Portable, Unobtrusive Garbage Collection
for Multiprocessor Systems

Damien Doligez
Ecole Normale Supérieure
INRIA Rocquencourt
Ecole Polytechnique
Damien.Doligez@inria.fr

Abstract

We describe and prove the correctness of a new concurrent
mark-and-sweep garbage collection algorithm. This algo-
rithm derives from the classical on-the-fly algorithm from
Dijkstra et al. [9]. A distinguishing feature of our algo-
rithm is that it supports multiprocessor environments where
the registers of running processes are not readily accessible,
without imposing any overhead on the elementary opera-
tions of loading a register or reading or initializing a field.
Furthermore our collector never blocks running mutator pro-
cesses except possibly on requests for free memory; in par-
ticular, updating a field or creating or marking or sweeping
a heap object does not involve system-dependent synchro-
nization primitives such as locks. We also provide support
for process creation and deletion, and for managing an ex-
tensible heap of variable-sized objects.

1 Introduction

Concurrent garbage collection has a well-deserved reputa-
tion for being a tough problem. This is evidenced by the
discrepancies between the state of theory and practice in
this area. As we shall see below, the published proven al-
gorithms often contain simplifying assumptions that cannot
be met in practice in a multiprocessor system, because this
would either impose unbearable overhead on the mutator
processes, or require a degree of hardware and/or operating
system support that compromises portability. Implemented
systems that do not fall in the latter two categories often
rely on incompletely formalized algorithms, which generally
means buggy algorithms, given the subtleness of the correct-
ness proofs.

To our knowledge, and as we shall argue below, all pub-
lished concurrent collectors fall in one of the above cate-
gories, and thus fail to meet at least one of the basic re-
quirements for portable, effective garbage collection on mul-
tiprocessors. In fact the only proposal that even attempts to
meet these requirements is the Doligez-Leroy hybrid collec-
tor [10]. Unfortunately, the algorithm they proposed was in-
completely specified and, perhaps not unexpectedly, buggy.

*This work was partly funded by the ESPRIT Basic Research Ac-
tion No. 6454 (Project CONFER)

Copyright 1994 ACM. Appeared in the Proceedings
of the 21st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Jan-
uary 1994, pp. 70-83.

Georges Gonthier*
INRIA Rocquencourt
78153 LE CHESNAY CEDEX
FRANCE

Georges.Gonthier@inria.fr

In this paper, we redress this state of affairs by fully describ-
ing and proving a concurrent garbage collection algorithm
that meets the requirements for the Doligez-Leroy collector
architecture. This turns out to be much more intricate than
the simple adaptation of the concurrent mark-and-sweep al-
gorithm [9] outlined in [10]. We still expect the experimental
results of [10] to hold for our model, because a slightly mod-
ified (debugged) version of their algorithm fits in our model.

In the next section we spell out the basic portability and
efficiency requirements for a collector for multiprocessors.
We show why previous algorithms fail at least one these re-
quirements, and how these requirements coincide with those
of the Doligez-Leroy architecture. In section 3 we describe
the basic algorithm of [9], and expose a series of counterex-
amples to explain why a straightforward adaptation of this
algorithm to multiple mutators would not work; we also ad-
dress some efficiency issues. In section 4 we describe the
basic procedures of our algorithm. In section 5 we describe
the extensions to handle process and heap management. Fi-
nally, in section 6 we present a sketch of the correctness proof
of the algorithm. This proof is based on a formal model of
the algorithm, expressed in a Unity/TLA-like format; this
model, listed in the appendix, also covers the extensions to
the basic algorithm.

2 The requirements

Our basic requirements are essentially shaped by the follow-
ing “facts of life” about multiprocessors:

1 Registers are local. Even on a uniprocessor, it can
be hard to track the machine registers of a running
process. On a multiprocessor this is next to impossi-
ble; furthermore this impossibility extends to the local
memory of each processor.

2 Synchronization is expensive. Of course any mul-
tiprocessor system will provide semaphores and other
synchronization devices, but often these will only be
available through expensive system calls. Thus a por-
table collector should use as little synchronization as
possible.

3 Resources are not bounded. It is unreasonable to
forbid system calls to grow the heap. And just as un-
reasonable to make the liveness of the collector depend
on exhaustion of the system memory.

2.1 Actions and overhead

Let us classify the various actions that can be taken by a

mutator thread:))
a) move data (including heap pointers) between reg-

isters and/or local memory

a field in a register (dereference a heap

pointer)

c) reserve free memory for future new heap objects

d) create a heap object in previously reserved memory

e) fill a field in a new heap object

f) update a field in an existing heap object

g) cooperate with the collector (see below)

h) mark heap objects referenced by registers and local
memory (this is a special case of g)

We break up the usual “allocate a heap object” action into

separate ¢ (reserve), d (create), and e (fill) actions. The

¢ actions are a necessary evil: the ¢ actions of all active

mutator threads all contend for the free memory provided

either by the collector or the system. Hence ¢ actions must

call on synchronization primitives, which may be expensive

(fact 2). Having separate d and ¢ actions allows us to amor-

tize the synchronization overhead by keeping local pools for

each thread, and “batching” operations on the free list.

The e (fill) and f (update) action types correspond to
the same physical operation—a store in the heap. We dis-
tinguish them because they have different frequencies and
preconditions. In a e action the modified heap object is still
private to the mutator thread, while in an f action it may
shared with other threads. Hence f actions are harder to
implement, so it is fortunate that in practice they are not
very frequent: having an efficient garbage collector encour-
ages the creation of new objects to hold new results, rather
than the hazardous reuse of temporaries.

The g and h actions (cooperate and mark) are an un-
avoidable consequence of fact 1. Obviously, a reasonable
algorithm should ensure that they do not disrupt the muta-
tor threads significantly.

Let us say a garbage collection algorithm is unobtrusive
if it meets the following conditions:

b) load

(i) It adds no overhead to the very frequent mutator ac-
tions of type a, b, and e.

It only imposes synchronization overhead on type ¢
mutator actions, for which it is unavoidable.

Mutator actions of type g and h are executed only at
a mutator thread’s convenience.

For any mutator, the total overhead of ¢ and & actions
for a full collection cycle is bounded, a “full collection
cycle” being the period that ends when the collector
has reclaimed all currently unused heap objects.

Full collection cycles always terminate, regardless of
increases in the heap size or the number of processes.

Requirement (i) is a basic efficiency constraint. Any useful
overhead has to include at least one heap reference, which
would take as much time as a load or fill action, and pos-
sibly twenty times as much as a move action. Require-
ment (ii) is a direct consequence of fact 2: less frequent
actions of type d, f, g, or h can incur moderate overhead,
but by fact 2 synchronization cannot be considered “mod-
erate overhead”. Requirement (iii) means a mutator does
not have to be ready to cooperate with the collector at all

71

times: it can restrict cooperation to well-defined points in its
code. As a consequence, transient states are allowed in the
mutators, which is required by efficient code. Another con-
sequence is that real-time garbage collection becomes possi-
ble: a mutator may exclude cooperation overhead for some
time-critical part of its code. Requirement (iv) bounds the
amount of cooperate and mark overhead a mutator must
incur before getting any significant payback from the collec-
tor. Requirement (v) simply takes fact 3 into account.

Put all together, requirements (i)—(v) state that the per-
formance of the concurrent collection algorithm should be
roughly comparable to that of a sequential collector, but
without the disrupting pauses (requirements (iii) and (iv)).

On the other hand, we limit ourselves to rather weak ef-
ficiency requirements on the collector. The basic collector
actions of marking, unmarking, or reclaiming a heap ob-
ject should not require synchronization; the total amount
of collector work for a full cycle should be proportional to
the maximal heap size and the total number of processes,
at least in absence of the (presumed infrequent) update
actions. Stronger requirements (e.g., removing the provi-
sion for update actions) would imply additional mutator
overhead that is not justified in practice, as the collector is
rarely the bottleneck, especially in the setting of [10] (which
we outline in subsection 2.3.) Also, allocating more mem-
ory will compensate for a slower algorithm, up to a certain
point [13]. As a last resort, parallelizing the collector is also
an option [15, 19].

2.2 Where all else fails

As elementary as constraints (i-v) seem to be, they all but
rule out copying garbage collection algorithms that relocate
objects in order to eventually reclaim entire areas at once.
By fact 1, the collector cannot update the local memory
of running processes to reflect the relocation, so it must
arrange for the processes to do this updating on their own.
The known schemes for doing this invariably break at least
one of (i)—(iii). Doing a test [3] or a second indirection [6, 20]
for each heap access obviously breaks (i) for load actions.
Using virtual memory page protections to bypass the test [2]
breaks (ii) and (iii): mutators incur the possibly high page
fault overhead at random times.

Some promising systems were recently proposed for in-
cremental and concurrent copying collection [5, 18]; however
they require a global rendez-vous of all the mutators in each
collection cycle, breaking either (ii) or (iii).

So it seems we must give up relocation to get an un-
obtrusive concurrent collector, which leaves us with mark-
and-sweep algorithms. Unfortunately, the basic on-the-fly
mark-and-sweep algorithm [9] does not account for fact 1—
it assumes that the local pointers of a thread only point to
otherwise accessible objects. This could only be enforced by
imposing overhead on move actions [12], and thus break-
ing (i). All the derivatives of [9] suffer this fatal flaw [4, 14].
Furthermore these algorithms only support a single mutator;
the multiple mutator version [15] explicitly requires synchro-
nization overhead, breaking (ii).

2.3 The Doligez-Leroy design

It may seem a pity that we had to rule out the copying al-
gorithms, as only they can deal with the large amount of
short-term garbage generated by functional languages such
as ML [1]. As was shown in [10], this dilemma can be solved

P12 i3
; o L : Global
Stacks DLW F] G] oY ¢ variables
E v E E v E E Y E 14
Minor heaps ! ‘ o . .l
---V;--‘/J_ ---V;--‘J_ ---V;--‘J_ \
Major heap

Figure 1: The Doligez-Leroy architecture

by organizing the local memory of each processor into a stack
and heap (Figure 1), and running a stop-and-copy collector
locally to do generation scavenging. This stop-and-copy col-
lector does not break requirement (ii) because it only stops
the local thread. Copying is especially adapted to the young
generation because most of the young objects are garbage,
and a copying collector works best in that case. Thus most of
the garbage is reclaimed by the mutator threads themselves
and the major collector is only concerned with long-lived
and mutable objects.

With this architecture the previously overlooked fact 1
becomes glaringly obvious: clearly the global collector can-
not trace the local heap without the cooperation of the mu-
tator thread. In a highly portable system such as Caml-
Light [17], fact 2 is a matter of course. So [10] had implic-
itly laid out requirements (i)—(iv) for their global collector.
They only missed on requirement (v) and, as we will see
below, on some subtle implications of requirements (i)—(iv).

3 The basic algorithm and its shortcomings

In this section, we expose the Dijkstra et al. algorithm [9]
(hereafter called the “basic algorithm”) and a series of coun-
terexamples that show why a straightforward adaptation to
multiple mutators cannot work, and we describe some effi-
ciency problems of this algorithm.

3.1 The basic algorithm

First we describe the heap data structure, then the opera-
tions of the collector and mutators.

The heap is a fixed array of objects, each of which has a
fixed number of fields.

const Fnd, MaxIndex € NAT
type ADDR ={0,...,End —1}
INDEX =A{0,..., MazIndexz}
var heap € array [ADDR,INDEX] of OBJECT

There is a fixed set of globally accessible locations. One of
them is the head of the free list, which uses the usual linked
list implementation.

const Globals € set of ADDR

The tracing status of heap objects is modeled by a separate
color array:

72

Mark:

Scan:

foreach z € Globals do MarkGray(z)
repeat
dirty — false
foreach z € ADDR do
if color[z] = Gray then
dirty «— true
foreach : € INDFX do
MarkGray(heap[z, i])
color[z] «— Black
until —dirty
Sweep& Clear: foreach z € ADDR do
if color[z] = White then
append z to the free list
else if color[z] = Black then
color[z] «— White

Figure 2: The basic collector

type COLOR = { White, Gray, Black}
var color € array [ADDR] of COLOR
init Vz € ADDR, color[z] = White

White objects are unmarked. Their reachability status is un-
known. Black objects are traced. They are marked (reach-
able) and their sons are marked. Gray objects are marked
but their sons have not been marked yet.

Because the free list head is one of the globally accessi-
ble values, the free list is traced by the garbage collector,
and allocation is a special case of assignment. In fact, fill,
reserve, create, and update operations are all instances
of a generic store operation, implemented as follows:

MarkGray(z) =

if color[z] = White then color[z] «— Gray
Store(z,i,y) =

heaplz,i] — y

MarkGray(y)

The collector cycle is divided in four steps (Figure 2):

Mark: Mark objects referenced by global variables.

Scan: Scan the heap for marked (Gray) objects, and trace
them by marking their sons and Blackening them. Re-
peat the scan as needed to ensure all reachable objects
are marked and traced.

Sweep: Reclaim all white objects.

Clear: Unmark all marked objects, establishing the precon-
ditions of the next collector cycle.

The two invariants used in [9] to prove this algorithm are:
e During the Scan step, every White reachable ob-
ject is reachable from a Gray object.
e At the beginning of the Sweep step, there is no
Gray object.
From these invariants, one can deduce that all reachable ob-
jects must be Black at the beginning of the Sweep step. The
second invariant is easy to prove, assuming that MarkGray
is atomic. For the first invariant, one proves that at most
one Black-to- White pointer exists: the pointer from z to y
when the mutator is between the two lines of Store.

oG

Figure 3: If we don’t mark the old value...

The algorithm still works when MarkGray is not atomic,
but the proof is more complex. The detailed proofs can be
found in [9].

This algorithm is subject to floating garbage,i.e. garbage
created during a collector cycle, which will not be reclaimed
by this cycle, but by the next one. This means that a “full
collection cycle” is composed of two collector cycles.

3.2 Local memory

The basic algorithm fails to take fact 1 into account: the
mutator must make sure that its local variables only point
to objects that are already reachable from Globals. Not
only does this mean that all the temporary variables of each
mutator must remain visible to the collector at all times,
but also that all assignments to these temporary variables
incur the overhead of MarkGray; thus the basic algorithm
fails our requirement (i).

To correct this problem, we decided that the local vari-
ables (the roots) of the mutators are hidden to the collector
and we added, as in [10], a handshake between the collector
and each mutator. The Mark step of the collector becomes:

Mark: foreach z € Globals do MarkGray(z)
issue a call for roots
wait until all the mutators have answered

And the mutators must execute the Cooperate procedure
from time to time:

Cooperate =
if a call for roots is pending then
call MarkGray on all the roots
answer the call

This constraint seems to preclude calls to foreign functions,
which will not call Cooperate; the implementation solves this
problem by adding a wrapper around such functions. The
wrapper synchronizes with the collector and delegates the
cooperation work to the collector thread itself. The syn-
chronization is only needed for long-running functions, so
its overhead is negligible compared to the running time of
the function.

In this new setting, as stated in [10], we have to mark
the “old” value of a field before the update, or the collector
could reclaim objects that are still in use. This is illustrated
by the following counterexample with a single mutator A
(Figure 3):

C calls for the roots

A grays its only root, O

answers to the call
loads the value O of field 0 of O in a register
sets field 0 of O to nil

C notices that all mutators have answered

blackens O, which completes the Mark step
reclaims (O, which is still in use by A

45
3

Figure 4: If we don’t pause before marking. ..

Marking the old value was an option in the basic algorithm;
it was rejected early on, because it obviously generated more
floating garbage [9]. However it has also been noted that
most of the garbage is floating anyway [21]. This holds
even if the garbage were generated randomly, whereas in
practice most of the garbage consists of recently allocated
objects, which are always marked in the basic algorithm.
Hence controlling the allocation color to prevent almost all
floating garbage in the Sweep and Clear steps is more likely
to reduce floating garbage effectively.

3.3 Multiple mutators

While [10] concluded correctly that old values have to be
marked, they missed an important point: with multiple mu-
tators, it is impossible to get the value of the old object
reliably! To do so would require at least an atomic com-
pare&swap [11] and thus violate (ii). The Store operation
of [10] was:

Store(z,i,y) =
MarkGray(heap[z,1])
heaplz,1] — y
MarkGray(y)

This does not work because the assignment is not guaran-
teed to overwrite the value that was just shaded, as demon-
strated by this counterexample with A B (Figure 4):
C calls for the roots
A grays its only root O
answers the call
loads field 0 of O (Q)
grays () in preparation to a Store into field 0 of O

B grays O and A
answers the call
grays (O, which is already gray
sets field 0 of O to A
grays A
clears the register pointing to A

C blackens all objects, completing the Scan step
performs its Sweep step (whitens all objects)
starts a new cycle by calling for the roots

B grays its only root, O
answers the call
reloads field 0 of O (A)

A resumes its Store by setting field 0 of O to nil
grays its roots O and O (O is already gray)
answers the call

C blackens O and O, completing its Scan step
reclaims A, which is still in use by B

To sum up, first B lays a trap for A by putting a white
object in field 0 of O, then A trips the trap by overwriting

that field. Owur algorithm uses a second handshake before
the call for roots to ensure that all traps laid during the
Sweep step are tripped before the Mark step begins.

We have two other counterexamples (only one of which
appears in [10]) that show the existence of a trade-off be-
tween:

1. adding a third handshake

2. always marking the new value

3. adding some overhead to Store
We chose 1 over 2 to avoid the creation of floating garbage
during the Sweep step, and over 3 because the collector is
not the bottleneck, and because 1 enables us to concentrate
all the overhead of Store before the actual assignment.

3.4 Scan termination

There is one obvious efficiency problem with the basic algo-
rithm: it scans the heap many times to find Gray objects
during the Scan phase. The worst case is even quadratic in
the heap size, and it is easily attainable with a list whose
cells are in decreasing order, a common case when allocation
is in increasing order. Since most of these Gray objects were
marked by the collector itself, it is easy to add a cache of
Gray objects to the collector. As long as this cache is not
empty, the collector does not need to scan the heap to find
Gray objects. A further improvement is to turn dirty into a
global variable and have the mutators set it when they mark
an object. This only avoids the last scan, but in practice we
only have one or two scans most of the time, so saving one
scan is a big win.

Kung and Song [14] use a double-ended queue to avoid
the scans completely, but their solution does not work with
multiple mutators without synchronization on update op-
erations. All the other proved algorithms use repeated scans
of the heap.

In the design of [14], objects are marked Gray as they
are inserted in the queue, which plays the same role as our
cache. This policy does not work in our case, as the following
counterexample shows (Figure 5):

The last three objects in the heap are A, O, and O;
field 0 of O is A and field 0 of O is O; O is gray while A
and O are white, and the collector scan has reached O while
dirty 1s still false and the cache is empty. The following can
occur:

A loads field 0 of O (Q)

grays (O (first step of an assignment to field 0 of O)
C blackens O, as its only field is already gray

... thus completing the Scan step
A sets dirty — true (too late!)

sets field 0 of O to nil

loads field 0 of O (A)

C reclaims A, which is still used by A
Note that it does not help if A sets dirty — true before
marking, as C can reset dirty and repeat the scan at any
time. Hence C must add any gray object it encounters to
the cache, and must mark those objects Black to avoid du-
plicates. Furthermore, if C removes objects from an over-
flowing cache, it must reset their color to Gray. (This im-
plies that mutators should never write back the color of a
Black object, which prohibits “logical or” implementations
of MarkGray.)

We have a two-mutator version of this example to show
that mutators must set dirty «— true even when the old
value is already gray. This compels us to make z a global
variable, and make the mutators test the position of the

74

Ah@«%fa

End

x

Figure 5: If we don’t trace gray objects. ..

gray object compared to z before they change dirty, so that
repeated assignments of the same values do not cause a spu-
rious scan of the entire heap (or even prevent termination
of the Scan step).

4 Our algorithm

In this section we will describe the algorithm in the simple
case where the sizes of the heap, the objects, and the set of
mutators are all constant. We delay the discussion of heap
extension and requirement (v) to section 5, as well as the
discussion of variable-sized objects.

We divide the description of our algorithm as follows:
first the heap model and the description and evolution of
the global variables, then the mutator primitives and finally
the collector code.

4.1 The heap and global variables

We will reuse most of the heap model of the basic algorithm,
with a number of additions and changes. First of all, there
is a fixed set of processes:

const MazPid € NAT
type PID ={0,..., MazPid}

Unlike the basic algorithm, we abstract from the represen-
tation of the free memory list, using a multiset rather than
a set so that we can prove there are no double insertions.
The initial live data must not point to the free list.

var
init

free € multiset of ADDR

Globals N free = 0

Vz € ADDR\ free Vi € INDEX,
heap[z,i] € ADDR\ free

We will use a fourth color, Blue, to indicate free locations
where a heap object may be created. The corresponding
areas are ignored by the collector. All locations in free must
be Blue, but the converse is not always true, as processes
may withhold some free memory.

type COLOR = { White, Gray, Black, Blue}

init Vz € ADDR, color[z] = {%Z;te Liﬁeigf;e

The collector cycle is still divided in the same four steps:
Mark, Scan, Sweep, and Clear.

All the complex handshake synchronization takes place
during the Mark and Clear steps, although these steps were

— Clear —— Mark

step

phase

— Async —+ Syncq

status

status,

swept

scanned

dirty

Figure 6: Timing diagram for global variables

rather trivial in the basic algorithm. The collector keeps
track of the handshake status in a phase variable, whose
values after the first, second, and third handshake are, re-
spectively,

Sync, indicating that mutators will only update fields with
pointers to objects that will be marked in this cycle.

Sync, indicating that mutators will only update fields that
point to objects that will be marked in this cycle.

Async indicating that all mutators have marked the objects
referenced by their registers at one point in this cycle,
whence no reachable object will be reclaimed during
this cycle. We will have phase = Async at the begin-
ning of the next cycle.

As illustrated in Figure 6, the Clear and Mark steps end
with the first and third handshakes, respectively; in practice
these steps are quite short, hence most of the time we have
phase = Async.

The collector and all the mutators use a global status
variable to implement the handshakes:

type STATUS = {Async, Sync,, Sync,}
var statusc = Async € STATUS
VYm € PID, var status,, = Async € STATUS

At rest all statuses equal phase. The collector initiates a
handshake by advancing statusc, the mutators respond by
following suit, and finally the collector moves phase when

75

all have responded. The first two handshakes require no
other action from the collectors than completing pending
actions (especially update); before completing the third
handshake mutators must mark all the objects they refer-
ence (Figure 6).

The collector must perform a polling loop to complete
the handshake. Fortunately, the collector need not be idle
during that period for the last two handshakes, as it has
other marking or tracing work to perform, and the first
handshake is likely to be extremely brief, as it requires al-
most no work from the mutators.

Finally, three global variables are used to implement the
efficiency refinements described in subsections 3.2 and 3.4.

var swept = +oo0 € ADDR W {—o0, 400}

tracks the progress of the Sweep step, and is set to —oo
and —oo before and after the Sweep step, respectively. Mu-
tators test swept in create and update actions to avoid
generating floating garbage during the Sweep step.

var dirty € BOOL

is used to ensure that the Scan step only terminates when
all reachable objects have been marked. It is set to false
by the collector each time it starts a new scan, and reset to
true by a mutator that detects the scan has missed a gray
object, forcing the collector to repeat the scan.

var scanned = —oo € ADDRW {—o0}

tracks the progress of the Scan step, and is reset to —oo
between scans. Mutators test scanned before resetting dirty
to avoid causing spurious scans.

4.2 The mutator actions

The only local variables of a mutator are its multiset of heap
pointers, and free memory pool.

const MaxPool > 0¢€ NAT

var pool = 0 € multiset of ADDR
roots € multiset of ADDR

init roots N free = 0

There are two mutator marking actions. MarkGray is used
before the Scan step, otherwise MarkAndWarn is used to
ensure that a concurrent scan does not miss the marked
object (more precisely, to ensure that the collector traces
the object at least once during the Scan step).

MarkGray(z) =
if color[z] = White then color[z] — Gray

MarkAndWarn(z) =
if color[z] # Black then
MarkGray(z)
if z < scanned then dirty — true

The code for mutator m should execute the Cooperate pro-
cedure at reasonably close intervals; the overhead is minimal
except for the root marking that occurs once per cycle. We
could also allow the mutator to relocate a pointer in a new
heap object and mark this object rather than the one refer-
enced by the pointer, i.e., the marking can be performed by
a local copying collection cycle as in [10].

Cooperate =
if status,, # statusc then
if status,m = Sync, then
foreach z € roots do MarkGray(z)
status,, — statusc

Memory reservation is the only action requiring a critical
section, introduced here by the await...do... construct.
The pick z € S construct chooses and removes one copy of
a random element z € S.

Reserve =
await free # 0 do
repeat
pick z € free do pool — pool @ {z}
until free =0 V |pool| = MazPool

The Create procedure chooses the color of the new object
based on the progress of the cycle to minimize floating gar-
bage. The race with the Sweep step is resolved with the
Gray color; we could also defer the decision to the next
allocation or handshake. Note how the sentinel values of
swept simplify the logic.

Create =
pick z € pool do

color[z] «— Black

if status,, # AsyncV z < swept then
color[z] «— White

else if z = swept then
color[z] «— Gray

return z

76

Although there is no overhead on the fill operation, the mu-
tator must completely fill the fields of an object before mark-
ing or using the object, and in any case before marking its
roots.

Although the Update operation carries the most over-
head, it all occurs up front, before the store proper. The
proof shows that during the Async phase, the marking over-
head effectively cuts out the field from the collector’s tracing
space. Hence a mutator repeatedly modifying the same field
only needs to incur the update once per collector cycle.

Update(z, 1, y) =
if status,, # Async then
MarkGray(heap[z, i])
MarkGray(y)
else if swept = —cc then
MarkAndWarn(heap[z, 1])
heaplz,i] — y

4.3 The collector

We assume the size of the collector cache is bounded.

const MazxCache> 0 & NAT
var cache = () € multiset of ADDR
phase = Async € STATUS

Trace is just the standard Black tracing procedure, with the
recursion stack made explicit by cache, and with overflow
handled by the Gray color. The comparison with scanned is
tighter than in MarkAndWarn, because tracing is not con-
current with scanning.

Trace(z) =
MarkBlack(z)
while cache # 0 do pick y € cache do
foreach i € INDEX do MarkBlack(heaply, 1))

MarkBlack(z) =
if color[z] # Black then

if |cache| < MazCache then
color[z] «— Black
cache «— cache ® {z}

else
color[z] «— Gray
if z < scanned then dirty «— true

Because handshakes are completely asynchronous for the
mutators, they require some waiting on the part of collector.
Apart from access to the free list, handshakes are the only
synchronization overhead on the collector.

Handshake(s) =
statusc «— s
foreach m € PID do
await status,, # phase do skip
phase — s

The collector cycle (Figure 7) is a straightforward implemen-
tation of the diagrams of Figure 6. Note that both scanned
and swept always point at the object under scrutiny or just
before it.

Clear:
Mark:

Handshake(Sync,)
swept «— —o0
cobegin
Handshake(Sync,)
Handshake(Async)
and
foreach z € Globals do Trace(z)
repeat
dirty — false
scanned — 0
while scanned < End do
if color[scanned] = Grey then
Trace(scanned)
scanned — scanned + 1
scanned — —o0
until not dirty
swept — 0
while swept < Fnd do
if color[swept] € { Black, Gray} then
color[swept] — White
else if color[swept] = White then
color[z] «— Blue
await true do free — free ® {z}
swept — swept + 1
swept «— 400

Scan:

Sweep:

Figure 7: The collector cycle

5 Extensions

In this section, we describe how our algorithm can be ex-
tended to deal with more realistic heap and process man-
agement. These extensions are absolutely needed for a use-
ful implementation, and they interfere in non-trivial ways
with correctness proofs. The model in the appendix and the
proof cover all extensions discussed here.

5.1 Process management

Because the collector must wait on all threads to complete
a handshake, managing process creation and termination
mainly poses liveness problems. We must make sure that
the collector only has to wait on a finite number of pro-
cesses to complete a cycle, by imposing that mutators call
Cooperate before they launch a new process for the first time
and always give their own status to new processes: processes
with the “wrong” status will not beget offspring until they
answer the collector.

We must also ensure that the collector only tests a finite
number of processes. We can do this by maintaining a list of
active processes. The contention for the list can be resolved
by using double indirection (handles) for each link, each pro-
cess inserting its recent offspring after itself on each status
change, and letting the collector remove dead processes.

5.2 Heap management

Realistic heap management involves dealing with variable-
sized objects, system allocation, and fragmentation.

We stick to the traditional implementation of variable-
sized object, a header word containing the object size and
color followed by the pointer fields, in order not to inter-
fere with debugging. This fixes the direction of scans and

7

sweeps—bottom-up—but does not otherwise affect the al-
gorithm.

There is a mild clash between this header convention
and the system allocation conventions, which usually grow
memory from the top up. This can be solved by setting a top
limit at the beginning of the Scan step. Since swept = —c0
at that time, only floating garbage can be created above
limit. The Clear step must then start by unmarking all
objects created above limit during the previous Scan and
Sweep steps.

Block splitting (using only part of a free memory block to
create an object) is delicate because it interferes with the
comparisons with swept; the correct solution is to create
the object at the top of the block, and to do the equality
test with the block pointer rather than the object pointer.

Finally, the collector should be able to merge adjacent
free blocks. In a sequential system this is done by rebuilding
the free list during the Sweep step. Doing this in a concur-
rent system creates contention with the mutators, which can
be reduced by letting the collector reclaim large segments of
the free list for rebuilding. Since those segments must be
white, we have the option of keeping the free list in white,
and marking the free objects blue when they are reserved
by a mutator.

6 The proof

A “proof” of a garbage collection algorithm is never a proof
of an actual implementation of that algorithm; it is a proof
of some mathematical model that conveys the essential ideas
of the algorithm. More often this model is chosen in order
to make the proof as short and elegant as possible [9, 4, 7],
so it i1s very high-level and abstract. This yields elegant
papers, but also carries a price: it is not clear how to fit
the vast amount of details of an actual implementation in
the small, cleverly crafted invariants of the published proof.
This is somewhat unsettling for an asynchronous shared-
memory garbage collector, where intricate synchronization
problems invariably creep in the implementation of high-
level concepts.

We purport to provide a proof that does provide for all
the details of an actual implementation, including all the ex-
tensions discussed above, but that remains abstract enough
to be tractable. The key step here is the choice of the model.
By giving dataflow description of the algorithm we make the
communication pattern between the various internal states
explicit. Writing down the safety invariants—the most crit-
ical part of a garbage collection algorithm proof—then be-
comes a simple, if tedious, matter of combining and relating
the values of the various variables. During the course of
this work most of the problems with the algorithm were
identified during the construction of the model; only a few
more appeared during the safety proof. The liveness proof
is straightforward.

6.1 The model

The mathematical model on which this proof is based is
listed in Appendix A. The formalism we chose is a cross be-
tween algol, UNITY [7], and TLA [16]. Superficially our
format resembles most UNITY: a set of concurrent atomic
assignments, with only weak fairness constraints. The code
of the individual atomic assignments uses an algol-like syn-
tax.

step € STEP A phase € {Async, Sync,, Sync, }

statusc = phase = Async

V (statusc = Async A phase = Sync, A step = Mark)
V (statusc = Sync, A phase # Sync, A step = Clear)
V (statusc = Sync, A phase # Async A step = Mark)

Vm, statusm € {statusc, phase, Dead, Free, Quick}
VYm, answering,, = status,, = phase # statusc

VYm, marking,, = status,, = Sync, # statusc

Vm, status,, € {Dead, Free, Quick} = pc,, = Halt
{p | status, = Quick} = @, {childm | pc,, = Launch}

AAAAA
wt 2
—_ = D D T

Figure 8: Handshake invariants

Mathematically, however, our formalism is really sug-
ared TLA, because this offers the best approach to proving
independently that implementations of the collector or pro-
cesses match the model. From TLA we inherit the local
variables of subprocesses and the selective use of fairness

constraints—only statements containing a W2 are subject
to a weak fairness constraint.!

We express the algorithm in a dataflow rather than an
imperative style, in keeping with the TLA view that the
easiest thing to abstract away from in a program is the pro-
gramming language syntax. Instead of having a single im-
perative variable z whose exact meaning at any given time
depends on a pc variable that could take several dozen val-
ues, we use a handful of dataflow variables, each of which
holds the set of values of =z at a given processing state. We
can use a single set to factor away common processing, much
like we use procedures in an imperative setting: for example
the mark variable of the mutator model corresponds to the
MarkGray procedure.

This dataflow style allows us to considerably reduce the
number of pc values. For example the collector is almost
completely parallelized; only the four steps remain. Besides
the obvious gain in compactness, this also makes our model
more general, indicating how the collector could be paral-
lelized. In fact we have attempted to make the model as
general as possible, e.g., we use a rover pointer to allow the
collector to start tracing any Gray object at any time.

We take a rather high-level view of the free list mange-
ment. Operations on the free list are viewed simply as
atomic multiset operations; their implementation on terms
of semaphores and linked list operation is standard and does
not interfere with the rest of the algorithm. We model the
free list with two sets, free and alloc, of White and Blue
objects, respectively. The “memory” action that transfers
objects from free to alloc can be assigned either to the col-
lector, for a Blue free list, or to the mutators, for a White
list, as hinted in section 5.

We are even more cavalier with process management.
The process list is implicit; two extra values, Free and Quick,
indicate processes noton the list. While the implementation
outlined in section 5 is a little tricky, it does not interact

1 Free variables in an action are implicitly quantified existentially in
the action, so for example the collector action with precondition €
cache must eventually be performed if cache is not empty infinitely
often.

78

8) whiten @ claim C [0, ptr) N [0, swept]

9) step = Sweep A ptr < limit = swept < pir

step # Sweep = swept € {—o0, oo}

step = Clear A phase = Async = swept = +©
statusc # Async = ptr = limit A whiten = 0
step € {Mark, Scan} = whiten = claim = 0
step = Mark A statusc = Async = swept = —c¢
step = Scan = swept = —oo

step = Scan = scanned < ptr A scanned < limit
step = Scan A reset A scanned = —oo = ptr = Limit
step # Scan = reset

step € {Sweep, Clear} = blacken = trace =0
step € {Sweep, Clear} = cache = fields = 0
step € {Sweep, Clear} = rover =0

Figure 9: Collector invariants

with the rest of the algorithm, so there is little point in
introducing more detail.

On the other hand, we have a detailed model of the heap
layout, because the fragmentation procedures interfere quite
subtly with the Sweep step. Each heap location contains
either a pointer or an object header containing its size and
color; objects start with a header and are adjacent in the
heap.

All actions in our model, except free list and process
management actions, are asynchronous in the sense that
they make at most one read or write on a global variable
or heap location, if one discounts reads of variables that are
read-only for all other processes, such as swept for the col-
lector, process,, for a running mutator m, or the size of a
non-garbage object.

Compliance with the latter constraint has introduced a
few bumps and twists in the model. For example the col-
lector uses an explicit register pér to sweep the memory.
However it is straightforward to show that the resulting be-
havior still conforms to the timing diagrams of Figure 6.
Global invariants (1-7) (Figure 8) show that the handshakes
go through, and invariants (8-21) (Figure 9), which are lo-
cal to the collector, fill in the rest of the picture. Three
notation details: m always ranges over PID, local muta-
tor variables are subscripted (e.g., marking,,), and sets are
considered a special case of multisets, so (7) asserts that
{{childmn} | pc,, = Launch} is a partition of the set of Quick
processes.

6.2 Safety

Safety for a garbage collector generally reduces to “the col-
lector does not free reachable objects”. Here, because of our
more detailed model, we must also show that “the object
layout is not disrupted by the mutators or the collector”.
The first step towards this is to capture the “layout” and
“reachable” concepts precisely, which we do in Figure 10.

Z,Y,and X are the “end”, “field”, and “field value” re-

YA

K

z Ty
Re

M

e

e e e

e e e e e e e

>

e e e

>

e e

Il

>

t € ADDR A heap[z] € HEADER
Ay = heap[z].size + z + 1

dzyzZlzhz<y<z
dz,z2Yz Ay = heap|z]
Z*(0) N[0, end)
{z € O | heap[z].color = White}
{z € O | heap[z].color = Gray}
{z € O | heap[z].color = Black}
{new, | pc,, € CREATE \ {Split}}
{new,, | 3m, pc,,, € CREATE \ {Split, Fill}}
{oldm | pc,, = Split}
{heap[y] | pc,, € CREATE A new,, Y y & fill,,}
rg(;sm U n;z?km UF,
U{z | (z = new,, Vz = oldy, vV zY field,)
A pe,, € UPDATE}
U {z € args,, | status,, # Quick}
U{z € args, | pc,, = Launch A p = child, }
X*((GuB)\U,,Cn) U, X" (An)
(W UG U B) \ free
VAU, (X (An) U Cm)

{field,,, | Am, pc,, € UPDATE A statusm # Sync,
A (pc,, = Store V old,, # heap[field,,])}

dz ¢ K,zYz ANy = heap[z] ¢ B

{z € G | step # Scan V © > pir V reset V dirty}
U blacken U cache U (heap[ﬁ/eﬁs\f(] U trace) \ B
(markm U {z € Fy, | marking,,})\ B

T* (Rc U, Rm) U(GUB)\|J, Cm

Figure 10: Auxiliary definitions

79

(22)U & @, Con CV \ claim
(23) free @ claim C W
(24) alloc ® @m(poolm B®Sm)=0\(WUGUB)
(25)Ym, fill,, C {z € Y(newm) | pc,, € CREATE}
(26)Vm, pe,, € UPDATE = field,, € Y(O)
(27) whiten C V A fields C Y(O)A Rc CUUG
(28) Vm, status,, # AsyncV step € {Mark, Scan}
= Cn CWUBApc,, # GrayNew
(29)Ym, pc,, = Split = heap[new,,].color = Black
(30) {ptr, limit, rover} C O U {end}
(31) ptr < limit A sublimit < limit
(32) end € Z*(0)
(33)Ym, pc,,, = Split = oldy Y newp,
(34)Ym, pc,, = Split = Z(oldy) = Z(new,)
(35) step = Sweep = (U U UmCm) NW C [0, ptr)
(36)Ym, pc,, = ClearNew A step = Sweep = new,, < ptr
(37) step = Sweep = f/re\e N [ptr, sublimit) = 0
(38) step = Sweep = B C whiten U N U [ptr, end)
(39)Ym, pc,, = TestSweep A step = Sweep A old,, < swept
= new, & [swept, ptr) \ (W U whiten)
(40)Vz € O, step = Sweep A swept <z < ptr = z €V
(41) step = Clear = B C whiten U N U [ptr, limit)
(42) step € {Mark, Scan} = heap[K]C M = X" (M)
(43) cache C G U B A blacken C W U G
(44)

44)V¥'m, pc,, = Store A status,, # Async A “"marking,,
= new, € BUGUR,,

(45)VYm, pc,, € {TestScan, SetDirty} A step € {Mark, Scan}
= old, e GUB

46)Vm, pc,, € UPDATE \ {Store} = status,, = Async

47)

18)

49)Vm, marking,, V status;m,=Async A step €{Mark, Scan}
= X"(Am)C M

(50)Ym, marking,, A pc,, = Fill = new,, € W

(51) Ym, status,, = Async A step € {Mark, Scan}
= mark, =0AC,, CB A pe,, # ClearNew

(52) step = Scan = Rc UU\B C [0, limit)

(53)Ym, pc,, = GrayOld A step = Scan = old,, < limit

Vm, status, €{Dead, Free, Quick} = A, = pool, =0
Vm, pc,,=Halt = args,, =0

(
(
(
(

54)Vz € O\ B, step = Scan A z < ptr < limit
» 14 14
= 1z < scanned

Figure 11: Safety invariants

lations, respectively, so X * is the reachability relation. O is
the set of objects, W, G, B its color subsets. A,, is the set
of objects immediately accessible by mutator m. It includes
not only r00tsm (the set underlying the multiset roots,,),
but also objects that are being marked or updated, and filled
fields Fy, of an object being created. The latter (Cyy,) is not
part of A,,. U is the set of objects under use; it includes all
objects reachable from the “registers” A,,, or from shaded
objects not under creation (which may be used by the col-
lector). V is the set of valid objects, and O \ V is the set
of available memory blocks. J is the set of garbage objects:
valid objects that are not reachable from any mutator.

The main safety invariant is (22) which implies that used
objects only contain pointers to used objects, that they do
not appear on the free or claim lists, and that there are no
pointers to objects under creation (since the inclusion of a
multiset union in a set implies that the union is disjoint).
However all the invariants in Figure 4 depend on each other
to some extent (except 46—47), and must be proved simul-
taneously.

(23-25) asserts that all free memory, blue or white, is
well accounted for. (25-31) ensure that mutator and collec-
tor pointer variables have proper values; (28) ensures that
the mutators do not create unfilled gray objects when the
collector is tracing. (32) asserts that the object layout is
consistent on all the used portion of the heap, and is needed
to establish (30-31); (33—-34) ensure that fragmentation pre-
serves (32).

(35-37) ensure that only garbage is reclaimed by the
sweep step. (38-41) ensure that the sweep and clear steps
do not leave black objects behind, except newly created ob-
jects that will be cleared (). (40) is the key property of the
split-off-top policy: the sweep cannot leap over free memory
block headers. This ensures (39), which in turn ensures that
new objects are created with the right color.

The remaining invariants ensure that the mark and scan
steps shade all objects, so that (35) is established at the
beginning of the next sweep. These invariants are all based
on the formula for M, the set of objects that would be traced
by the collector if the mutators cleared all their registers.
M contains all shaded objects, plus all objects reachable
by the trace relation 7" from the trace roots Rc and R,,.
The trace relation is like the reachability relation, except it
ignores black fields and fields that are being updated and
whose values are unreliable (K).

The main marking invariant is (49); it is the equivalent
of the “reachable objects are reachable from a gray” invari-
ant of the basic algorithm. In turn, (49) crucially depends
on (42), which asserts that M is closed under reachability; it
is the equivalent of the “no black points to a white” invariant
of the basic algorithm.

Part of the proof of (49) is that M is non-decreasing
after phase = Sync,. The purpose of the update overhead
is to ensure that the inevitable increase of K does not lead
to a decrease of M, i.e., it ensures that old,, will always
be traced. In addition, K also contains the fields for which
old,, is the “wrong” value, and the overhead is misspent.
The status # Async overhead covers that case by ensuring
that the value deposited in a field that remains in K because
of a concurrent assignment is always traced.

Finally, note that the invariants remain valid if we add
to K all the fields that have been updated since the start
of the mark step. Once a field has been “cut off” from the
collector, it remains so. This implies that Async processes

80

need to incur the update overhead at most once per cycle
per updated field.

6.3 Liveness

The liveness part of the proof is much more standard. We
need to establish that “all garbage is eventually collected”,
e, z € J~ z & V. It is straightforward to show that all
“quick” garbage in J UW U0, limit) at the beginning of a
sweep step is collected by that step, and that the rest of the
garbage is whitened and thus becomes quick garbage during
the sweep and clear steps, and remains quick garbage during
the mark and scan steps. Therefore, we only need to show
progress of the collector cycle, and this is trivial except for
the handshakes and the scan step.

For the handshakes, first note that each active muta-
tor must eventually change its status after the collector has
changed his, either by doing an exit, or several cooperate
actions. If m never does an exit, then O[pc,, # Halt so m
eventually sets answering,,. m can only reset answering,,
by completing the cooperate, which it must eventually do
since all other actions are blocked. In addition, only the
mutators with pc # Halt at the start of the handshake can
spawn processes with status = phase; once these mutators
have responded the set of mutators with status = phase
decreases, hence the handshake completes.

Let us assume the scan step never terminates, O[step =
Scan]. Note that no used white objects can be created dur-
ing the scan step, so that WN(UUM)is eventually constant.
After all pending updates complete, no mutator will ever
set the color of an object to Gray. It follows from this and
(43) that cache @ G must decrease, so the normal emptying
of the cache must eventually stop. At this point the cache
must be empty, since the overflow action cannot empty the
cache. Therefore we must have cache = blacken = @ from
this point on, and G is constant. Eventually we must also
have O[fields = trace = 0].

If O[—reset] at this point, then eventually O[ptr = limt],
so O[dirty], otherwise the scan step would end, and by (17)
Olreset], a contradiction. So $[reset], and thus $[scanned =
—0o0]. From this point on we must have GNI[0, scanned] = 0,
since blacken must remain empty. Thus once all pend-
ing updates have completed, no mutator can set dirty.
As above, eventually we have reset A scanned = —o0, and
by (18) ptr = limit, whence eventually —reset A—dirty. This
implies O[—dirty A —reset], which implies a contradiction by
the above.

References

[1] ApPEL, A. W. Compiling with continuations. Cam-
bridge University Press, 1992.

[2] ApPEL, A. W., ErLis, J. R., aND L1, K. Real-time

concurrent collection on stock multiprocessors. SIG-

PLAN Notices 23, 7 (1988), 11-23.

BAkeRr, H. G. List processing in real time on a serial
computer. Commun. ACM 21, 4 (1978), 280-294.

BEN-ARI, M. Algorithms for on-the-fly garbage collec-
tion. ACM Trans. Program. Lang. Syst. 6, 3 (1984),
333-344.

(5]

[6]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

18]

[19]

[20]

Boenm, H. J., DEMERS, A. J., AND SHENKER, S.
Mostly parallel garbage collection. SIGPLAN Notices
26, 6 (1991), 157-164.

Brooks, R. A. Trading data space for reduced time
and code space in real-time garbage collection on stock
hardware. In Lisp and Functional Programming 1984
(1984), ACM Press, pp. 256-262.

CHANDY, K. M., AND MisraA, J. Parallel

Design. Addison-Wesley, 1988.

CYPRESS. BiCMOS/CMOS data book. Cypress Semi-
conductor, 1991.

Program

Dukstra, E. W., Lamporr, L., MARTIN, A. J.,
SHOLTEN, C. S., AND STEFFENS, E. F. M. On-the-fly
garbage collection: an exercice in cooperation. Com-
mun. ACM 21, 11 (1978), 966-975.

Dorigez, D., AND LEROY, X. A concurrent, genera-
tional garbage collector for a multithreaded implemen-
tation of ML. In Principles of Programming Languages
1993 (1993), ACM Press, pp. 113-123.

HerLmy, M., AND Moss, J. E. B. Non-blocking
garbage collection for multiprocessors. Technical report

CRL 90/9, DEC Cambridge Research Lab., 1990.

HiBiNo, Y. A practical garbage collection algorithm
and its implementation. In 7th Annual International
Symposium on Computer Architecture (1980), ACM
Press, pp. 113-120.

Hickey, T., AND COHEN, J. Performance analysis of
on-the-fly garbage collection. Commun. ACM 27, 11
(1984), 1143-1154.

Kung, H. T., AND SoNG, S. W. An efficient parallel
garbage collection system and its correctness proof. In
Foundations of Computer Science 1977 (1977), IEEE
Computer Society Press, pp. 120-131.

LamporT, L. Garbage collection with multiple pro-
cesses: an exercise in parallelism. In Proc. IEFEE Conf.
Parallel Processing (1976), pp. 50-54.

LamMpPoORT, L. The temporal logic of actions. Research
report 79, DEC Systems Research Center, 1991.

Leroy, X., AND MAUNY, M. The Caml Light system,

version 0.5 — documentation and user’s guide. Techni-
cal report L-5, INRIA, 1992.

NETTLES, S., O’TooLE, J., PIERCE, D., AND HAINES,
N. Replication-based incremental copying collection. In
International Workshop in Memory Management 1992
(1992), vol. 637 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 357-364.

NEwMAN, [. A., STALLARD, R. P., AND WOODWARD,
M. C. A hybrid multiple processor garbage collection
algorithm. The Computer Journal 30, 2 (1987), 119-
127.

NorrtH, S. C., AND REPPY, J. H. Concurrent garbage
collection on stock hardware. In Functional Pro-
gramming Languages and Computer Architecture 1987
(1987), vol. 242 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 113-133.

81

var heap

[21] WADLER, P. L. Analysis of an algorithm for real time

garbage collection. Commun. ACM 19, 9 (1976), 491—
500.

A The full algorithm model

Global declarations

type ADDR = NAT
SIZE 2 NAT
COLOR 2 {Blue, White, Gray, Black}

color € COLOR
size € SIZE

2 ADDRw HEADER

HEADER 2 record{

WORD
PID

STATUS = {Async, Syncy, Syncy, Dead, Free, Quick}

€ array [ADDR] of WORD
end € ADDR
dirty € BOOL
free, alloc € multiset of ADDR
statusg € STATUS
swept € ADDR W {—c0,+co}

scanned € ADDR W {—co}

¥m € PID,

status;,m € STATUS
args,, € multiset of ADDR

Global initialization

init end = 0

free = alloc = 0
statusc = Async

Vm € PID, statusm € {Free, Async}
{m € PID | statusm # Free} is finite
VYm € PID, args,, =0

Memory

(s € SIZE

— heap[end] — record {SZZIZT — Blue
end — end + s+ 1

alloc — alloc @ {end})

= S

{z € free

= heap[z].color — Blue
free — free © {z}
alloc — alloc ® {x})

{z € free

= free — free 6 {z})

{z € alloc

= alloc — alloc 6{z})
heap|z].color — White

Mutator m

type CREATE 2 {Split, TestSweep, ClearNew, GrayNew, Fill}
{TestOld, GrayOld, TestScan, SetDirty, Store }
CREATE & UPDATE w{Halt, Work, Launch }

UPDATE 2
LABEL 2

var pc = Halt € LABEL
roots = pool = mark = fill = § € multiset of ADDR
answering = marking = false € BOOL
child € PID
old, new, field € ADDR

startup
{ pc = Halt A statusm € {Async, Syncy, Syncy}

WF
= 70015 «— args,,
args,, — 0
if statusy, # statusc then answering «— true
pc — Work)
launch
{(pc = Work A —answering A p € PID A statusp = Free
= child — p
statusp +— Quick
pc — Launch)
{ pc = Launch A z € Toots A p = child
= args,, « args, @ {z})
(pc = Launch A p = child
g status. — {Async if marking
p status, otherwise
pc — Work)
exit
{ pc = Work A mark = pool = 0
—> status;, — Dead
answering — marking «— false
roots «— ()
pc — Halt)
cooperate
(pc # Halt A statusy # statusc

WF .
= answering «— true)
{ pc = Work A answering A —marking

WF .
—> answering — false
if status,;, = Syncy then
mark — mark @ roots
marking «— true
Syncq if status,, = Async
statusm {Sync; otherwise)
{(pc = Work A marking A mark =0

WF . .
== answering «— marking «— false
statusm «— Async)
mark
{(z € mark A heap[z].color # White
= mark — mark 6 {z})
{(z € mark

WL heap|z].color — Gray
mark — mark & {z})
move
{z € roots
= roots «— roots @ {z})
{ z € roots
= roots «— roots & {z})
load
{(z € roots A © <z < x+ heap[z].size
= roots «— roots @ {heap[z]})
reserve
{ pc = Work A z € alloc
= alloc — alloc & {z}
pool — pool & {z})
{z € pool
— pool «— pool & {z}
alloc — alloc ® {z})

82

create
(pc = Work A —answering A s € SIZE
A x € pool A heap[z].size >=s
— pool «— pool © {z}
old — x=
new «— T + heap[z].size — s
fill = {new+1,...,new + s}
color — Black
size S
Split if new > old
TestSweep otherwise)

heap[new] « record

pe —
{ pc = Split

WL heap[old].size «+— new — 1 — old
pool «— pool ® {old}
pc — TestSweep)
{ pc = TestSweep
ClearNew if status;, # Async
V swept > new
GrayNew if old < swept < new
Fill otherwise)
{ pc = ClearNew

WL heap[new].color «— White
pc — Full)
{ pc = GrayNew

WF
— pc —

WL heap[new].color — Gray
pc — Full)
fill
{(y € roots A z € fill

WF
= heap(z] — y
if marking then mark — mark & {y}
fll — fill & (=))
(pe=Fill A fill =0

WF
= roots « roots @ {new}
if marking then mark — mark ® {new}
pc — Work)
update
(pc = Work A —answering
A z,y € roots A = < z < x4+ heap[z].size
= new +— ¥y
field — =z
old «— heap[z]
if statusy, # Async A —marking then
mark «— mark ® {new}
if status;, = Syncy then
mark «— mark @ {old}
TestOld if status,, = Async
Pe == Store otherwise)
(pc € UPDATE A swept > —c0
= pc « Store)
(pc = TestOld
W GrayOld if heap[old].color = White
= pc « { TestScan if heap[old].color = Gray
Store otherwise)

{ pc = GrayOld

WL heap[old].color — Gray
pc — TestScan)
(pc = TestScan
WF SetDirty if scanned > old
= PC T Store otherwise)
{ pc = SetDirty

WF .
= dirty < true
pc — Store)
{ pc = Store

4z heap|field] — new
pc — Work)

Collector

type STEP 2 {Sweep, Clear, Mark, Scan }

var step = Sweep € STEP
phase = Async € STATUS
ptr = limit = sublimit = rover =0 € ADDR
reset = true € BOOL

whiten = blacken = trace = 0 € set of ADDR
claim = cache = fields = § € multiset of ADDR

sweep
(step = Sweep A swept = pir < sublimit
WE it heap[ptr].color € {Gray, Black} then
whiten «— whiten U {ptr}
else if heap[pir].color = White then
claim — claim @& {ptr}
pir — pir + heap(ptr].size + 1)
(step = Sweep A swept < pir < sublimit

WF
= swept «— pir)
(step = Sweep A sublimit < pir < z < limit
WF
= free « free & {ptr,...,z — 1}
sublimit — z)
(step = Sweep A pir = limit
F
g swept — 400)
(step = Sweep A swept = 400
WF . .
= limit — end
step — Clear)

clear
(step = Clear A pir < limit

WE it heap[ptr].color € {Gray, Black} then
whiten «— whiten U {ptr}
pir — pir + heap(ptr].size + 1)
(= € whiten

WL whiten — whiten\{z}
heap(z].color — White)
(step = Clear A pir = limit A whiten =0
WIF
= statusc — Syncy)
{ statusc = phase = Syncy A clatm =0
WF
= statusc «— Syncy
step — Mark)
claim
(z € clatm A y =z + heap[z].size + 1 € claim
= claim — claim 6 {y}
heap(z].size — size + heap[y].size + 1)
{(z € clatm
WE claim — claim o {z}
free — free @ {z})
handshake
(statusc # phase A Ym € PID, status,, # phase

WF
= phase «— statusc)
{ status; = Dead

WF
= status;, — Free)

83

globals
(step € {Mark, Scan}

= rover — 0)
(step € {Mark, Scan} A rover < end

= rover < rover + heap[rover].size + 1)
(step € {Mark, Scan} A rover < end

A heap[rover].color = Gray
= blacken — blacken U {rover})

trace
(z € blacken

WL heap|z].color — Black
blacken «— blacken\{z}
cache «— cache @ {z})
(z € cache A cache # {z}
—> cache «— cache & {z}
heap|z].color — Gray
if z < ptr then reset — true)
{z € cache

WL cache — cache o {z}

fields — fields ® {z + 1,...,z + heap[z].s1z¢}

(z € fields

gﬁelds — fields 6 {z}
trace «— trace U {heap[z]})
(z € trace

WF
= trace «— trace\{z}
if heap[z].color € { White, Gray} then
blacken «— blacken U{z})

mark
(phase # Async

WF
= swept «— —c0)
(statusc = phase = Syncy A swept = —oo

WF
= statusc — Async)

(step = Mark A phase = Async A scanned = —co

g ptr — limit — end
step «— Scan)
reset
(reset
g if step = Scan then ptr — limit
scanned «— —oco)
(step = Scan A rTeset A scanned = —oo
WF
— pir — 0
reset «— dirty — false)
(step = Scan A scanned < pir A dirty

WF
= reset — true)
scan
(step = Scan A scanned < pir < limit

WF
= scanned «— pir)
(step = Scan A scanned = pir < limit

g if heap[ptr].color = Gray then
blacken «— blacken U {pir}
ptr — pir + heap[ptr].size + 1)
(step = Scan A pir = limit A —reset A —dirty
A cache = fields = 0 A blacken = trace = 0

WF

= reset «— true
rover +— ptr «— sublimit «— O
step — Sweep)

