syst -> int -> unit = <fun>

    # let permut_syst s i j =
    let aux1 = s.m.(i) and aux2 = s.v.(i)
    in s.m.(i) <- s.m.(j) ;
    s.v.(i) <- s.v.(j) ;
    s.m.(j) <- aux1 ;
    s.v.(j) <- aux2 ;;
    val permut_syst : syst -> int -> int -> unit = <fun>


  5. Write a function to diagonalize a system. From this, obtain a function solving a linear system.

    # exception Not_linear ;;
    exception Not_linear

    # let triangulize s =
    if s.m=[| |] || s.v=[| |] then raise Not_linear ;
    let l = Array.length s.m
    in if l<>Array.length s.m.(0) || l<>Array.length s.v then raise Not_linear ;
    for i=0 to l-1 do
    if s.m.(i).(i)=0.0 then
    begin
    let j = ref (i+1)
    in while !j<l && s.m.(!j).(i)=0.0 do incr j done ;
    if !j=l then raise Not_linear ;
    permut_syst s i !j
    end ;
    div_syst s i ;
    for j=i+1 to l-1 do
    s.v.(j) <- s.v.(j) -. s.m.(j).(i) *. s.v.(i) ;
    s.m.(j) <- add_vect s.m.(j) (mult_scal_vect (-. s.m.(j).(i)) s.m.(i))
    done
    done ;;
    val triangulize : syst -> unit = <fun>

    # let solve s =
    triangulize s ;
    let l = Array.length s.v
    in let res = Array.copy s.v
    in for i = l-1 downto 0 do
    let x = ref res.(i)
    in for j=i+1 to l-1 do x := !x -. s.m.(i).(j) *. res.(j) done ;
    res.(i) <- !x
    done ;
    res ;;
    val solve : syst -> float array = <fun>


  6. Test your functions on the following systems:

    AX =



    10 7 8 7
    7 5 6 5
    8 6 10 9
    7 5 9 10




    *



    x1
    x2
    x3
    x4




    =



    32
    23
    33
    31




    = Y

    AX =



    10 7 8 7
    7 5 6 5
    8 6 10 9
    7 5 9 10




    *



    x1
    x2
    x3
    x4




    =



    32.1
    22.9
    33.1
    30.9




    = Y

    AX =



    10 7 8.1 7.2
    7.08 5.04 6 5
    8 5.98 9.89 9
    6.99 4.99 9 9.98




    *



    x1
    x2
    x3
    x4




    =



    32
    23
    33
    31




    = Y

    # let ax1 = { m = [| [| 10.0 ; 7.0 ; 8.0 ; 7.0 |]
    ; [| 7.0 ; 5.0 ; 6.0 ; 5.0 |]
    ; [| 8.0 ; 6.0 ; 10.0 ; 9.0 |]
    ; [| 7.0 ; 5.0 ; 9.0 ; 10.0 |] |] ;
    v = [| 32.0 ; 23.0 ; 33.0 ; 31.0 |] } ;;
    val ax1 : syst =
    {m=[|[|10; 7; 8; 7|]; [|7; 5; 6; 5|]; [|8; 6; 10; ...|]; ...|]; v=...}

    # let r1 = solve ax1 ;;
    val r1 : float array = [|1; 1; 1; 1|]

    # let ax2 = { m = [| [| 10.0 ; 7.0 ; 8.0 ; 7.0 |]
    ; [| 7.0 ; 5.0 ; 6.0 ; 5.0 |]
    ; [| 8.0 ; 6.0 ; 10.0 ; 9.0 |]
    ; [| 7.0 ; 5.0 ; 9.0 ; 10.0 |] |] ;
    v = [| 32.1 ; 22.9 ; 33.1 ; 30.9 |] } ;;
    val ax2 : syst =
    {m=[|[|10; 7; 8; 7|]; [|7; 5; 6; 5|]; [|8; 6; 10; ...|]; ...|]; v=...}

    # let r2 = solve ax2 ;;
    val r2 : float array = [|9.2; -12.6; 4.5; -1.1|]

    # let ax3 = { m = [| [| 10.0 ; 7.0 ; 8.1 ; 7.2 |]
    ; [| 7.08 ; 5.04 ; 6.0 ; 5.0 |]
    ; [| 8.0 ; 5.98 ; 9.89 ; 9.0 |]
    ; [| 6.99 ; 4.99 ; 9.0 ; 9.98 |] |] ;
    v = [| 32.0 ; 23.0 ; 33.0 ; 31.0 |] } ;;
    val ax3 : syst =
    {m=
    [|[|10; 7; 8.1; 7.2|]; [|7.08; 5.04; 6; 5|]; [|8; 5.98; 9.89; ...|];
    ...|];
    v=...}

    # let r3 = solve ax3 ;;
    val r3 : float array = [|-80.9999999999; 137; -33.9999999999; 22|]


  7. What can you say about the results you got? One should never neglect the effect of round-off errors. A small error in the input data can cause a great error in the result when multiplied.

Previous Contents Next