Polyglot Input/Output Library

Documentation
Version 1.0
Frangois Clément Pierre Weis
2014-06-11

1 Outline

Pio is a safe and robust polyglot communication library.

2 What is Pio?

The Pio system is a set of communication libraries to safely exchange values between programs
written in various languages. For the time being Pio offers a library for OCaml, C, C++4, and
Fortran.

3 The Pio library specification

We describe here the overall definition and structure of the Application Programmer Interface,
or API, of the Pio library, Version 1.0.

3.1 The concept of communication

The Pio library defines and implements values, called communications, that can be safely
exchanged between programs written in different languages.

Any communication that satisfies the following specification (both the syntactic specifi-
cation and the semantic restrictions) must be accepted without errors (except for hardware
problems on the wires). The semantics of the transmitted values must not be modified by
the transmission process: ping-pong communications should be a no-op (i.e. the value read
back is equal to the value sent).

We exchange communications as described below. Communication basic blocks are named
typed values; a typed value is a value tagged with its type.

3.2 The description of communications

A communication can be:
e a Phrase communication, i.e. a sequence of typed values;

e a Task communication, i.e. a function name and its arguments;

e a Result communication, i.e. a sequence of typed values;
e an Error communication, i.e. an exception value;
e a Service communication, i.e. a meta information about the communication.

A Task communication is supposed to specify a function to be applied to its arguments
by the receiver; the function is given by its name (a string) and the arguments (a sequence
of typed values).

The intended meaning of Result and Error communications is to tag the effect of a pre-
vious Task communication: if the function application succeeds, the result is sent back as a
Result communication, otherwise an exception value is sent back using an Error communi-
cation.

A Service communication is supposed to carry some information about the communi-
cation process: acknowledgement of communication, request for beginning/end of commu-
nication, request for initialization/finalization of the reader program, and the library error
communication about bogus communication; each service message may have some associated
typed values.

If any data in the communication is not compliant to the grammar and to the various
constraints expressed in the comments, then the entire communication is invalid. In that
case, the library should not produce any value (even possibly truncated ones) but must
return Service “WrongCommunication” to the calling program.

The library communicates binary values encoded in so-called little endian. Both ends
of the communication have not to worry about endianness: the library takes care of the
endianness when appropriate.

The OCaml implementation of Pio uses buffers. The user must provide appropriate i/o
buffers (see the Buffer and Scanf.Scanning modules).

4 The grammar of communications

4.1 Communication description

We describe here the precise string of characters that defines a valid communication.

Communication ::=
(7 \n’ (x+ Beginning of communication marker. x)
Phrase | Task | Result | Error | Service
)7 \n’ ’\n’ (x End of communication marker. x)
Phrase ::=
"%p” Values_number n ’\n’ (x Phrase tag, and number of values n. x*)
Typed_valuex (x n typed values. %)
Task ::=

"%t” Values_number n ’° ’ Task name ’\n’

(x Task tag, number of arguments n, and task/function name. x
Typed_valuex (* n typed values. x)

Result ::=
"%r” Values_number n ’\n’
Typed_valuex

Error ::=
"%e” Values_number n ’\n’
Typed_valuex

(x Result tag, and number of results n. x)
(x n typed values. %)

(x Error tag, and number of wvalues n. x)
(x n typed values. %)

Service ::= "%s” ’ ' Service_name ’\n’ (x Service tag, and service name. %)
Task name ::= String

Values_number ::= ' ’ Size ’ ’ (+ A size surrounded with spaces. x)

Size ::= ’<’ Natural ">’ (+ A delimited natural. x)

Natural ::= Decimal_digit+ (x Usual 10—basis representation. x)
Decimal_digit ::= ’0’ | 1’ | ’2’ | ’37 | 4> | ’5° | 6’ | "7’ | '8 | 9’

4.2 Service description

Service_name ::= (x Intended meaning from the client s (the program that re

the communication) point of view. %)

| 7Ok” (x+ Acknowledge service: the preceding communication was un

| "Ko” (+ Negative acknowledge service: the preceding communicati
not understood. x)

| 7 Allo” (x Communication requested. x)

| ”Bye” (x End of communication requested. x)

| ”Start” (x Initialization of program requested. x)

| ”Stop” (x Finalization of program requested. x)

5 Typed value description

For the time being, typed values are restricted to:
e one boolean ("true” or "false”);
e one string (a sequence of bytes);
e one integer;
e one float;
e one boolean couple, or triple;
e one integer couple, or triple;

e one float couple, or triple;

e one vector of such;
e one integer matrix;
e one float matrix.

To prevent erroneous interpretation, a typed value contains its type.

In addition, to enforce integrity of the communication, all typed values are delimited

between two balanced markers.

Typed_value ::=

"begin” ’\n’ (x Beginning of typed wvalue marker. x)
[”let” Ident_lexem 7 =" ’\n’] (x+ Optional name for the typed value. x)
Value_type ’'\n’ (x The type of the following wvalue. x)
Value (+ A value of the preceding type. x)
7end” \n’ ’\n’ (* End of typed value marker. x)

5.1 Type of value description

The types of values is a simplified form of a real language type algebra, although types for

Pio encapsulate some size information for arrays (i.e. integer values).

Value_type ::= Scalar_type | Array_type
Array_type ::= Vector_type | Multi_d_type
Vector_type ::= 7[1” Scalar_type 71]”
Multi_d_type ::= ’[’ Natural p Scalar_type Natural p ’|’
Scalar_type ::= Simple_type | Tuple_type
Tuple_type ::=

| ’(’ Simple_type 7, 7 Simple_type)’

| ’(’ Simple_type 7, ” Simple_type 7, ” Simple_type ')’
Simple_type ::= Bool_type | String_type | Number_type
Bool_type ::=

| 77%B77

(x Boolean type,
declare this wvalue as a Cint on any architecture
this wvalue is an OCamlbool on any platform . x)

String_type ::=
| 77%8?7
(x+ String type,
declare this value as a Ccharx on any architecture
this wvalue is an OCaml string on any platform . x)

(x Couple type.

(*

Triple type.

Number_type ::=
| "%i”
(x Integer type,
declare this wvalue as a Cint on any architecture
this value is an OCaml int on any platform . x)
| "%mni”
(x+ Native integer with exactly one word of information:
this wvalue is a C pointer on any architecture, so declare this wvalue as a

long
on any architecture , (including LLP6J for which it could have been a long
long),
this value is an OCaml Nativeint.t on any platform .
Note: in case of communication from a 32— bit to a 64— bit architectures , th
must return the corresponding 64— bit long value; in the converse situation
can be truncated without loss of information , it must be truncated, otherw
must fail. x)
| "%11”
(x Integer with ezactly 32 bits of information ,
declare this wvalue as a Cint on any architecture (as a consequence, on an
architecture the C programmer should not use type _int32),
this wvalue is an OCaml Int32.t on any platform . x)
| "%Li”
(x Integer with ezactly 64 bits of information ,
declare this wvalue as a Clong long on a 32— bit architecture, and as a C
long
on a 64—bit architecture (or a long long on LLPG6j),
this wvalue is an OCaml Int64.t on any platform . x)
| "%ft”
(x+ Float type in wusual human readable representation ,
declare this value as a Cdouble on any architecture ,
this wvalue is an OCaml float on any platform . x)
| "%bt”
(x Float type in binary representation ,
declare this wvalue as a Cdouble on any architecture
this wvalue is an OCaml float on any platform . x)

5.2 Value description

A value is either a scalar, or an array. A scalar is either a simple lexem, or a tuple lexem with
the usual syntax.

Value ::= Scalar_item | Array_item
Scalar_item ::= Scalar ’;’ ’\n’
Array_item ::= Array ’;’ ’\n’

Scalar ::= Simple_lexem | Tuple_lexem

Tuple_lexem ::=
| ’(’ Simple_lexem 7, 7 Simple_lexem)’

| ’(’ Simple_lexem ”, ” Simple_lexem ”, 7 Simple_lexem ’)’

5.2.1 Simple lexems

A simple lexem is either a Pio value ident lexem (i.e. a simple form of identifier, which is also
an OCaml value ident), or a simple OCaml lexem (i.e. a bool, a string, or a number lexem).
String lexems also incorporate their size.

Simple_lexem ::=

| Ident_lexem (+ A reference to an already named t
| Bool lexem | String_lexem | Number_lexem
Ident_lexem ::= [_a—z][0—9_a—z]x* (x A Pio value ident. x)
Bool lexem ::= "true” | ”false” (x A valid OCaml boolean. x)
String_lexem ::= Size ’'\n’ String

(x A delimited string with its size.
Quoted characters are counted as only one character in the size. x)

String ::= 7’ Charx "’ (+ A valid OCaml delimited string. *
Char ::= Escaped_char | Printable_char (x A valid Caml character. x)

Escaped_char ::=
| 7\’ Decimal_digit Decimal_digit Decimal_digit
(x The decimal value of the ASCII code of the character (between 0 and 255).
| PAB | TAn | Ax? | P\t
(+ The backspace (BS, ASCII 8), linefeed (LF, ASCII 10), carriage return (CR,
and horizontal tabulation (TAB, ASCII 9) characters. x)
N N N B S I
(x The baskslash (ASCII 92), double quote (ASCII 34), single quote (ASCII 39)
and space (SPC, ASCII 32) characters. x)

Printable_char ::= ’[32-33]" | ’[35—-91]" | ’[93—126]’

(x The set of printable characters (letters, digits, punctation characters, a
More precisely , printable characters are characters whose ASCII code range
to 126, excluding 34 (double quote), and 92 (backslash).

Note: printable characters can be escaped (i.e., considered as FEscaped_char,
encoded a 3—decimal—digit ASCII code). %)

Number_lexem ::= Integer | Float | Binary number

Integer ::= (a valid OCaml lexem for an integer)
Float ::= (a valid OCaml lexem for a floating point number)
(x See the OCaml documentation for those specifications. x*)

Binary number ::= ’'&’ Size sz (sz bytes)
(x The encoding of a floating—point number in binary representation .
The size is the number of bytes of the binary representation. For instance
the 64—bit encoding representation of a floating—point number according to
the IEEE—754 standard. x)

5.2.2 Arrays

An array is either a vector, or a multi-dimensional array. Both incorporate their dimension
and size(s), and multi-dimensional arrays also incorporate their layout. Rows of a multi-
dimensional array are similar to a vector without its size.

Array ::= Vector | Multi_d
Vector ::=
7[17 ’\n’ (x Beginning of wvector marker. x)
Size ’\n’ (x Size of the wvector. x)
Scalar_itemx (x Items of the wvector. x)
71)” (x End of wvector marker. x)
Multi_d ::=
[’ Natural p ’\n’ (x Beginning of multi—d array of dimension p marker, w
1. x)
Multi_d_sizes ’'\n’ (+ The p sizes of the multi—d array. x)
Multi_d_layout ’\n’ (x The layout of the multi—d array. x)
Row_itemx (* 1D-rows of the multi—d array.
When TIY_ sz; =0, there is no row here. Otherwise, the
of rows 1is Hsz,szs(i) where (sz,sza,...,82,) s the size o
multi—d array and s is the permutation defining the
Natural p ']’ (* End of multi—d array of dimension p marker. x)
Multi_d_sizes ::= ’<’ Natural_list2 ’>’

Multi_d_layout ::=

Natural_list2 * Permutation of the range [0..p—1] expressing the la:

9 g :

| C’ (+ C—like layout, or line—major layout, corresponding
the identity permutation. x)

| 'F’ (* Fortran—like layout, or column—major layout, correspo

the reverse order permutation.)

Natural_list2 ::= (x A comma—separated list of at least 2 inte
| Natural 7, ” Natural (x the two last integers x)
| Natural 7, 7 Natural_list2 (+ An integer followed by the rest of the i

Row_item ::= Row ’;

Row ::=
77[|77 7\n7

Scalar_itemx*

77|]77

’\n7

(* Beginning of row marker. x)
(x Items of the row. x)
(* End of row marker. x)

5.2.3 An example: matrix specification

Rectangular arrays, or matrices, are a particular case of multi-dimensional arrays, more pre-
cisely 2D-arrays. The concrete syntax for matrices will thus be the following.

Matrix ::=
b2l [2)7 7\n7
’<’ Natural
(7C7 | 7F))
Row_itemsx
b2l 2] b2l

b 7
)

7\n7

Natural

’>’

’\n7

(*
(*
(*
(*
(*

Beginning of matriz marker. x)

Size of the matriz, lines then colur
Layout of the matriz. x)

Rows (lines or columns) of the matr
End of matriz marker. x)

