
Relaxing the Value Restriction

Jacques Garrigue
Research Institute for Mathematical Sciences
Kyoto University, Sakyo-ku, Kyoto 606-8502

garrigue@kurims.kyoto-u.ac.jp

ABSTRACT
Restricting polymorphism to values is now the standard way
to obtain soundness in ML-like programming languages with
imperative features. While this solution has undeniable ad-
vantages over previous approaches, it forbids polymorphism
in many cases where it would be sound. We use a subtyping
based approach to recover part of this lost polymorphism,
without changing the type algebra itself, and this has sig-
nificant applications.

1. INTRODUCTION
Restricting polymorphism to values, as Wright suggested

[19], is now the standard way to obtain soundness in ML-like
programming languages with imperative features. Section 2
explains how this conclusion was reached. This solution’s
main advantages are its utter simplicity (only the gener-
alization rule is changed from the original Hindley-Milner
type system), and the fact it avoids distinguishing between
applicative and imperative type variables, giving identical
signatures to pure and imperative functions.

Of course, this solution is sometimes more restrictive than
previous ones: by assuming that all functions may be im-
perative, lots of polymorphism is lost. However, this extra
polymorphism appeared to be of limited practical use, and
experiments have shown that the changes needed to adapt
ML programs typechecked using stronger type systems to
the value only polymorphism type system were neglectible.

Almost ten years after the feat, it might be useful to check
whether this is still true. Programs written ten years ago
were not handicapped by the value restriction, but what
about programs we write now, or programs we will write in
the future?

In his paper, Wright considers 3 cases of let-bindings where
the value restriction causes a loss of polymorphism.

1. Expressions that never return. They do not appear to
be really a problem, but he remarks that in the specific
case of ∀α.α, it would be sound to keep the stronger
type.

2. Expressions that compute polymorphic procedures.
This amounts to a partial application. Analysis of ex-
isting code showed that their evaluation was almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

always purely applicative, and as a result one could re-
cover the polymorphism through eta-expansion of the
whole expression, except when the returned procedure
is itself embedded in a data structure.

3. Expressions that return polymorphic data structures.
A typical example is an expression returning always
the empty list. It should be given the polymorphic
type α list, but this is not possible under the value
restriction if the expression has to be evaluated.

Of these 3 cases, the last one, together with the data-
structure case of the second one, are most problematic: there
is no workaround to recover the lost polymorphism, short of
recomputing the data structure at each use. This seemed to
be a minor problem, because existing code made little use of
this kind of polymorphism inside a data structure. However
we can think of a number of cases where this polymorphism
is expected, sometimes as a consequence of extensions to the
type system.

1. Constructor and accessor functions. While algebraic
datatype constructors and pattern matching are han-
dled specially by the type system, and can be given a
polymorphic type, as soon as we define functions for
construction or access, the polymorphism is lost. The
consequence is particularly bad for abstract datatypes
and objects [15], as one can only construct them through
functions, meaning that they can never hold polymor-
phic values.

2. Polymorphic variants [2]. By nature, a polymorphic
variant is a polymorphic data structure, which can be
seen as a member of many different variant types. If
it is returned by a function, or contains a computation
in its argument, it looses this polymorphism.

3. Semi-explicit polymorphism [4]. This mechanism al-
lows to keep principality of type-checking in the pres-
ence of first-class polymorphism. This is done through
adding type variable markers to first-class polymor-
phic types, and checking their polymorphism. Unfor-
tunately, value restriction looses this polymorphism.
A workaround did exist, but the resulting type system
was only “weakly” principal.

We will review these cases, and show how the value re-
striction can be relaxed a little, just enough for many of
these problems to be leveled. As a result, we propose a new
type system for ML, with relaxed value restriction, that is
strictly more expressive (it types more programs) than ML
with the usual value restriction.

The starting point is very similar to the original obser-
vation about ∀α.α : in some cases, polymorphic types are
too generic to contain any value. As such they can only

1

describe empty collections, and it is sound to allow their
generalization.

Our basic idea is to use the structural rules of subtyping
to recover this polymorphism: by subsumption, if a type
appears only in covariant positions in the type of a value, it
shall be safe to replace it with any of its supertypes. From
a set-theoretic point of view, if this type is not inhabited,
then it is a subtype of all other types (they all contain the
empty set). If it can be replaced by any type, then we can
make it a polymorphic variable. For instance, consider this
expansive binding:

val f : unit -> ’_a list

The variable ’ a is non-generalizable: it can be instantiated
only once, and is shared between all uses of f. We can
replace ’ a by the base type zero. Assuming that zero is not
inhabited, it is sound to replace all its covariant occurrences
by polymorphic variables:

val f : unit -> ’a list

Since ’ a had only covariant occurrences, zero does not ap-
pear in this new type, making it strictly more general than
the original one.

Unfortunately, this simple reasoning cannot be translated
into a direct proof : we are aware of no set theoretic model
of ML extended with references. Nonetheless this intuition
will lead us to a semi-syntactic proof using semantic types.

As an interesting aside to this result, we will see that the
resulting system, while being sound, does not enjoy the sub-
ject reduction. This may explain why it was not considered
to date.

This paper is organized as follows. After a short re-
minder on why the value restriction became so popular, we
give some examples of our scheme applied to simple cases,
and then show how it helps solving the problems described
above. In section 5 we formalize our language and type sys-
tem, and prove its soundness using semantic types in sec-
tion 6, before concluding.

2. WHY THE VALUE RESTRICTION
Before discussing in what way we are improving on the

value restriction, it is useful to explain why this seemingly
weak approach has become the standard solution to the
soundness problem created by ML’s imperative features. We
expose the path chronologically, but do not enter into tech-
nical details. Readers familiar with this problem may skip
directly to section 3.

2.1 The soundness problem
The original problem is well-known: in the presence of

mutable references (and also of other imperative features,
like continuations), the usual typing rule for the polymor-
phic let is unsound. We use Objective Caml syntax and
library for our examples. Programs are in typewriter font,
and output from the interpreter in italic.

let r = ref []

val r : ’a list ref

r := [3]; r

- : ’a list ref

let l =

List.map (function true -> 1 | false -> 2) !r

val l : int list = Segmentation fault

If we apply the usual rule, we can give a polymorphic type
to r. Since each use of r is then assigned a different instance
of this polymorphic type, assigning a value of type int list

does not change the type of other uses of r. As a result we

are able to use r in a context expecting another type, which
causes a runtime type error, or undefined behavior if the
compiler removed type checks.

The problem at hand is clear enough: ’a in the above
example should not be allowed to be polymorphic, because
it is the type of the contents of a reference cell, and this
contents can be modified. If ’a is kept monomorphic, then
it must be instantiated to the same type in all uses of r, so
that we have:

r := [3]; r

- : int list ref

and unsound uses of r are not allowed anymore.
The question is: how can we restrict the type system,

keeping principality, so that mutable data will not be given
a polymorphic type?

2.2 Conservative solutions
The first natural direction to take is to design a conser-

vative extension to ML, satisfying the above restriction, but
also able to type all programs typable in ML without refer-
ences.

The simplest conservative approach is to just keep mono-
morphic all variables used somewhere under the ref type
constructor. The old Caml system [18] made such a choice.
However, it became quickly apparent that such a restrictive
approach gives imperative features only second-class citizen-
ship. For instance this definition of map using reference cells
would not be given a polymorphic type (c.f. comparison in
figure 1):

let imp_map f l =

let input = ref l and output = ref [] in

while !input <> [] do

output := f (List.hd !input) :: !output;

input := List.tl !input

done;

List.rev !output

Since l is stored in a reference, the only way to have this
program accepted would be to explicitly force it to accept
only lists of a fixed ground type (int or string for instance).

This typing seeming too restrictive, more refined type
systems were developed to handle the specificity of types
affected by side-effects. The Tofte discipline [17], used in
Standard ML 90 [11], introduced imperative type variables
for references, marked by a “∗”. They must be instantiated
to ground types whenever a side-effect may occur, i.e. after
any function application or reference cell creation. This was
extended in Standard ML of New Jersey to allow for deeper
curried functions [6, 5]. You can see in the comparison ta-
ble that imp map may take two arguments before requiring
ground instantiation. This subsumes the Tofte discipline:
you just have to replace “∗” by “1”.

While above typings do allow some degree of polymor-
phism, one may remark that references in imp map are purely
local to the computation, and do not escape from its scope.
As such, this would be sound to make them normal poly-
morphic variables. Yet more refined type systems, based
either on effect analysis by Talpin and Jouvelot [16] or clo-
sure typing by Leroy and Weis [10, 7], are able to extract this
polymorphism, by tracking in more detail creation and ac-
cess of references. They both give the same type to imp map

and an applicative version of map, but this is at the price of
adding information about the program execution flow. This
means complex types, which may be acceptable for a system
based on type inference alone, but are awkward when one
has to explicitly write them, in ML module signatures for
instance.

2

System Type of imp map

Old Caml (int→ string) → int list→ string list

SML 90 (α∗ → β∗) → α∗ list→ β∗ list

SML/NJ (α2 → β2) → α2 list→ β2 list

Effects (α
ς→ β) → α list

ς→ β list

Closure (α
L→ β)

M→ α list
N→ β list with α

L→ β . N

Value (α → β) → α list→ β list

Figure 1: Comparing types

2.3 Simplicity and abstraction
By 1993, some people could see that these more and more

complex attempts at conservative extensions were doomed.
Of this negative conclusion, two requirements emerged: keep-
ing the type algebra simple, and keeping the implementa-
tion abstract in types. All the conservative systems have
to reveal information about how a function is implemented,
breaking this abstraction. In practice, this means that when
defining the signature of a module, one has to decide in ad-
vance how it will be implemented. This goes against the
goal of “programming in the large” promoted by the ML
module system, and can be particularly awkward when one
changes the implementation and realizes that the types do
not fit anymore.

The only solution left was to drop conservativity: ac-
cept that some existing ML programs will not be typable
anymore. A first attempt by Leroy was to restrict poly-
morphism to call-by-name bindings, as they have clearly no
side-effects [8]. This avoids any change in the type algebra,
but requires some in the syntax. Yet, this didn’t seem to
restrict the expressivity of the language.

However, a simpler way to obtain the same result was
the value restriction [20]: similarly polymorphism is limited
to bindings without side-effects, but the syntax is left un-
changed. The choice of the typing rule to apply for let

is driven by a syntactic definition of values, which includes
variables, functions, and all constructs except function ap-
plication and reference cell creation. With the value re-
striction, imperative and applicative version of functions re-
ceive the same type, even if the imperative version hides
some references in a closure. There is no magic, rather than
tracking the danger carefully as previous systems did, the
value restriction just assumes that all function applications
are dangerous: their results are not generalizable locally.
This is actually equivalent to the Tofte discipline, assuming
all variables are imperative. To beginners this may cause
some gripes, as some types become monomorphic. This is
particularly confusing when using an interpreter, and exper-
imenting with partial applications. However tests on a huge
corpus of programs showed that the transition was very easy,
with only a few places where eta-expansion was needed. Af-
ter all the headaches caused by overly specific types, this
appeared as the solution.

Since then, the community seems to have settled with the
value restriction, which was first adopted by Caml in 1995,
and Standard ML in 1997.

To finish this overview, an interesting improvement of the
value restriction was suggested by Ohori with the introduc-
tion of rank 1 polymorphism [13]: by allowing quantification
in non-prenex positions, for instance int→ ∀α.α → α list,
it can recover some lost polymorphism, much in the same
way as indexed weak variables improved on imperative type

variables. Yet this re-introduces some complexity, and re-
veals the implementation in some cases.

3. POLYMORPHISM FROM SUBTYPING
With the background of the previous section, we can now

better define our intent.
We follow the value restriction, and keep its principles:

simplicity and abstraction. That is, we do not distinguish at
the syntactic level between applicative and imperative type
variables; neither do we introduce different points of quan-
tification, as in rank-1 polymorphism. All type variables in
any function type are to be seen as imperative: by default,
they become non-generalizable in the let-binding of a non-
value (i.e. a term containing a function application), on a
purely syntactical criterion.

However we can analyze the semantic properties of types,
independently of the implementation. By distinguishing be-
tween covariant and contravariant variables in types we are
able to partially lift this restriction when generalizing: as
before, variables with contravariant occurrences in the type
of an expansive expression cannot be generalized, but vari-
ables with only covariant occurrences can be generalized.

The argument goes as follows. We introduce a new type
constructor, zero, which is kept empty. We choose to instan-
tiate all non-contravariant variables in let-bound expressions
by zero. In a next step we coerce the type of the let-bound
variable to a type where all zero’s are replaced by fresh type
variables. Since the coercion of a variable is a value, in this
step we are no longer limited by the value restriction, and
these type variables can be generalized.

To make explanations clear, we will present our first two
examples following the same pattern: first give the non-
generalizable type scheme as by the value restriction (typed
by Objective Caml 3.06 [9]), then obtain a generalized ver-
sion by explicit subtyping. However, as explained in the
introduction, our real intent is to provide a replacement for
the usual value restriction, so we will only give the general-
ized version —as Objective Caml 3.07 will—, in subsequent
examples. Here is our first example.

let l =

let r = ref [] in !r

val l : ’_a list = []

The _ in ’_a means that the type variable is not generalized:
it will be instantiated when used, and fixed afterwards. This
basically means that l is now of a fixed typed, and cannot
be used in polymorphic contexts anymore.

Our idea is to recover polymorphism through subtyping.

let l = (l : zero list :> ’a list)

val l : ’a list = []

A coercion (e : τ1 :> τ2) makes sure that e has type τ1, and
that τ1 is a subtype of τ2. Then, it can safely be seen as
having type τ2. Since l is a value, and the coercion of a
value is also a value, this is a value binding, and the new ’a

in the type of the coerced term can be generalized.
Why is it sound? Since we assigned an empty list to r, and

returned its contents without modification, l can only be the
empty list; as such it can safely be assigned a polymorphic
type.

Note that Leroy’s closure-based type system would in-
deed infer the same polymorphic typing, but Tofte’s imper-
ative type variables would not: since the result is not a
closure, with Leroy’s approach the fact [] went through a
reference cell doesn’t matter; however, Tofte’s type system
would force its type to be imperative, precluding any further
generalization when used inside a non-value binding.

3

V −(α) = ∅
V −(τ ref) = FTV (τ)

V −(τ1 → τ2) = FTV (τ1) ∪ V −(τ2)
V −(τ1 × τ2) = V −(τ1) ∪ V −(τ2)
V −(τ list) = V −(τ)

Figure 2: Dangerous variables

The power of this approach is even more apparent with
function types. This is the example from the introduction.

let f =

let r = ref [] in fun () -> !r

val f : unit -> ’_a list

which we can coerce again

let f = (f : unit -> zero list :> unit -> ’a list)

val f : unit -> ’a list

This result may look more surprising, as actually r is kept
in the closure of f. But since there is no way to modify its
contents, f can only return the empty list. This time, even
Leroy’s closure typing and Talpin&Jouvelot’s effect typing
cannot meet the mark.

This reasoning holds as long as a variable does not appear
in a contravariant position. Yet, for type inference reasons
we explain in section 5, we define a set of dangerous vari-
ables (figure 2) including all variables appearing on the left
of an arrow, which is more restrictive than simple covari-
ance. In a non-value binding, we will generalize all local
variables except those in V −(τ), assuming the type before
generalization is τ .

This restriction to safe variables means that we need a bit
of encoding to obtain polymorphism in continuation passing
style, where the variable would be of rank 2.

type (+’a,’b) cps = CPS of ((’a -> ’b) -> ’b)

let f = let r = ref [] in CPS (fun k -> k !r)

val f : (’a list, ’_b) cps

let CPS f’ = f

val f’ : (’a list -> ’_b) -> ’_b

The + in type (+’a,’b) cps is a variance annotation, and
is available in Objective Caml since version 3.01. It means
that ’a appears only in covariant positions in the definition
of cps. Datatype definitions being generative, they are not
expanded during type inference, and all covariant variables
can be considered as safe. This additional information was
already used for explicit subtyping coercions (between types
including objects or variants), but with our approach we can
also use it to automatically extract more polymorphism.

Of course, this subtyping approach cannot always recover
all the polymorphism lost by the value restriction. Consider
for instance the partial application of map to the identity
function.

let map_id = List.map (fun x -> x)

val map_id : ’_a list -> ’_a list

Since ’ a also appears in a contravariant position, there is no
way this partial application can be made polymorphic. But
it is clear also that, keeping a simple type algebra, making
the above function polymorphic would be unsound. We can
design an evil variant of map, with the same type, exhibiting
this unsoundness.

let evil_map f =

let r = ref [] in

List.map (fun x ->

let y = !r in r := [f x];

if y = [] then List.hd !r else List.hd y)

val evil_map : (’a -> ’b) -> ’a list -> ’b list

This definition is offsetting its output by one. If one was
to define map id with evil map, and give it a polymorphic
type, this would breach type safety. As usual, we can still
recover polymorphism by eta-expansion.

let map_id l = List.map (fun x -> x) l

val map_id : ’a list -> ’a list

More interestingly, the relaxed value restriction becomes
useful if we fully apply map, a case where eta-expansion can-
not be used.

let l = List.map (fun id -> id) []

val l : ’a list

Note that all the examples presented in this section cannot
be handled by rank-1 polymorphism [13]. This is not nec-
essarily the case for examples in the next section, but this
suggests that improvements by both methods are largely or-
thogonal.

While our improvements are always conceptually related
to the notion of empty container, we will see in the following
examples that it can show up in many flavors, and that in
some cases we are talking about concrete values, rather than
empty ones.

4. APPLICATION EXAMPLES
In this section, we give examples of the different problems

described in the introduction, and show how we improve
their typings.

4.1 Constructor and accessor functions
In ML, we can construct values with data constructors

and extract them with pattern matching.

let empty2 = ([],[])

val empty2 : ’a list * ’b list = ([], [])

let (_,l2) = empty2

val l2 : ’a list = []

As you can see here, since neither operations use functions,
the value restriction does not come in the way, and we ob-
tain a polymorphic result. However, if we use a function as
accessor, we loose this polymorphism.

let l2 = snd empty2

val l2 : ’_a list = []

Moreover, if we define custom constructors, then polymor-
phism is lost in the original data itself. Here pair assists in
building a Lisp-like representation of tuples.

let pair x y = (x, (y, ()))

val pair : ’a -> ’b -> ’a * (’b * unit)

let empty2’ = pair [] []

val empty2’ : ’_a list * (’_b list * unit) = (..)

If we need to use such values in a polymorphic context, the
only workaround allowed by the value restriction is to make
them functions by adding a dummy parameter, and recom-
pute them at every usage site.

let empty2’ () = pair [] []

val empty2’ : unit -> ’a list * (’b list * unit)

let l1 () = fst (empty2’ ())

val l1 : unit -> ’a list

4

This causes extra computation, and is valid only if the con-
structor/accessor has no side-effects. A classical side-effect
would be to add a counter for the number of cons-cells cre-
ated.

let count = ref 0

val count : int ref

let pair x y = count := !count + 2; (x, (y, ()))

val pair : ’a -> ’b -> ’a * (’b * unit)

If the parameters to the constructor have covariant types,
then the relaxed value restriction solves all these problems.

let l2 = snd empty2

val l2 : ’a list = []

let empty2’ = pair [] []

val empty2’ : ’a list * (’b list * unit) = (..)

This extra polymorphism allows one to share more values
throughout a program.

4.2 Abstract datatypes
This problem is made more acute by abstraction. Suppose

we want to define an abstract datatype for bounded length
lists. This can be done with the following signature:

module type BLIST = sig

type +’a t

val empty : int -> ’a t

val cons : ’a -> ’a t -> ’a t

val list : ’a t -> ’a list

end

module Blist : BLIST = struct

type ’a t = int * ’a list

let empty n =

(n, [])

let cons a (n, l) =

if n > 0 then (n-1, a::l)

else raise (Failure "Blist.cons")

let list (n, l) =

l

end

The interesting question is what happens when we use
empty. Using the value restriction, one would obtain:

let empty5 = Blist.empty 5

val empty5 : ’_a Blist.t = <abstract>

Since the type variable is monomorphic, we cannot reuse
this empty5 as the empty 5-bounded list; we have to create
a new empty list for each different element type. And this
time, we cannot get the polymorphism by building the value
directly from data constructors, as abstraction has hidden
the type’s structure.

Just as for the previous example, relaxed valued restric-
tion solves the problem: since ’ a is not dangerous in ’ a

Blist.t, we shall be able to generalize it.

val empty5 : ’a Blist.t = <abstract>

With the relaxed value restriction, abstract constructors
can be polymorphic as long as their type variables are co-
variant inside the abstract type.

Note that, at first sight, it may seem that the variance
annotations, which we need to recover polymorphism here,
are breaking the implementation abstraction of the Blist

module. Actually, this is not so : variance annotations on
abstract datatypes do not restrain the representation itself,
but only the way it can be used. To see that, we may con-
sider the implementation of covariant vectors on top of mu-
table arrays.

type +’a vector = {get: int -> ’a; length: int}
let make len f =

let arr =

if len = 0 then [||]

else Array.create len (f 0) in

for i = 1 to len-1 do arr.(i) <- f i done;

{get=Array.get arr; length=len}
val make : int -> (int -> ’a) -> ’a vector

let map f vect =

make vect.length (fun i -> f (vect.get i))

val map : (’a -> ’b) -> ’a vector -> ’b vector

This situation is to be compared with imperative type vari-
ables, or equality type variables, whose specificity must be
propagated through any definition they are used in, making
it impossible to abstract from the implementation.

4.3 Object constructors
As one would expect from its name, Objective Caml sports

object-oriented features. Programmers are often tempted
by using classes in place of algebraic datatypes. A classical
example is the definition of lists.

class type [’a] list = object

method empty : bool

method hd : ’a

method tl : ’a list

end

class [’a] nil : [’a] list = object

method empty = true

method hd = raise (Failure"hd")

method tl = raise (Failure"tl")

end

class [’a] cons a b : [’a] list = object

method empty = false

method hd = a

method tl = b

end

This looks all nice, until you realize that you cannot create
a polymorphic empty list:

let nil : ’a list = new nil

val nil : ’_a list = <obj>

Again, as ’a is covariant in ’a list, this type variable is
generalizable, and we can now infer a polymorphic type.

val nil : ’a list = <obj>

We are of course restricted to objects with only covariant
methods: if you add a method cons : ’a -> ’a list, this
’a will be dangerous in the class type, and we cannot relax
the value restriction anymore. This is unfortunate as this
method is not expected to change the state of the object
itself, but to create a new one. Yet we have no way to know
that without looking at the implementation. A workaround
is to define such methods outside of the object, as functions,
just like abstract datatypes.

let cons a l : ’a list = new cons a l

val cons : ’a -> ’a list -> ’a list

let nilist = cons nil nil

val nilist : ’a list list = <obj>

4.4 Polymorphic variants
Polymorphic variants [2, 3] are another specific feature

of Objective Caml. Their design itself contradicts the as-
sumption that polymorphic data structures are rare in ML
programs: by definition a polymorphic variant can belong
to any type that includes its tag.

5

let one = ‘Int 1

val one : [> ‘Int of int] = ‘Int 1

let two = ‘Int (1+1)

val two : _[> ‘Int of int] = ‘Int 2

Again the value restriction gets in our way: it’s enough that
the argument is not a value to make the variant constructor
monomorphic (as shown by the “ ” in front of the type).
And of course, any variant returned by a function will be
given a monomorphic type. This means that in all previous
examples, you can replace the empty list by any polymorphic
variant, and the same problem will appear.

Again, we can use our coercion principle1:

let two = (two : [‘Int of int] :> [> ‘Int of int])

val two : [> ‘Int of int] = ‘Int 2

This makes using variants in multiple contexts much eas-
ier. Polymorphic variants profit considerably from this im-
provement. One would like to see them simply as the dual
of polymorphic records (or objects), but the value restric-
tion has broken the duality. For polymorphic records, it is
usually enough to have polymorphism of functions that ac-
cept a record, but for polymorphic variants the dual would
be polymorphism of variants themselves, including results
of computations, which the value restriction did not allow.
While Objective Caml allowed polymorphism of functions
that accept a variant, there were still many cases where one
had to use explicit subtyping, as the same value could not
be used in different contexts by polymorphism alone. For
instance consider the following program:

val all_results :

[‘Bool of bool | ‘Float of float | ‘Int of int]

list ref

val num_results :

[‘Float of float | ‘Int of int] list ref

let div x y =

if x mod y = 0 then ‘Int (x/y)

else ‘Float (float x /. float y)

val div : int -> int ->

[> ‘Float of float | ‘Int of int]

let comp x y =

let z = div x y in

all_results := z :: !all_results;

num_results := z :: !num_results

val comp : int -> int -> unit

Since all results and num results are toplevel references,
their types must be ground. With the strict value restric-
tion, z would be given a monomorphic type, which would
have to be equal to the types of both references. Since the
references have different types, this is impossible. With the
relaxed value restriction, z is given a polymorphic type, and
distinct instances can be equal to the two reference types.

4.5 Semi-explicit polymorphism
Since version 3.05, Objective Caml also includes an imple-

mentation of semi-explicit polymorphism [4], which allows
the definition of polymorphic methods in objects.

The basic idea of semi-explicit polymorphism is to allow
universal quantification anywhere in types (not only in the
prefix), but to restrict instantiation of these variables to
cases where the first-class polymorphism is known at the

1zero amounts here to an empty variant type, and if we show
the internal row extension variables the coercion would be
(two : [‘Int of int | zero] :> [‘Int of int | ’a]),
meaning that in one we case we allow no other constructor,
and in the other case we allow any other constructor.

Intro
Γ ` e : σ1 (σ1 : σ : σ2)

Γ ` [e : σ] : [σ2]ε

Elim
Γ ` e : ∀ε.[σ]ε

Γ ` 〈e〉 : σ

Ann
Γ ` e : τ1 (τ1 : τ : τ2)

Γ ` (e : τ) : τ2

Figure 3: Rules for semi-explicit polymorphism

instantiation point. To obtain a principal notion of knowl-
edge, quantified types are marked by type variables (which
are only used as markers), and a quantified type can only be
instantiated when its marker variable is generalizable. Ex-
plicit type annotations can be used to force markers to be
polymorphic.

The type system only adds three rules to the classical
Damas-Milner presentation of ML-polymorphism [1] (see fig-
ure 3). You can wrap a polymorphic value with its type
[e : σ], and unwrap it 〈e〉 without explicit type information
(hence the “semi-explicit” naming). In these rules, ε is a
special kind of type variables, used only as markers, but
with exactly the same generalization and instantiation rules
as usual type variables, and (σ1 : σ : σ2) gives semantics to
type annotations, and stands for the existence of type vari-
able vectors ᾱ, ᾱ1, ε̄, ε̄1, ε̄2 such that σ1 = (σ[ε̄1/ε̄])[ᾱ1/ᾱ]
and σ2 = (σ[ε̄2/ε̄])[ᾱ1/ᾱ]. i.e. usual type variables must be
instantiated identically in both σ1 and σ2, but markers can
be instantiated differently, allowing the result to be quan-
tified even if the markers in the argument’s type appear in
the environment.

We will not explain here in detail how this system works,
but the base line is that inferred polymorphism can be used
to enforce principality. While this idea works very well with
the original Hindley-Milner type system, treating marker
variables according to the value restriction would simply
force the use of a type annotation when instantiating any ex-
plicitly polymorphic function result. This would be clearly
self-defeating. Recognizing that in this case markers are
completely unrelated to soundness, and are only used to
ensure principality of the type system, a possibility (formal-
ized in [4] and used in Objective Caml 3.05) is to generalize
these markers even in non-value bindings. However, this
also means replacing full blown principality by a notion of
principality among maximal derivations, which is a weaker
property.

We demonstrate here Objective Caml’s behavior, where
elimination is implicit at method call sites.

class id : object method id : ’a. ’a -> ’a end

let f (x : id) = (x#id 1, x#id true)

val f : id -> int * bool = <fun>

let h () = let x = new id in (x#id 1, x#id true)

val h : unit -> int * bool = <fun>

f is a valid use of polymorphism: the annotation is on the
binding of x and can be propagated to all its uses. h would
not be accepted under the strict value restriction, because
marker variables in the type of x would not be generalizable.
It is only allowed thanks to the above mentioned marker-
generalization trick.

By using our scheme of generalizing type variables that
do not appear in dangerous positions, we can recover full
principality, with all its theoretical advantages, and accept
h “officially”.

Note also that since these markers may appear in types
that otherwise have no free type variables, this boosts the

6

number of data structures containing polymorphic (marker)
variables. That is, semi-explicit polymorphism completely
invalidates the assumption that polymorphic values that are
not functions are rare and not essential to ML programming.

4.6 Impact on real programs
When trying to assess how the relaxed value restriction

impacts on real programs, we find ourselves in just the op-
posite situation to the introduction of the value restriction.
The value restriction had evident practical advantages, but
was able to type less programs than the systems used before.
So it was enough to check that existing programs could be
typed with few modifications.

Since the relaxed value restriction can in theory type all
programs typable with the value restriction, such a test has
little meaning. In practice, there is a potential incompatibil-
ity, as there are places in Objective Caml’s type system, at
the compilation unit level and at the class level, where free
type variables are not allowed, and improving polymorphism
(a good thing!) may sometime leave free a variable previ-
ously instantiated. Fortunately, in the hundreds of thou-
sands code lines that were recompiled since this change was
commited, I am only aware of this occurring once, and it
was immediately fixed by a type annotation.

We might also try to compare with the systems described
in section 2. However, using old benchmarks, like those de-
fined in [16] or [10], yields the same results for both strict
and relaxed value restriction, as they do not use empty col-
lections. Differences only appear with examples combining
the use of references and empty collections, like we did in
section 3. To our knowledge, our second example cannot be
typed in any of those previous works, as they do not allow
the presence of polymorphic values in the store.

What one really wants to know is how often this new
feature allows to write programs that could not be typed
with the strict value restriction. This check can only be
done on new code, as by definition old code was typable by
the value restriction (or we would have to dig code written
before the introduction of the value restriction, such code
being incompatible with the Objective Caml syntax). Since
the relaxed value restriction was introduced in Objective
Caml sources about 6 months ago, and there has been no
public release since this addition, the amount of new code
is rather limited.

Yet, I have regularly reports by colleagues that some new
code I wrote (unintentionally) doesn’t compile with ocaml
3.06 anymore. This is mostly the result of toplevel data
definitions having a polymorphic variant type, as in section
4.4. In simple cases one can return to the value restriction
by lifting all non-value subterms from the definition. For
instance we can rewrite the second example of section 4.4
as:

let i2 = 1 + 1

val i2 : int = 2

let two = ‘Int i2

val two : [> ‘Int of int] = ‘Int 2

But if such a lifting cannot be done, finding a workaround
can imply changing the uses of the definition too.

Examples with abstract datatypes and object construc-
tors do not appear unintentionally. But they shall become
common once programmers get used to this feature. Expe-
rience should tell us, but I do not believe that the relaxed
value restriction makes errors harder to understand to pro-
grammers than the strict value restriction: thanks to it you
end up having less errors! The rule itself is simple enough,
and you only need to learn it when you want to extract the
extra polymorphism.

Last, the case of semi-explicit polymorphism shows a dis-
tinct advantage: if we had applied the strict value restriction
to it in Objective Caml 3.05, without the not-so-satisfactory
trick we explain in section 4.5, then almost no program
would be typable: calling a polymorphic method on a freshly
created object would not be typable! The relaxed value re-
striction avoids this, and from this point of view, this is an
essential improvement.

5. FORMALIZATION AND TYPE SYSTEM
In this section we fully formalize our language, and pro-

pose a type system where the extra polymorphism described
in previous examples is recovered automatically (without the
need for explicit coercions). Yet this type system, which we
call the relaxed value restriction, enjoys the principal type
property.

We base ourselves on Wright and Felleisen’s formalization
of Reference ML [20]. For our results to be meaningful, we
need to handle more varied data, so we also add pairs and
lists, as they do not incur any difficulty in typing.

Expressions distinguish between values and non-values.
The store is introduced by the ρθ.e binder and is handled
explicitly. Two kinds of contexts are defined for reduction
rules: R-contexts, used in store operations, and E-contexts,
in evaluation.

e ::= v | e1 e2 | let x = e1 in e2 | ρθ.e
v ::= x | Y | λx.e | ref | ! | := | := v

| (v, v) | π1 | π2 | nil | cons v | uncons v v
θ ::= {〈x, v〉}∗

R ::= [] | R e | v R | let x = R in e
E ::= [] | E e | v E | let x = E in e | ρθ.E

As in Reference ML, both := and := v are values, reflecting
the fact := can only be reduced when given two arguments.

Reduction rules are given in figure 4. They are those of
Reference ML, with a few innocuous additions. We define
one-step reduction as E[e] → E[e′] whenever e → e′, and

multi-step reduction as e1
∗→ en whenever e1 → e2 · · · → en.

Reduction does not produce badly-formed expressions.

Property 1. If e is a well-formed expression (i.e. no
non-value appears at a value position), and e → e′, then e′

is well-formed.

Proof. We assume e = E[e0], e′ = E[e′0] and e → e′

by direct application of a rule. We have to check the well-
formedness of e′0. For (βv) and (let), this comes from the
closedness of values under substitution: for any value v′

inside e0, by induction on the structure of values v′[v/x] is
also a value. For all other reduction rules, this is immediate.
Finally E[e1] is well-formed for any well-formed expression
e1, so E[e′0] is well-formed.

Types are the usual monotypes and polytypes.

τ ::= α | τ ref | τ × τ | τ list

σ ::= τ | ∀ᾱ.τ

An instantiation order Â is defined on polytypes by ∀ᾱ.τ Â
∀β̄.τ ′ iff β̄ ∩ FTV (∀ᾱ.τ) = ∅ and there is a vector τ̄ of
monotypes such that [τ̄ /ᾱ]τ = τ ′.

We type this language using typing rules in figure 5. Those
rules are again taken from Reference ML, assuming all type
variables to be imperative (which is equivalent to applying
the value restriction, cf [19] page 6). The only exception
is the Lete rule, which generalizes some variables. In the
value case, Close(τ1, Γ) = ∀FTV (τ1) \ FTV (Γ).τ1 as usual,
but in the non-value case we still generalize safe variables:

7

(βv) (λx.e) v → e[v/x]
(let) let x = v in e → e[v/x]
(Y) Y v → v (λx.Y v x)
(ref) ref v → ρ〈x, v〉.x
(deref) ρθ〈x, v〉.R[! x] → ρθ〈x, v〉.R[v]
(assign) ρθ〈x, v1〉.R[:= x v2] → ρθ〈x, v2〉.R[v2]
(ρmerge) ρθ1.ρθ2.e → ρθ1θ2.e
(ρlift) R[ρθ.e] → ρθ.R[e] if R 6= []
(ρdrop) ρθ.e → e if dom(θ) ∩ FV (e) = ∅
(π1) π1 (v1, v2) → v1

(π2) π2 (v1, v2) → v2

(uncons1) uncons v1 v2 nil → v1 nil
(uncons2) uncons v1 v2 (cons v) → v2 v

Figure 4: Reduction rules

Var
Γ(x) Â τ

Γ ` x : τ

App
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Abs
Γ[x 7→ τ1] ` e : τ2

Γ ` λx.e : τ1 → τ2

Letv

Γ ` v : τ1 Γ[x 7→ Close(τ1, Γ)] ` e : τ2

Γ ` let x = v in e : τ2

Pair
Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2) : τ1 × τ2

Lete

Γ ` e1 : τ1 Γ[x 7→ CovClose(τ1, Γ)] ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

Cons
Γ ` v : τ × τ list

Γ ` cons(v) : τ list

Rho
Γ[xj 7→ τj ref]n1 ` e : τ Γ[xj 7→ τj ref]n1 ` vi : τi (1 ≤ i ≤ n)

Γ ` ρ〈x1, v1〉 . . . 〈xn, vn〉.e : τ

Axioms

Γ ` Y : ((τ1 → τ2) → τ1 → τ2) → τ1 → τ2

Γ ` ref : τ → τ ref Γ ` ! : τ ref→ τ Γ ` := : τ ref→ τ → τ
Γ ` π1 : τ1 × τ2 → τ1 Γ ` π2 : τ1 × τ2 → τ2 Γ ` nil : τ list

Γ ` uncons : (τ1 list→ τ2) → (τ1 × τ1 list→ τ2) → τ1 list→ τ2

Figure 5: Typing rules

b-Var
t ∈ Γ(x)

Γ |= x : t

b-Let

(∀t ∈ s) Γ |= v : t Γ[x 7→ s] |= e : t′

Γ |= let x = v in e : t′

b-Sub

Γ |= e : t t ≤ t′

Γ |= e : t′

b-App
Γ |= e1 : τ2 → t1 Γ |= e2 : t2
Γ |= e1 e2 : t1

b-Abs
Γ[x 7→ {t1}] |= e : t2
Γ |= λx.e : t1 → t2

b-Ref

Γ |= ref : t → t ref
b-Deref

Γ |= ! : t ref→ t
b-Assign

Γ |= := : t ref→ t → t

b-Rho
Γ[xj 7→ {tj ref}]n1 |= e : t Γ[xj 7→ {tj ref}]n1 |= vi : ti (1 ≤ i ≤ n)

Γ |= ρ〈x1, v1〉 . . . 〈xn, vn〉.e : t

Figure 6: Typing rules for B(T)

8

CovClose(τ1, Γ) = ∀FTV (τ1) \ V −(τ1) \ FTV (Γ).τ1, with
V − the set of dangerous variables defined in figure 2. The
definition of V − captures more variables than the usual def-
inition of contravariant occurrences. We deem dangerous all
occurrences appearing in a contravariant branch of a type.
While this is not necessary to ensure type soundness, we
need it to keep principality of type inference. For instance,
consider the following function.

let f = let r = ref nil in λk.Y (λf.f) !r

As the type of Y (λf.f) is ∀αβ.α → β, we expect the prin-
cipal type of f to be ∀β.γ → β, with γ a non generalizable
variable. However, if we were to generalize covariant vari-
ables at ranks higher than 0, then ∀βδ.(δ → γ) → β would
be another acceptable type for f, and none of the two is an
instance of the other. i.e. we would have lost principality.

We include the Rho typing rule for completeness, but we
cannot use it to obtain subject reduction. We can see it on
the following example2.

let f = (let r = ref nil in λx.!r) in
(cons(nil, f nil), cons(ref nil, f nil))

→ ρ〈r, nil〉.(cons(nil, (λx.!r) nil), cons(ref nil, (λx.!r) nil))

In the first line, f can be given the polymorphic type ∀α.
β list → α list, with β a non-generalized type variable.
When we apply f to nil we may get any list. The type of
the whole expression is (τ1 list list× τ2 list ref list).
However, after reduction, r can only be given a monomor-
phic type, and its two occurrences appear in incompatible
type contexts.

If you think that the problem is anecdotical, and that
it can be solved for instance by adding polymorphic type
information to the store, or even by more extensive changes
like making ref a two-parameter type (one covariant, one
contravariant), then try replacing the definition of f in the
above example by the identically typed

let r = ref nil in
λx.(λy.λz.let u = !y in (:= y (z y) ; := y u ; u)) r (λx.nil)

and consider the typing needed for ρ〈r, nil〉.let f = λx.(λy.λz.
· · ·) r (λx.nil) in e, where e uses f polymorphically. What
this example shows is that this is not enough to be able
to extract polymorphic values from references, we need a
way to propagate this polymorphism to the type of f after
reduction.

In the absence of subject reduction, we must prove type
soundness in an indirect way. We will do this in the next
section by translation into another type system, which has
implicit subtyping. We also prove subject reduction in ap-
pendix A, but for a different reduction system, which in-
troduces coercions. We believe that an appropriate form
of subsumption (direct or indirect) is essential to proofs of
subject reduction for type systems validating our Lete rule.

On the other hand, principality is a static property of
terms, and we can prove it easily by trivially modifying the
inference algorithm W, using CovClose in place of Close for
non-values. This is clearly sound: this is our rule. This is
also complete: CovClose is monotonous with respect to the
instantiation order Â, that is

CovClose(τ,Γ) Â CovClose(S(τ),S(Γ))

for any type substitution S.

2For sake of conciseness we use pairs of expressions, rather
than an expanded form where pairs contain only values; and
we write e1 ; e2 as a shorthand for let i = e1 in e2 (i fresh).
This has no impact on typing.

Property 2 (principality). If, for a given pair (Γ, e)
there is a τ0 such that Γ ` e : τ0 is derivable, then there exists
a σ such that for any τ , Γ ` e : τ iff σ Â τ .

We can also verify a partial form of subject reduction,
limited to non side-effecting reductions, but allowing those
reductions to happen anywhere in a term. While insufficient
to prove type soundness, this property is useful to reason
about program transformations.

C ::= [] | C e | e C | let x = C in e | let x = e in C
| ρθ〈x, C〉.e | ρθ.C | λx.C | (C, v) | (v, C)

Property 3 (partial subject reduction). Non side-
effecting reductions, i.e. rules (βv), (let), (Y), (πi), (unconsi)
preserve typing: for any context C, if Γ ` C[e] : τ and
e →f e′, then Γ ` C[e′] : τ .

The proof can be easily transposed from any proof of subject
reduction for applicative ML. We only need to verify that the
substitution lemma still holds in presence of our distinction
between Letv and Lete.

Lemma 4 (substitution). If Γ[x 7→ σ1] ` e : τ and
Γ ` v : τ1 and Close(τ1, Γ) Â σ1, then Γ ` e[v/x] : τ .

Proof. The proof is by induction on the length of the
derivation and case analysis on the last rule used.
Case Lete. If Γ[x 7→ σ1] ` let x′ = v′ in e : τ using Letv,
then there is a derivation Γ[x 7→ σ1] ` v′ : τ ′. By induction
hypothesis, after substitution, Γ ` v′[v/x] : τ ′ holds, and
since values are closed under substitution, v′[v/x] is still a
value. Since FTV (Γ) ⊂ FTV (Γ)∪FTV (σ1), Close(τ ′, Γ) Â
Close(τ ′, Γ[x 7→ σ1]), so that Γ[x 7→ Close(τ ′, Γ)] ` e[v/x] :
τ is derivable, and Γ ` let x′ = v′[v/x] in e[v/x] : τ by Letv.
Case Letv. If Γ[x 7→ σ1] ` let x′ = e′ in e : τ using
Lete, then there is a derivation Γ[x 7→ σ1] ` e′ : τ ′. By
induction hypothesis, after substitution, Γ ` e′[v/x] : τ ′

holds, and e′[v/x] is not a value. Again CovClose(τ ′, Γ) Â
CovClose(τ ′, Γ[x 7→ σ1]), so that Γ[x 7→ CovClose(τ ′, Γ)] `
e[v/x] : τ is derivable, and Γ ` let x′ = e′[v/x] in e[v/x] : τ
by Lete.
Other cases are all simple and standard.

6. SEMI-SYNTACTIC TYPE SOUNDNESS
The short path to prove the type soundness of our system

is to work in a system providing the desired subtyping. For-
tunately there appears to be such a system, including ML
polymorphism, imperative operations, and subtyping. This
is Pottier’s B(T) [14]. It was originally developed as an in-
termediate step in the proof of type soundness for HM(X), a
constraint-based polymorphic type system [12]. B(T) is par-
ticular by its extensional approach to polymorphism: poly-
types are not expressed syntactically, but as (possibly infi-
nite) sets of ground monotypes.

We give here a condensed account of the definition of
B(T), which should be sufficient to understand how a typing
derivation in our system can be mapped to a typing deriva-
tion in an instance of B(T).

The T in B(T) represents a universe of monotypes, equipped
with a subtyping relation ≤, serving as parameter to the
type system. Monotypes in T are denoted by t. → should
be a total function from T × T into T, such that t1 → t2 ≤
t′1 → t2 implies t′1 ≤ t1 and t2 ≤ t1. ref should be a total
function from T to T , such that t ref ≤ t′ ref implies t = t′.
Moreover t1 → t2 ≤ t ref and t ref ≤ t1 → t2 should both
be false for any t, t1, t2 in T . Polytypes s are upward-closed
subsets of T (i.e. if t ∈ s and t ≤ t′ then t′ ∈ s).

The terms and reduction rules in B(T) are identical to
those in our system (excluding pairs and lists). While Pot-
tier’s presentation uses a different syntax for representing

9

and updating the store, both presentations are equivalent,
ours requiring only more reduction steps. We will stick to
our presentation.

Typing judgments are written Γ |= e : t with Γ a polytype
environments (mapping identifiers to upward-closed sets of
monotypes) and t a monotype. Typing rules3 are given in
figure 6. They are very similar to ours, you just have to
transpose all τ ’s into t’s and all ` into |=. The only changes
are the removal of Lete (this is the strict value restriction),
the addition of b-Sub, and a semantical handling of poly-
morphism in b-Var and b-Let.

The following theorem is proved in [14], section 3, for any
(T,≤) satisfying the above requirements.

Theorem 5 (Subject Reduction). If e → e′, where
e, e′ are closed, then Γ |= e : t implies Γ |= e′ : t.

For our purpose, we choose T as the set of all types gen-
erated by the type constructors zero, int, →, ref, ×, list and
the set of all type variables {α, β, . . . }. The variables are
introduced here as type constants, to ease the translation,
but they are unrelated to polymorphism: there is no no-
tion of variable quantification in B(T). zero is an extra type
constructor, which need not be included in our original lan-
guage. The subtyping relation is defined as zero ≤ t and
t ≤ t for any t in T , and extended through constructors,
all covariant in their parameters, except ref which is non-
variant, and → which is contravariant in its first parameter
and covariant in its second one. This conforms to the re-
quirements for B(T), meaning that subject reduction holds
in the resulting system. We also extend the language, re-
duction and typing rules with Pair, Cons and Axioms about
Y, pairs and lists. Extending subject reduction to these fea-
tures presents no challenge; the concerned reader is invited
to check this (and other details of formalization), on the
remarkably short proof in [14].

The progress lemma depends more directly on the syntax
of expressions, and we cannot reuse directly Pottier’s proof.
However, our reduction and typing rules are basically the
same as in [20].

Lemma 6. For any closed e, if for all e′ such that e
∗→ e′

there is Γ and t such that Γ |= e′ : t, then reducing e either
diverges or leads to a value.

Proof. We reuse lemmas 5.5 and 5.6 of [20], extending
the definition of faulty expressions with cases implying pairs
and lists. Lemma 5.5 (uniform evaluation) does not depend
on types, and lemma 5.6 (faulty expressions are untypable)
uses only the structure of types, which subsumption does
not change.

Combining the above subject reduction and progress, our
instance of B(T) is type-sound.

We present now the translation itself. First we must be
able to translate each component of a typing judgment. The
expression part uses the following translation.

[[let x = v in e]] = let x = [[v]] in [[e]]
[[let x = e1 in e2]] = (λx.let x = x in [[e2]]) [[e1]]

[[e1 e2]] = [[e1]] [[e2]]
[[λx.e]] = λx.[[e]]

[[(v1, v2)]] = ([[v1]], [[v2]])
[[v]] = v if v has no subterms

As you can see, the only change introduced by the trans-
lation is to convert lete into an applied lambda-abstraction

3In Pottier’s presentation, a judgment writes Γ, M |= e : t;
we have merged Γ and M (M only mapping to monotypes),
as our syntax for references permits. b-Rho merges b-Store
and b-Conf from the original presentation.

(which is standard), adding a let x = x which we will use in
our typing.

Types are translated under a substitution ξ : V → T .

[[α]]ξ = ξ(α)
[[τ ref]]ξ = [[τ]]ξ ref

[[τ1 × τ1]]ξ = [[τ1]]ξ × [[τ2]]ξ
[[τ list]]ξ = [[τ]]ξ list

This translation is extended to polytypes and typing envi-
ronments.

[[∀α1 . . . αn.τ]]ξ =
{t | (t1, . . . , tn) ∈ T n, [[τ]](ξ[α1 7→ t1, . . . , αn 7→ tn]) ≤ t}

Before going on to translate full derivations, we prove a
lemma about the single subsumption step we need.

Lemma 7. Let ᾱ be a set of type variables that appear
only covariantly in τ1. Let ξ be any translation substitution.
Then for any t in [[∀ᾱ.τ1]]ξ, we have [[τ1]](ξ[ᾱ 7→ zero]) ≤ t.

Proof. Let ᾱ = α1 . . . αn and ξ′ = ξ[ᾱ 7→ zero].
By definition of [[∀ᾱ.τ1]]ξ, there exists t̄ = t1 . . . tn such that
[[τ1]](ξ[ᾱ 7→ t̄]) ≤ t.
Since the αi’s only have covariant occurrences, and zero ≤ ti

for all ti’s, we also have [[τ1]]ξ
′ ≤ [[τ1]](ξ[ᾱ 7→ t̄]) ≤ t.

By transitivity of ≤ we can conclude that [[τ1]]ξ
′ ≤ t.

Finally the derivation is translated by induction on its
structure, transforming Γ ` e : τ into [[Γ]]ξ |= [[e]] : [[τ]]ξ for
any ξ.

• if the last rule applied is Lete then it is transformed
as follows.

Γ ` e1 : τ1 Γ[x 7→ ∀ᾱ.τ1] ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

maps to

[[Γ[x 7→ τ1]]]ξ
′ |= x : [[τ1]]ξ

′

[[Γ[x 7→ τ1]]]ξ′ |= x : t [[Γ]]ξ[x 7→ s] ` [[e2]] : [[τ2]]ξ

[[Γ[x 7→ τ1]]]ξ
′ |= let x = x in [[e2]] : [[τ2]]ξ

[[Γ]]ξ |= (λx.let x = x in e2) : [[τ1]]ξ′ → [[τ2]]ξ e1 : [[τ1]]ξ
′

[[Γ]]ξ |= (λx.let x = x in e2) e1 : [[τ2]]ξ

where ᾱ = α1 . . . αn, ξ′ = ξ[ᾱ 7→ zero], s = [[∀ᾱ.τ1]]ξ
and t ranges over all elements of s. Note that [[Γ]]ξ′ =
[[Γ]]ξ as αi 6∈ FTV (Γ). The left branch of the deriva-
tion is valid by Lemma 7.

• if the last rule applied is Letv and Close(τ1 ,Γ) =
∀α1 . . . αn.τ1, then it is translated to b-Let.

[[Γ]]ξ′ |= [[v]] : [[τ1]]ξ
′

[[Γ]]ξ′ |= [[v]] : t [[Γ]]ξ[x 7→ s] |= [[e]] : [[τ2]]ξ

[[Γ]]ξ |= let x = v in e : [[τ2]]ξ

where s = [[∀α1 . . . αn.τ1]]ξ, t ranges over all elements
of s, and ξ′ = ξ[α1 7→ t1, . . . , αn 7→ tn] is such that
[[τ1]]ξ

′ ≤ t.

• if the rule applied is Var, then it is translated to b-Var.

[[τ]]ξ ∈ ([[Γ]]ξ)(x)

[[Γ]]ξ |= x : [[τ]]ξ

• other cases are trivial induction.

From this construction we can obtain the following propo-
sition.

Proposition 8. If Γ ` e : τ is derivable in ML with the
relaxed value restriction, then [[Γ]]ξ |= [[e]] : [[τ]]ξ is derivable
in B(T) for any ξ.

10

The transformation on terms being trivial, it is easy to
show that resulting reductions can simulate original ones.

Proposition 9. (1) If e → e′ then [[e]]
∗→ [[e′]] in one or

two steps. (2) If [[e]] → e′ then there is a reduction e → e′′

such that either e′ = [[e′′]] or e′ → [[e′′]].

Proof. In order to translate reduction steps, we define
two kinds of translations on evaluation contexts: [[E]]v when
the hole is to be filled by a value, and [[E]]e when it is to be
filled by a non-value. The first translation is simply defined
as [[E]]v = [[E[x]]][[]/x] (x fresh). [[E]]e is defined by cases, ac-
cording to the minimal subterm strictly containing the hole.
If E = E0[let x = [] in e], then [[E]]e = [[E0]]e[(λx.let x =
x in [[e]]) []]. In all other cases, [[E]]e = [[E]]v.
To prove (1), we look at the reduction step e → e′. If
e = E[let x = e1 in e2] → E[let x = v in e2] = e′, then

[[e]] = [[E]]e[(λx.let x = x in [[e2]]) [[e1]]]
→ [[E]]e[(λx.let x = x in [[e2]]) [[v]]
→ [[E]]e[let x = [[v]] in [[e2]]] = [[e′]]

We have reached e′ in two steps. Otherwise, i.e. if e → e′

is not of the above form, then [[e]] → [[e′]]: the translation is
not affected by the reduction step.
We prove (2). If e is irreducible, then [[e]] is also irreducible
(the translation does not create new redexes where there is
none). If e is reducible, then by analysis of the reduction
rules and the definition of evaluation contexts, there is only
one possible step: e → e′′. Similarly, [[e]] → e′ is the only

possible reduction step from [[e]]. From (1), [[e]]
∗→ [[e′′]] in

one or two steps. If this is one step, [[e′′]] = e′. If this is two
steps, e′ → [[e′′]].

Now, suppose that we restrict ourselves to closed expres-
sions whose types do not contain references nor function
types. Normal forms of such expressions can only be data
of the form:

d ::= nil | (d, d) | cons d

For any such normal form, [[d]] = d.
From this and type soundness for our instance of B(T) we

can deduce the type soundness of ML with the relaxed value
restriction, as stated below.

Theorem 10 (Type Soundness). If ∅ ` e : δ with δ
any type of the form δ ::= α | δ × δ | δ list, then reducing
e either diverges or leads to a normal form d, and ∅ ` d : δ.

7. CONCLUSION
Thanks to a small observation on the relation between

polymorphism and subtyping —that zero in a covariant po-
sition is equivalent to a universally quantified type variable—,
we have been able to smooth some of the rough edges of the
value restriction, while keeping all of its advantages. This
is a useful result, which has already been integrated in the
Objective Caml 3.07 compiler. Hopefully this should make
the use of polymorphic data structures easier.

We could even do a bit more: use the dual observation,
that assuming a “type of all values”, top, the monomorphic
type variables that appear only in contravariant positions
are generalizable too. This would have an extra advantage:
this should alleviate the principality problem, which had us
restrict generalizability to type variables of rank 0. Only
variables that appear both in covariant and contravariant
position would not be generalizable. We have stopped short
of that because generalizing contravariant type variables has
little use, and contrary to zero, there is no guarantee that

CV (α) = λ(x : zero).Y (λf.f) x if α ∈ V
CV (τ) = λx.x if V ∩ TV (τ) = ∅

CV (τ1 → τ2) = λx.λy.CV (τ2) (x (CV (τ1) y))
CV (τ1 × τ2) = λx.let a = CV (τ1)(π1 x) in

let b = CV (τ2)(π2 x) in (a, b)
CV (τ list) = Y(λc.uncons (λx.nil)

(λx.let a = CV (τ)(π1 x) in
let l = c (π2 x) in cons (a, l)))

Figure 7: Type-directed coercions

such a type can be made available in an implementation, or
that it would not break the semantics of the language4.

Notwithstanding our achievements, this paper does noth-
ing to solve the fundamental problem of the value restriction,
namely that by assuming all functions to be imperative, it is
overly pessimistic. We have been able to rescue some cases
that were probably not even considered when it was intro-
duced. But there is no easy solution for more involved cases,
with polymorphic function types in the data.

The triviality of this result brings another question: why
wasn’t it discovered earlier?

Actually, this specific use of subtyping is not new: the fact
has not attracted very much attention, but our Lete rule is
already admissible in HM(X). This could give yet another
way to prove type soundness for our system: by defining it as
a subsystem of a sufficiently feature-rich instance of HM(X).
We preferred B(T) for its robustness, and the lightness of
its definition and proof, but this last approach would have
the advantage of directness.

APPENDIX

A. TYPABLE REDUCTION
As we have seen in section 5, while our original system

is type-sound, it does not enjoy subject reduction. Since
the main goal of subject reduction is actually to prove type
soundness, one might argue that we don’t need it. However,
subject reduction also gives insight about the dynamic se-
mantics of the system, and as such is worth considering for
its own sake.

Based on the idea presented in section 3, we will state
subject reduction using a modified reduction system, where
some reduction rules insert type constraints and coercions.
Since we do not use the same reduction rules as in section
5, subject reduction for this system is not sufficient to prove
the type soundness of ML with the relaxed value restriction.

First, we slightly extend the expression syntax.

e ::= · · · | λ(x : τ).e

The associated typing rule is

Γ[x 7→ τ1] ` e : τ2 ∀FTV (τ).τ Â τ1

Γ ` λ(x : τ).e : τ1 → τ2

That is, the abstracted variable x is constrained to be typed
by a instance of the universally quantified closure of τ .

We also need type-directed coercions, defined in figure 7.
The most general scheme for Cᾱ(τ) is the expected one:

4As a token of the kind of problems which may arise, here is
what happens in Objective Caml using the Obj.repr func-
tion, which can be seen as a coercion to top (aka Obj.t).

let l = Array.create 2 (Obj.repr 1.0)
val l : Obj.t array = [|<abstr>; <abstr>|]
l.(1) <- Obj.repr 1
Segmentation fault

11

∅ ` Cᾱ(τ) : τ [zero/ᾱ] → τ.

Alternatively we could have introduced coercions of the form
(e : τ [zero/ᾱ] :> τ) in our calculus. The above type-
directed coercions have two advantages: we don’t need to
extend the calculus, and the soundness of their reduction is
immediate from the typing. Furthermore, this shows that
we do not need real subtyping, but only an easily simulated
form of subsumption.

Reduction rules are now typed: Γ ` e → e′ means that e
can be rewritten in e′ if Γ ` e : τ for some type τ . There
may be extra typing preconditions about Γ and e.
We split (ρlift) into its different cases.

Γ ` (ρθ.e1) e2 → ρθ.(e1 e2)
Γ ` v (ρθ.e) → ρθ.(v e)

Γ[xj 7→ τj ref]n1 ` vi : τi (0 ≤ i ≤ n)

Γ ` let x = ρθ.v0 in e → ρθ.let x = Cᾱ(τ0) v0 in e

where ᾱ = FTV (τ0) \ FTV (Γ) and θ = 〈xi, vi〉n1 . We also
need a new rule for typed abstraction, discarding the type:

Γ ` (λ(x : τ).e) v → e[v/x]

For all other reduction rules, we just replace e → e′ by
Γ ` e → e′.

Property 11 (Subject Reduction). If Γ ` e : τ is
derivable and Γ ` e → e′ then Γ ` e′ : τ is derivable.

Proof. We only have to extend the partial subject re-
duction proof to the store related rules. We only consider
the new (ρlift) step.
Let’s assume that e is let x = ρθ.v0 in e1 and the con-
ditions for (ρlift) are satisfied. Let τ ′i = τi[zero/ᾱ] and
Γ′ = Γ[xj 7→ τ ′j ref]n1 . Since ᾱ ∩ FTV (Γ) = ∅, we have
Γ′ ` v0 : τ0[zero/ᾱ], and for 1 ≤ i ≤ n, Γ′ ` vi : τ ′i . By the
typing of Cᾱ(τ0), we obtain that Γ′ ` Cᾱ(τ0) v0 : τ0.
Using the bound variable convention, x1, . . . , xn do not ap-
pear in e1, so that Γ′[x 7→ CovClose(τ0, Γ)] ` e1 : τ . Since
ᾱ ∩ FTV (Γ′) = ∅ too, CovClose(τ0, Γ

′) = CovClose(τ0, Γ),
so that Γ′[x 7→ CovClose(τ0, Γ

′)] ` e1 : τ .
From the above conclusions, we can apply Lete and Rho to
deduce Γ ` ρθ.let x = Cᾱ(τ0) v0 in e1 : τ .

Since this version of the system has subject reduction,
should we prefer it to the original one? In our opinion it has
at least two drawbacks.

1. Reduction involves types. Since we have to convert
a subtyping relation into a parametric polymorphism
system, we cannot avoid using type information in the
reduction.

2. Reduced terms contain extra information. This makes
proving program equalities more complex.

From this viewpoint, the goal of this reduction system is
only to give a more direct intuition into how type soundness
is preserved, avoiding the détour through a stronger type
system.

B. REFERENCES
[1] L. Damas and R. Milner. Principal type-schemes for

functional programs. In Proc. ACM Symposium on
Principles of Programming Languages, pages 207–212,
1982.

[2] J. Garrigue. Programming with polymorphic variants.
In ML Workshop, Baltimore, Sept. 1998.

[3] J. Garrigue. Simple type inference for structural
polymorphism. In The Ninth International Workshop
on Foundations of Object-Oriented Languages,
Portland, Oregon, 2002.

[4] J. Garrigue and D. Rémy. Extending ML with
semi-explicit higher order polymorphism. Information
and Computation, 155:134–171, Dec. 1999.

[5] J. Greiner. SML weak polymorphism can be sound.
Technical Report CMU-CS-93-160R, Canegie-Mellon
University, School of Computer Science, Sept. 1993.

[6] M. Hoang, J. Mitchell, and R. Viswanathan. Standard
ML-NJ weak polymorphism and imperative
constructs. In Proc. IEEE Symposium on Logic in
Computer Science, pages 15–25, 1993.

[7] X. Leroy. Polymorphic typing of an algorithmic
language. Research report 1778, INRIA, 1992.

[8] X. Leroy. Polymorphism by name for references and
continuations. In Proc. ACM Symposium on Principles
of Programming Languages, pages 220–231, 1993.

[9] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon. The Objective Caml system release 3.06,
Documentation and user’s manual. Projet Cristal,
INRIA, Aug. 2002.

[10] X. Leroy and P. Weis. Polymorphic type inference and
assignment. In Proc. ACM Symposium on Principles
of Programming Languages, pages 291–302, 1991.

[11] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, Massachusetts,
1990.

[12] M. Odersky, M. Sulzmann, and M. Wehr. Type
inference with constrained types. Theory and Practice
of Object Systems, 5(1):35–55, 1999.

[13] A. Ohori and N. Yoshida. Type inference with rank 1
polymorphism for type-directed compilation of ML. In
Proc. International Conference on Functional
Programming. ACM Press, Sept. 1999.

[14] F. Pottier. A semi-syntactic soundness proof for
HM(X). Research Report 4150, INRIA, Mar. 2001.

[15] D. Rémy and J. Vouillon. Objective ML: A simple
object-oriented extension of ML. In Proc. ACM
Symposium on Principles of Programming Languages,
pages 40–53, Jan. 1997.

[16] J.-P. Talpin and P. Jouvelot. The type and effect
discipline. In Proc. IEEE Symposium on Logic in
Computer Science, pages 162–173, 1992.

[17] M. Tofte. Type inference for polymorphic references.
Information and Computation, 89:1–34, 1990.

[18] P. Weis, M. Aponte, A. Laville, M. Mauny, and
A. Suarez. The CAML reference manual, version 2.6.1.
Rapport Technique RT-0121, INRIA, 1990.

[19] A. K. Wright. Simple imperative polymorphism. Lisp
and Symbolic Computation, 8(4), Dec. 1995.

[20] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, Nov. 1994.

12

