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Abstract

Writing parallel programs is not easy, and debugging them is usually a nightmare.
To cope with these difficulties, a structured approach to parallel programs using
skeletons and template based compiler techniques has been developed over the past
years by several researchers, including the P3l group in Pisa.

This approach is based on the use of a set of predefined patterns for parallel
computation which are really just functionals implemented via templates exploiting
the underlying parallelism, so it is natural to ask whether marrying a real functional
language like OCaml with the P3l skeletons can be the basis of a powerful parallel
programming environment.

The CamlP3l prototype described in this document shows that this is the case.
The prototype, written entirely in OCaml using a limited form of closure passing,
allows a very simple and clean programming style, shows real speed-up over a net-
work of workstations and as an added fundamental bonus allows logical debugging
of a user parallel program in a sequential framework without changing the user
code.



Chapter 1

Skeleton based programming

and CamlP3l

In a skeleton based parallel programming model [5, 7, 6] a set of skeletons, i.e. of
second order functionals modeling common parallelism exploitation patterns are
provided to the user/programmer. The programmer uses skeletons to give parallel
structure to an application and uses a plain sequential language to express the se-
quential portions of the parallel application. He/she has no other way to express
parallel activities but skeletons: no explicit process creation, scheduling, termina-
tion, no communication primitives, no shared memory, no notion of being executing
a program onto a parallel architecture at all.

CamlP3l is a programming environment that allows to write parallel programs
in OCaml1 according to a skeleton model derived by the one of P3l2, provides seam-
less integration of parallel programming and functional programming and advanced
features like sequential logical debugging (i.e. functional debugging of a parallel
program via execution of the architecture at all parallel code onto a sequential
machine) of parallel programs and strong typing, useful both in teaching parallel
programming and in building of full-scale applications3.

In this chapter, we will first discuss the goals of our system design, then recall
the basic notions of the skeleton model for structured parallel programming and
describe the skeleton model provided by CamlP3l, providing an informal sequential
(functional) and parallel semantics. It will be then time to describe how an CamlP3l

program can be compiled and run on your system (Chapter 2). Then, we discuss
more CamlP3l examples (Chapter 3) and detail CamlP3l implementation (Chapter 4)
describing how we achieved our goals using to our advantage the flexibility of the
OCaml system.

1See http://pauillac.inria.fr/ocaml/
2See http://www.di.unipi.it/.susanna/p3l.html
3See http://camlp3l.inria.fr/ for relevant information, up to date references, documentation,

examples, distribution code and dynamic web pages showcasing the CamlP3l features.
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1.1 The system design goals

We started the developmentof the CamlP3l in 1998. At that time, the main goal
of the project was to test the possibility to integrate parallel programming in a
functional language using the skeleton model: after all, as we will see later, skeletons
are just functions, so a functional language should provide the natural setting for
them. We also wanted to preserve the elegance and flexibility of the functional
model, and the strong type system that comes with OCaml. These goals were
acheved in the first version of CamlP3l.

But during the implementation of the system, it turned out that we could get
more than that: in our implementation, the sequential semantics that is tradition-
ally used to describe the functional behaviour of the skeletons could actually be used
to provide an elementary library allowing to execute the user code in a sequential
mode, without modifying the user code. This is a major advantage of the approach:
in our system, the user can easily debug the logic of his program running it with
the sequential semantics on a sequential machine using all the traditional tech-
niques (including tracing and step by step execution which are of no practical use
on parallel systems), and when the program is logically correct he/she is guaranteed
(assuming the runtime we provide is correct) to obtain a correct parallel execution.
Although a similar approach has been taken in other skeleton based programming
models, by using the OCaml programming environment this result happens to be
particularly easy to achieve. This is definitely not the case of programs written
using a sequential language and directly calling communication libraries/primitives
such as the Unix socket interface or the MPI or PVM libraries, as the logic of the
program is inextricably intermingled with low level information on data exchange
and process handling.

Following this same idea (no changes to the user code, only different semantics
for the very same skeletons), we also provided a “graphical semantics” that pro-
duces a picture of the process network used during the parallel execution of the
user program.

Finally, we wanted a simple way to generate (from the user source code) the
various executables to be run on the different nodes of a parallel machine: here
the high level of abstraction provided by functional programming, coupled with the
ability to send closures over a channel among copies of the same program provided
the key to an elementary and robust runtime system that consists of a very limited
number of lines of code.

But let’s first of all introduce the skeleton model of CamlP3l 1.0.

1.2 The skeleton model of CamlP3l 1.0

A skeleton parallel programming model supports so-called ‘structured parallel pro-
gramming’ [5, 7, 6]. Using such a model, the parallel structure/behaviour of any
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application has to be expressed by using skeletons picked up out of a collection
of predefined ones, possibly in a nested way. Each skeleton models a typical pat-
tern of parallel computation (or form of parallelism) and it is parametric in the
computation performed in parallel. As an example, pipeline and farm have been
often included in skeleton collections. A pipeline just models the execution of a
number of computations (stages) in cascade over a stream of input data items.
Therefore, the pipeline skeleton models all those computations where a function
fn(fn−1(. . . (f2(f1(x))) . . .)) has to be computed (the fi being the functions com-
puted in cascade). A farm models the execution of a given function in parallel
over a stream of input data items. Therefore, farms model all those computations
where a function f(x) has to be computed independently over n input data items
in parallel.

In a skeleton model, a programmer must select the proper skeletons to pro-
gram his/her application leaving all the implementation/optimization to the com-
piler/support. This means, for instance, that the programmer has no responsibility
in deriving code for creating parallel processes, mapping and scheduling processes on
target hardware, establishing communication frameworks (channels, shared memory
locations, etc) or performing actual interprocess communications. All these activ-
ities, needed in order to implement the skeleton application code onto the target
hardware are completely in charge to the compile/run time support of the skeleton
programming environment. In some cases, the support also computes some param-
eters such as the parallelism degree or the communication grain needed to optimize
the execution of the skeleton program onto the target hardware [14, 2, 15].

In the years, the skeleton model supplied by CamlP3l has evolved. Current
CamlP3l version (1.0) supplies three kinds of skeletons:

• task parallel skeletons, modeling parallelism exploited between independent
processing activities relative to different input data. In this set we have: pipe
(cf. 1.3.4) and farm (cf. 1.3.3), whose semantics has already been informally
described above. Such skeletons correspond to the usual task parallel skeletons
appearing both in P3l and in other skeleton models [5, 7, 9].

• data parallel skeletons, modeling parallelism exploited computing different
parts of the same input data. In this set, we provide mapvector (cf. 1.3.6)
and reducevector (cf. 1.3.7). Such skeletons are not as powerful as the map

and reduce skeletons of P3l. Instead, they closely resemble the map (∗) and
reduce (/) functionals of the Bird-Meertens formalism discussed in [3] and
the map and fold skeletons in SCL [9]. The mapvector skeleton models the
parallel application of a generic function f to all the items of a vector data
structure, whereas the reducevector skeleton models a parallel computation
folding all the elements of a vector with a commutative and associative binary
operator ⊕).

• service or control skeletons, which are not parallel per se. Service skeletons are
used to encapsulate OCaml non-parallel code to be used within other skeletons
(seq skeleton (cf. 1.3.2)), to iterate the execution of skeletons (loop skeleton
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(cf. 1.3.5)), to transform a process network defined using skeletons in a valid
OCaml function (parfun skeleton (cf. 1.3.8)) and to define global application
structure (pardo skeleton (cf. 1.3.9)).

As an example, consider an application whose initial and final phase cannot
be parallelized, while the behavior in the central part is clearly divided in two
consecutive phases (stages) working on a stream of data. This can be modeled by
the combination of CamlP3l skeletons in Fig. 1.1.

stage1 stage2

pardo

initsec

finsec

stage1

initsec

stage2

finsec

pardo

pipe
data flow

(a) (b)

pipe network

Figure 1.1: Structure of an example CamlP3l application: (a) the skeleton nesting,
(b) processes participating to the implementation: pardo, stage1 and stage2.

All the structure is encapsulated in a pardo skeleton. initsec and finsec are
two sequential OCaml functions describing the initial and final parts of application.
The central part describes a parallel computation structured as a pipeline built out
of two stages. If both stages are implemented via a sequential function (seq) data
will flow as shown in Fig. 1.1.(a). In particular, the implementation spawns three
processes: a ‘pardo’ process (executing the sequential parts) and a network of two
processes implementing the pipeline (Fig. 1.1.(b)).
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reducevector
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pardo

pipe
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f

farm

g

farm network

pipe networkfinsec

data flow
mapvector

initsec

work

initsec work

Figure 1.2: Further parallelizing the example CamlP3l application: (a) the skeleton
nesting, (b) the processes participating to the implementation.

Now, suppose the programmer recognizes that the initsec is computationally
intensive and can be decomposed in a sequential part (initsec) and a parallel
part which applies a function work independently on each element on a stream of
input data. In this case, we can use a farm skeleton to have a pool of replicas of
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work. Moreover, suppose the function stage1 boils down to applying a function f

to all the elements of a vector and function stage2 “sums” up all the elements of
the resulting vector by using an associative and commutative operator g. In this
case, the programmer can refine the skeleton structure by using the combination
in Fig. 1.2. Here, the four replicas of work act on different independent elements
in the input stream, producing four stream of results (vectors) which are merged
before entering the pipeline. Each stage is in turn implemented in parallel using
four processes. In the first stage, each input vector is partitioned into four blocks.
Each process takes care of applying f on one of the four blocks. Then in the second
stage, each process sums up the elements in a block of the vector and then all the
partial results are added before providing the final result back to the pardo (and to
the finsec function).

The first “application outline” (Fig. 1.1) corresponds to the following (incom-
plete) CamlP3l code:

let initsec _ = ...;; (* generates stream *)

let finsec x = ...;; (* consumes stream *)

let stage1 _ x = ... ;;

let stage2 _ x = ... ;;

(* defines pipe network *)

let pipe = parfun (fun () -> seq(stage1) ||| seq(stage2)) ;;

pardo (fun () ->

let y = pipe (initsec ()) in

finsec y

);;

notice the use of seq skeleton to encapsulate ordinary OCaml functions and the use
of parfun to define the pipe network. Here is the sketch of CamlP3l code for the
second application outline (Fig. 1.2):

let degree = ref 4; (* parallel degree *)

let work _ x = ..;; (* to be farmed out *)

let f _ x = ...;; (* to be mapped *)

let g _ (x,y) = ...;; (* to be reduced *)

let pstage1 = mapvector(seq(f),!degree);;

let pstage2 = reducevector(seq(g),!degree);;

let pipe = parfun (fun () -> pstage1 ||| pstage2);;

let afarm = parfun (fun () -> farm (seq(farm_worker),!degree));;

pardo

(fun () ->

let y = pipe (afarm (initsec ())) in

finsec y

);;

here !degree refers to the number of parallel processes to be used in the skeleton
implementation of mapvector, reducevector and farm. This value can vary in each
execution of the application without recompiling (eg., using a configuration file).
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Details on how to write and run proper CamlP3l programs are given later in Chap-
ter 2. In the current release, the user is supposed to explicitly give the number of
processors to be used in each farm, mapvector and reduce skeleton. In other words
the choice of the parallelism degree actually exploited in such skeletons is up to the
programmer. It is foreseeable in a future release to ask the system to guess optimal
values depending on available resources (following the approach of P3l [2, 14]), as
it is discussed in more detail below.

Applications with a parallel structure given by skeletons (such as the ones out-
lined above) can be implemented by using implementation templates [5, 14]. An
implementation template is a known, parametric way of exploiting the kind of paral-
lelism modeled by a skeleton onto a particular target architecture. As an example,
a template corresponding to the mapvector skeleton will take some input vector
data, it will split the data into chunks holding one or more data items of the vector,
schedule them to a set of “worker” processes computing the map function f and
finally collect the results and rebuild the output vector data structure. All these
operations will be performed by some processes, using either communications or
shared memory locations for data communication. Such a template must, as its
primary goal, implement in an efficient way the mapvector skeleton and therefore:

• it must implement any kind of mapvector function f , and therefore must be
parametric with respect to the input and output data types

• it must support any reasonable parallelism degree, therefore it must work
(and provide effective parallelism exploitation) when executed on an arbitrary
number of processors.

In CamlP3l 1.0, the parallelism degree of each skeleton is chosen by the pro-
grammer. In following releases, we will explore the possibility of using analytic
performance models associated with the implementation template process networks
to derive the parallelism degree automatically[?]. An analytic performance model
is a set of functions computing different measures of the performance achieved by
a template on the basis of a small set of machine dependent and user code param-
eters. Examples of machine dependent parameters are the cost of communication
startup and the per-byte transmission cost. Examples of user code parameters are
the mean and variance of execution time for user-defined sequential parts of the
program and the size of data flowing between skeletons. The models describe the
template behavior as a function of the resources used (e.g. the physical number
of executors in a farm) and can be used by the skeleton support to predict such
behavior and to tune resource allocation. A more detailed description of the whole
automatic optimization process executed by a compiler using performance models
for skeleton tuning is given in [14, 15, ?].

1.2.1 Parallel execution model

A parallel computation in CamlP3l is defined by three components:

• a set of plain sequential OCaml functions (CF, common functions in Fig-
ure 1.3),
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• some clusters of parallel processes, each one defined by a suitable composi-
tion of skeleton combinators enclosed in a parfun (SF, skeleton functions in
Figure 1.3) and

• a pardo application.

Each time a parfun(h) functon definition is evaluated, a corresponding network
of processes is created according to the skeleton composition in h. Each network
transforms a stream of independent input data . . . x1, x0 in a stream of output data
. . . h(x1), h(x0) according to h.

When a pardo is evaluated, applications of common functions boil down to
normal sequential evaluation, while applications of skeletal functions feed arguments
data to the corresponding skeletal process network and are evaluated in parallel.

In practice, each pardo defines a network built out of all the processes in skeletal
networks (parfun defined functions) plus a root process orchestrating all the com-
putation. Both the root node and the generic nodes run in SPMD model. Initially,
the root specializes all the generic nodes sending information on the actual process
to be executed (eg., a farm dispatcher, a farm worker, a mapvector worker etc).

Then, the root process starts executing the pardo. If code is sequential, it is
executed locally on the root node. Otherwise, if the evaluation of a parfun function
is encountered, the root activates evaluation passing the relevant parameters to the
correponding network. The same network can be activated many times, each time
an evaluation of the corresponding parfun function is encountered.

Notice that the execution model assumes an unlimited number of homogenous
processors. In practical situations, processors will be less than processes and have
heterogeneus capacity. The CamlP3l upport, possibly with some help from the
programmer (using colors, see Sec. 1.4), is in charge of implementing this in a
transparent way.

1.2.2 Discussion: a comparision with P3l

Even if CamlP3l skeletons are close to original P3l ones, the parallel evaluation
model is completely different. Thus, for these familiar with P3l, it is interesting to
highlight the main differences between two models and to give a brief account on
the reasons that have lead to such a design change.

In the original P3l system (and, actually in initial versions of CamlP3l[?]), a
program is clearly stratified into two levels: there is a skeleton cap, that can be
composed of an arbitrary number of skeleton combinators, but as soon as one goes
outside this cap, passing into the sequential code through the seq combinator, there
is no way for the sequential code to call a skeleton. To say it briefly, the entry point
of a P3l program must be a skeleton expression, and no skeleton expression is al-
lowed anywhere else in the sequential code. Using current CamlP3l terminology, P3l

restricts the pardo to contain one single call to a network defind with parfun, and
without calls to sequential functions.
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Figure 1.3: Parallel execution model: the role of parfun and pardo

This restriction is quite reasonable when the goal is to build a single stream
processing network described by the skeleton cap. However, it has several drawbacks
in the general case:

• it breaks uniformity, since even if the skeletons look like ordinary functionals,
they cannot be used as ordinary functions, in particular inside sequential code,

• many applications (such as the numerical algorithms described in [?]) boil
down to simple nested loops, some of which can be easily parallelised, and
some cannot; forcing the programmer to push all the parallelism in the skele-
ton cap could lead to rewriting the algorithm in a very unnatural way,

• indeed, a ‘parallelizable’ operation can be used at several stages in the algo-
rithm: the P3l skeleton cap does not allow the user to specify that parts of the
stream processing network can be shared among different phases of the com-
putation, which is an essential requirement to avoid wasting computational
resources.

To overcome all these difficulties and limitations, the 1.0 version of CamlP3l

introduces the new parfun skeleton (not present in P3l), the very dual of the seq

skeleton. In simple words, one can wrap a full skeleton expression inside a parfun,
and obtain a regular OCaml stream processing function, usable with no limitations
in any sequential piece of code: a parfun encapsulated skeleton behaves exactly as
a normal function that receives a stream as input, and returns a stream as output.
However, in the parallel semantics, the parfun combinator gets a parallel inter-
pretation, so that the encapsulated function is actually implemented as a parallel

8



(* computes x square *)

let farm_worker _ = fun x -> x *. x;;

(* prints a result *)

let print_result x = print_float x; print_newline();;

let compute = parfun (fun () -> (farm (seq(farm_worker),4)));;

pardo(fun () ->

let is = P3lstream.of_list [1.0;2.0;3.0;4.0;5.0;6.0;7.0;8.0] in

let s’ = compute is in P3lstream.iter print_result s’;

);;

Figure 1.4: CamlP3l code using a farm to square a stream of float.

network (the network to which the parfun combinator provides an interface).
Since many parfun expressions may occur in an CamlP3l program, there may be sev-
eral disjoint parallel processing networks at runtime. This implies that, to contrast
with P3l, the CamlP3l model of computation requiers a main sequential program
(the pardo): this main program is responsible for information interchange with the
various parfun encapsulated networks.

1.2.3 A simple example: farming square computation

It is now time to discuss a simple but complete CamlP3l program. The program
in Figure 1.4 uses a farm to compute a very simple function over a stream of
floats. First we have two standard OCaml functions: farm_worker which simply
computes the square of a float argument and print_result which dumps results
on the stardard output. Notice that farm_worker takes two parameters instead
of one as it would seem reasonable. The extra parameter (_) is required by the
seq skeleton type and is used in general to provide local initialization data (for
instance, an initialization matrix, some initial seed or the like). In this simple case,
initialization data are not needed and the parameter is just ignored by farm_worker.
This optional initialization is provided for all CamlP3l skeletons (see Section 1.3.1).
Function compute uses parfun to define a parallel network built by a single farm,
in particular:

seq(farm_worker)

turns the sequential farm_worker function into a ‘stream processor’ applying it to
a stream of input values. Then, an instance of the farm skeleton is defined with

farm (seq(farm_worker),4)

which spawns four workers. Finally,

parfun (fun () -> (farm (seq(farm_worker),4)));;

9



encapsulates the skeleton network into a standard OCaml function.
The last pardo defines how sequential functions and parallel modules are in-

terconnected. In this case, we have a single parallel module (compute) and two
sequential parts. The first sequential part builds up the data stream (using the
standard CamlP3l library function

P3lstream.of_list [1.0;2.0;3.0;4.0;5.0;6.0;7.0;8.0]

which turns lists in streams) and the second part applies print_results to all
the elements in the stream (using standard stream iterator P3lstream.iter). The
global network is shown in Figure 1.5, where arrows point out the data flow among
processes.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

P3lstream.of_list...

P3lstream.iter...

compute

pardo

farm_worker

Figure 1.5: Overall process network of the simple farm squaring a stream of double.

1.3 Skeleton syntax, semantics, and types

Here we describe the syntax, the informal semantics, and the types assigned to each
skeleton combinator.

Each skeleton is a stream processor, transforming an input stream into an output
stream and is equipped with three semantics:

sequential semantics a suitable sequential OCaml function transforming all the
elements of the input stream;

parallel semantics a process network implementing the stream transformation in
parallel;

graphical semantics a graphical representation of the process network corre-
sponding to the parallel semantics.

1.3.1 On the type of skeleton combinators

First of all, let’s explain why the actual OCaml types of our skeleton combinators are
a bit more complex than those used by other skeleton systems (eg., [9]). In effect,
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our types seem somewhat polluted by spurious additional unit types, compared to
the types one would expect.

For istance, consider the seq combinator. As informally discussed above, seq
encapsulates any OCaml function f into a sequential process which applies f to
all the inputs received in the input stream. This means that, writing seq f, any
OCaml function with type f : ’a -> ’b is wrapped into a sequential process (this
is reminiscent to the lift combinator used in many stream processing libraries of
functional programming languages).

Hence, a strightforward type for seq would be
(’a -> ’b) -> ’a stream -> ’b stream.

However, in CamlP3l, seq is declared as

seq : (unit -> ’a -> ’b) -> unit -> ’a stream -> ’b stream

meaning that the lifted function argument f gets an extra unit argument. In effect,
in real-world application, the user functions may need to hold a sizeable amount
of local data (e.g. some huge matrices that have to be initialised in a numerical
application), and we decided to have a type general enough to allow the user to
finely describe where and when those data have to be initialized and/or copied.

Reminiscent to partial evaluation and λ-lifting, we reuse the classical techniques
of functional programming to initialize or allocate data globally and/or locally to a
function closure. This is just a bit complicated here, due to the higher-order nature
of the skeleton algebra, that in turn reflects the inherent complexity of parallel
computing:

• global initialization: the data is initialised once and for all, and is then repli-
cated in every copy of the stream processor that a farm, a mapvector or a
reducevector may launch; this was already available in the previous versions
of CamlP3l, since we could write

let f =

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)

• local initialization: the data is initialised by each stream processor, after the
copy has been performed by a farm or a mapvector skeleton; this was just
impossible in the previous versions of CamlP3l; with unit types, it is now easy
to achieve:

let f () =

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)
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when the farm skeleton creates 10 copies of seq f, each copy is created by
passing () to the seq combinator, which in turn passes () to f , producing the
allocation of a different copy of localdata for each instance4.

Note also that the old behaviour, namely CamlP3l version 1.0, where a unique
initialization was shared by all copies, is still easy (and can be freely combined
to further local initializations if needed):

let f =

let localdata = do_huge_initialisation_step () in

fun () -> fun x -> compute (localdata, x);;

...

farm (seq f, 10)

To sum up, the extra unit parameters give the programmer the hability to decide
whether local initialisation data in his functions are shared among all copies or not.
In other words, we can regard the skeleton combinators in the current version of
CamlP3l as “delayed skeletons”, or “skeleton factories”, that produce an instance
of a skeleton every time they are passed an () argument.

In the following sections we detail the types and semantics of all the skeletons
and provide some usage examples.

1.3.2 The seq skeleton

The seq skeleton encapsulates an OCaml function f into a stream process which
applies f to all the inputs received on the input stream and sends off the reselts on
the output stream. Any OCaml function with type

f: unit -> ’a -> ’b

can be encapsulated in the seq skeletons as follows:

seq f

The central point is that the function must be unary, i.e. functions working on
more that one argument must collect them in a single tuple before being used in a
seq. For instance, the fragment

let g _ (x,y) = x *. y;;

let redmul = parfun (fun () -> reducevector(seq(g),6));;

shows how to encapsulate a float binary operator (*.) to use it within a reducevector
with 6 working processes.

4In practice, the initialization step may do weird, non referentially transparent things, like

opening file descriptors or negociating a network connection to other services: it is then crucial

to allow the different instances of the user’s function to have their own local descriptors or local

connections to simply avoid the chaos.

12



1.3.3 The farm skeleton

The farm skeleton computes in parallel a function f over different data items ap-
pearing in its input stream.
From a functional viewpoint, given a stream of data items x1, . . . , xn, and a func-
tion f , the expression farm(f, k) computes f(x1), . . . , f(xn). Parallelism is gained
by having k independent processes that compute f on different items of the input
stream.
If f has type (unit -> ’b stream -> ’c stream), and k has type int, then
farm(f, k) has type unit -> ’b stream -> ’c stream. In terms of (parallel)
processes, a sequence of data appearing onto the input stream of a farm is submit-
ted to a set of worker processes. Each worker applies the same function (f , which
can be in turn difined using parallel skeletons) to the data items received and de-
livers the result onto the output stream. The resulting process network looks like
the following:
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where the emitter process takes care of task-to-worker scheduling (possibly taking
into account some load balancing strategy).

The farm function takes two parameters:

• the first denoting the skeleton expression representing the farm worker com-
putation,

• the second denoting the parallelism degree the user decided for the farm, i.e.
the number of worker processes that have to be set up in the farm implemen-
tation.

Figure 1.6 shows an CamlP3l program which chooses randomly a number from
a list and writes it to the file magic number. Notice the local initialization of the
random number generator (which takes a different seed in each worker) and the
local open of the file to be written. In Figure 1.7 you can see how the worker code
can be simply transformed to have all the workers share the same filed descripto if
needed (global initialization).

1.3.4 The pipeline skeleton

The pipeline skeleton is denoted by the infix operator |||; it performs in parallel
the computations relative to different stages of a function composition over different

13



let write_int =

function () ->

let fd = Unix.openfile "magic_number" [Unix.O_WRONLY;

Unix.O_CREAT; Unix.O_TRUNC] 0o644 in

let () = Random.self_init () in

( function x ->

let time_to_wait = 1 + (Random.int 3) in

Unix.sleep(time_to_wait);

let sx = string_of_int x in

ignore(Unix.write fd sx 0 (String.length sx));;

let parwrite = parfun(fun () -> farm(seq(write_int), 5));;

pardo( fun () ->

let the_stream = P3lstream.of_list [0;1;2;3;4] in

parwrite the_stream

);;

Figure 1.6: A simple farm example (with local initialization)

let write_int =

let fd = Unix.openfile "magic_number" [Unix.O_WRONLY;

Unix.O_CREAT; Unix.O_TRUNC] 0o644 in

( function () ->

let () = Random.self_init () in

function x ->

let time_to_wait = 1 + (Random.int 3) in

Unix.sleep(time_to_wait);

let sx = string_of_int x in

ignore(Unix.write fd sx 0 (String.length sx));;

Figure 1.7: Worker code using global initialization to share file descriptor
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data items of the input stream.
Functionally, f1|||f2 . . . |||fn computes fn(. . . f2(f1(xi)) . . .) over all the data
items xi in the input stream. Parallelism is now gained by having n indepen-
dent parallel processes. Each process computes a function fi over the data items
produced by the process computing fi−1 and delivers its results to the process com-
puting fi+1.
If f1 has type (unit -> ’a stream -> ’b stream),
and f2 has type (unit -> ’b stream -> ’c stream),
then f1|||f2 has type unit -> ’a stream -> ’c stream.

In terms of (parallel) processes, a sequence of data appearing onto the input
stream of a pipe is submitted to the first pipeline stage. This stage computes the
function f1 onto every data item appearing onto the input stream. Each output
data item computed by the stage is submitted to the second stage, computing the
function f2 and so on and so on until the output of the n− 1 stage is submitted to
the last stage. Eventually, the last stage delivers its own output onto the pipeline
output channel. The resulting process network looks like the following:
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For instance, a pipeline made out of three stages, the first one squaring integers,
the second one multiplying integers by 2 and the third one incrementing integers
can be written as follows:

let square _ x = x * x;;

let double _ x = 2 * x;;

let inc _ x = x + 1;;

let apipe = parfun (fun () -> seq(square) ||| seq(double) ||| seq(inc));;

A pipeline models (parallel) function composition, thus input and output types of

stages should match. This means that if stage (i − 1) has type unit -> ’c -> ’a stage

(i + 1) has type unit -> ’b -> ’d stage i-th must have type unit -> ’a -> ’b.

1.3.5 The loop skeleton

The loop skeleton named loop; it computes a function f over all the elements of its input

stream until a boolean condition g is verified. A loop has type

(’a -> bool) * (unit -> ’a stream -> ’a stream)

provided that f has type unit -> ’a stream -> ’a stream and g has type ’a -> bool.

Function f is computed before testing termination, thus it is applied at least one time to

each input stream element. In terms of (parallel) processes, a sequence of data appearing

onto the input stream of a loop is submitted to a loop in stage. This stage just merges

data coming from the input channel and from the feedback channel and delivers them to

the loop body stage. The loop body stage computes f and delivers results to the loop end

stage. This latter stage computes g and either delivers (f x) onto the output channel (in
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case (g (f x)) turns out to be true) or it delivers the value to the loop in process along

the feedback channel ((g (f x)) = false). The resulting process network looks like the

following:
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For instance, the following loop increments all the integer data items in the input stream

until they become divisible by 5:

let notdivbyfive x = (x mod 5 <> 0);;

let inc _ x = x + 1;;

let aloop = parfun (fun () -> loop(notdivbyfive,seq(inc)));;

The output of this function on the sequence

3,7,10,14

is 5,10,15,15. In particular, the call theloop 10 returns 15 as the body seq(inc) is

evaluated on input data before the condition, and therefore the first time the condition is

evaluated on 11 and not on 10.

1.3.6 The map skeleton

The map skeleton is named mapvector; it computes in parallel a function over all the data

items of a vector, generating the (new) vector of the results.

Therefore, for each vector X in the input data stream, mapvector(f, n) computes the

function f over all the items of X = [x1, . . . , xn], using n distinct parallel processes that

compute f over distinct vector items ([f(x1), . . . , f(xn)]).

If f has type (unit -> ’a stream -> ’b stream), and n has type int, then mapvector(f, n)

has type unit -> ’a array stream -> ’b array stream.

In terms of (parallel) processes, a vector appearing onto the input stream of a mapvec-

tor is split n elements and each element is computed by one of the n workers. Workers

apply f to the elements they receive. A collector process is in charge of gluing together

all the results in a single result vector.
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Different strategies can be used to distribute a vector [|x1;...;xm|] appearing in the

input data stream to the workers. As an example the emitter:
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• may round robin each xi to the workers ({w1,...wn}). The workers in this case

simply compute the function f :′ a →′ b over all the elements appearing onto their

input stream (channel).

• may split the input data vector in exactly n sub-vectors to be delivered one to each

one of the worker processes. The workers in this case compute an Array.mapf over

all the elements appearing onto their input stream (channel).

Summarizing, the emitter process takes care of (sub)task-to-worker scheduling (pos-

sibly implementing some kind of load balancing policy), while the collector process takes

care of rebuilding the vector with the output data items and of delivering the new vector

onto the output data stream. mapvector takes two arguments:

• the skeleton expression denoting the function to be applied to all the vector elements,

and

• the parallelism degree of the skeleton, i.e. the number of processes to be used in the

implementation.

For instance, the following code works on a stream of integer vectors and squares each

vector element. The skeleton has a parallelism degree of 10, that is ten parallel processes

are used to compute each vector in the stream.

let square _ x = x * x;;

let amap = parfun (fun () -> mapvector(seq(square),10));;

the result on a single array is as follows

# amap [|1;2;3;4;5|];;

- : int array = [|1; 4; 9; 16; 25|]

1.3.7 The reduce skeleton

The reduce skeleton is named reducevector; it folds a function over all the data items of

a vector.

Therefore, reducevector(⊕, n) computes x1 ⊕ x2 ⊕ . . .⊕ xn out of the vector x1, . . . , xn,

for each vector in the input data stream. The computation is performed using n different

parallel processes that compute f .

If ⊕ has type (unit -> ’a * ’a stream -> ’a stream), and n has type int, then

reducevector(⊕, n) has type unit -> ’a array stream -> ’a stream.

In terms of (parallel) processes, a vector appearing onto the input stream of a re-

ducevector is processed by a logical tree of processes. Each process is able to compute the

binary operator g. The resulting process network looks like the following tree:
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In this case, the emitter process is the one delivering either couples of input vector data

items or couples of sub-vectors of the input vector to the processes belonging to the tree

base. In the former case, log(n) levels of processes are needed in the tree, in the latter one,

any number of process levels can be used, and the number of sub-vectors to be produced

by the emitter can be devised consequently.

The reducevector function takes two parameters as usual:

• the first parameter is the skeleton expression denoting the binary, associative and

commutative operation (these properties must be ensured by the programmer to

have a correct execution)

• the second is the parallelism degree, i.e. the number of parallel processes that have

to be set up to execute the reducevector computation.

For instance, the following skeleton instance accepts in input a stream of vectors and,

for each vector, computes the sum of all elements using the arithmetic + operator.

let areduce = parfun

(fun () -> reducevector(seq(fun _ (x,y) -> x + y),10));;

the result on a single array is as follows

# areduce [|1;2;3;4|];;

- : int = 10

1.3.8 The parfun skeleton

One would expect parfun to have type (unit -> ’a stream -> ’b stream) -> ’a stream

-> ’b stream: given a skeleton expression with type (unit -> ’a stream -> ’b stream),

parfun returns a stream processing function of type ’a stream -> ’b stream.

parfun’s actual type introduces an extra level of functionality: the argument is no

more a skeleton expression but a functional that returns a skeleton:

val parfun :

(unit -> unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream

This is necessary to guarantee that the skeleton wrapped in a parfun expression will

only be launched and instanciated by the main program (pardo), not by any of the multiple

running copies of the SPMD binary, even though thoses copies may evaluate the parfun

skeletons; the main program will actually create the needed skeletons by applying its

functional argument, while the generic copies will just throw the functional away, carefully

avoiding to instanciate the skeletons.

1.3.9 The pardo skeleton: a parallel scope delimiter

Typing

Finally, the pardo combinator defines the scope of the expressions that may use the parfun

encapsulated expressions.

val pardo : (unit -> ’a) -> ’a

pardo takes a thunk as argument, and gives back the result of its evaluation. As for

the parfun combinator, this extra delay is necessary to ensure that the initialization of the

code will take place exclusively in the main program and not in the generic SPMD copies

that participate to the parallel computation.
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Parallel scoping rule

In order to have the parfun and pardo work correctly together the following scoping rule

has to be sollowed:

• functions defined via the parfun combinator must be defined before the occurrence

of the pardo combinator,

• those parfun defined functions can only be executed within the body of the functional

parameter of the pardo combinator,

• no parfun can be used directly inside a pardo combinator.

Structure of an CamlP3l program

Due to the scoping rule in the pardo, the general structure of an CamlP3l program looks

like the following:

(* (1) Functions defined using parfun *)

let f = parfun(skeleton expression )

let g = parfun(skeleton expression )

(* (2) code referencing these functions under abstractions *)

let h x = ... (f ...) ... (g ...) ...

...

(* NO evaluation of code containing a parfun is allowed outside pardo *)

...

(* (3) The pardo occurrence where parfun encapsulated

functions can be called. *)

pardo

(fun () ->

(* NO parfun combinators allowed here *)

(* code evaluating parfun defined functions *)

...

let a = f ...

let b = h ...

...

)

(* finalization of sequential code here *)

At run time, in the sequential model, each generic copy just waits for instructions from

the main node; the main node first evaluates the arguments of the parfun combinators

to build a representation of the needed skeletons; then, upon encountering the pardo

combinator, the main node initializes all the parallel computation networks, specialising

the generic copies (as described in details in [?]), connects these networks to the sequential

interfaces defined in the parfun’s, and then runs the sequential code in its scope by applying

its function parameter to ():unit. The whole picture is illustrated in Figure 1.3. The

skeleton networks are initiated only once but could be invoked many times during the

execution of pardo.
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1.4 Load balancing: the colors

In the CamlP3l system, the combinators expressions govern the shape of the process net-

work and the execution model assumes a ‘virtual’ processor, for each process. The mapping

of virtual to physical processors is delegated to the CamlP3l system. The mapping is cur-

rently not optimized in the system. However, programs and machines can be annotated

by the programmer using colors, which can pilote the virtual-to-physical mapping process.

The idea is to have the programmer to rank the relative ‘weight’ of skeleton instances

and the machine power in a range of integer values (the colors). Then, weights are used

to generate a mapping in which load is evenly balanced on the partecipating machine

according to their relative power.

Pushing the difficult part of the generaion of weights to the programmer’s knowledge

and ability, this simple and practical idea gives surprisingly good results in practice.

Let’s consider as an example, the skeletal expression we discussed in the example

(Sec 1.2.3):

farm (seq (fun x → x ∗ x), 16)

that corresponds to a network of one emitter node, one collector node, and 16 worker

nodes which compute the square function. There are numerous ways of mapping a set of

virtual nodes to a set of physical nodes.

If no information is provided, the support uses a simple round robin, which maps

virtual to physical nodes in a cyclic way: first all phisical processors get one process then

we start again from the beginning until virtual processors are all allocated. Unfortunately,

such a solution doesn’t take into account the load balancing constraints: all the physical

(resp. virtual) nodes are considered equivalent in computing power and are used evenly.

If the programmer knows more about machines and processes he/she can tell the system

using colors. A color is an optional integer parameter that is added to CamlP3l expressions

in the source program and to the execution command line of the compiled program. We

use the regular OCaml’s optional parameters syntax, with keyword col, to specify the colors

of a network of virtual nodes. For example, writing farm ~col:k (f, n) means that all

virtual nodes inside this farm structure should be mapped to some physical nodes with a

capability ranking k. The scope of a color specification covers all the inner nodes of the

structure it qualifies: unless explicitely specified, the color of an inside expression is simply

inherited from the outer layer (the outermost layer has a default color value of 0 which

means no special request).

For combinators farm, mapvector and reducevector, in addition to the color of the

combinator itself, their is an additional optional color parameter colv. A colv[ ] specifi-

cation is a color list (i.e. an int list) that specifies the colors of the parallel worker

structures that are arguments of the combinator. As an example, the CamlP3l expression

map ~col:2 ~colv:[ 3; 4; 5; 6 ] (seq f, 4)

is a mapvector skeleton expression, with emitter and collector nodes of rank 2, and four

worker nodes (four copies of seq f) whith respective ranks 3, 4, 5, and 6.

To carefully map virtual nodes to physical nodes, we also need a way to define the colors

of physical nodes. This information is specified on the command line when launching the

program (see Section 2). One can write:

prog.par -p3lroot ip1:port1#color1 ip2:port2#color2 ... \
ip i:port i#color i ...
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where ip i:port i#color i indicates the ip address (or name), the port, and the color of

the physical node i participating to the computation. The port and color here are both

optional. With no specified port, a default p3lport is used; with no color specification, the

default color 0 is assumed.

If the colors of all the virtual processors and all the physical processors have a one-to-

one correspondance, the mapping is easy. But such a perfect mapping does not exist in

general: first of all, there is not always equality between the amount of physical processors

we have and the amount of virtual processors we need; second, in some very complex

CamlP3l expressions, it is complex and boring for the programmer to calculate manually

how many virtual nodes are needed for each color class.

So, we decided to use a simple but flexible mapping algorithm, based on the idea that

what a color means is not the exact capability required but the lowest capability acceptable.

For example, a virtual node with color value 5 means a physical node of color 5 is needed,

but if there is no physical node with value 5, and there exists a physical node of color 6

free and available, why don’t we take it instead? In practice, we sort the virtual nodes in

decreasing order of their color values, to reflect their priority in choosing a physical node:

virtual nodes with bigger colors should have more privilege and choose their physical node

before the nodes with smaller colors. Then, for each virtual node, we lists all the physical

nodes with a color greater than or equal to the virtual node color. Among all those qualified

ones, the algorithm finally associates the virtual node with the qualified node which has

the smallest work load (the one that has the least number of virtual nodes that have been

assigned to it).

This algorithm provides a mapping process with some degree of automatization and

some degree of manual tuning, but one has to keep in mind that the color designs a

computational class, qualitatively, and is not an exact quantitative estimation of the com-

putational power of the machine, as the current version of CamlP3l does not provide yet the

necessary infrastructure to perform an optimal mapping based on precise quantitative es-

timations of the cost of each sequential function and the capabilities of the physical nodes,

so that we cannot guarantee our color-based mapping algorithm to be highly accurate or

highly effective.

Still, the “color” approach is accurate and simple enough to be quite significant to the

programmer: according to the experiments we have conducted, it indeed achieved some

satisfactory results in our test bed case (see [?]).

Figure 1.8 summarizes the types of the combinators, exactly as they are currently

available to the programmer in the 1.0 version of CamlP3l, including the optional color

parameters.
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type color = int

val seq :

?col:color ->

(unit -> ’a -> ’b) -> unit -> ’a stream -> ’b stream

val ( ||| ) :

(unit -> ’a stream -> ’b stream) ->

(unit -> ’b stream -> ’c stream) -> unit -> ’a stream -> ’c stream

val loop :

?col:color ->

(’a -> bool) * (unit -> ’a stream -> ’a stream) ->

unit -> ’a stream -> ’a stream

val farm :

?col:color ->

?colv:color list ->

(unit -> ’b stream -> ’c stream) * int ->

unit -> ’b stream -> ’c stream

val mapvector :

?col: color ->

?colv:color list ->

(unit -> ’b stream -> ’c stream) * int ->

unit -> ’b array stream -> ’c array stream

val reducevector :

?col:color ->

?colv:color list ->

(unit -> (’b * ’b) stream -> ’b stream) * int ->

unit -> ’b array stream -> ’b stream

val parfun :

(unit -> unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream

val pardo : (unit -> ’a) -> ’a

Figure 1.8: The (complete) types of the CamlP3l skeleton combinators
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Chapter 2

Running your CamlP3l

program

We give here a practical tutorial on how to use the system, without entering into the

implementation details of the current version of CamlP3l.

As mentioned above, once you have written an CamlP3l program, you have several

choices for its execution, since you can without touching your source:

sequential run your program sequentially on one machine, to test the logic of the algo-

rithm you implemented with all the usual sequential debugging tools.

graphics get a picture of the processor net described by your CamlP3lskeleton expression

to grasp the parallel structure of your program.

parallel run your program in parallel over a network of workstations after a simple re-

compilation.

Presumably, you would run the parallel version once the program has satisfactorily passed

the sequential debugging phase.

In the following sections, our running example is the computation of a Mandelbrot

fractal set. We will describe the implementation program, compile it and run it in the

three ways described above.

2.1 The Mandelbrot example program

The Mandelbrot example program performs the calculation of the Mandelbrot set at a

given resolution in a given area of the graphic display. This is the actual program provided

in the Examples directory of the distribution.

The computing engine of the program is the function pixel row which computes the

color of a row of pixels from the convergence of a sequence of complex numbers zn defined

by the initial term z0 and the formula zn+1 = z2
n + z0. More precisely, given a point

p in the complex plane, we associate to p the sequence zn when starting with z0 = p.

Now, we compute the integer m such that zm is the first term of the sequence satisfying

the following condition: either the sum of the real and imaginary parts of zn exceeds a

given threshold, or the number of iterations exceeds some fixed maximum resolution limit.

Integer m defines the color of p.

p). This correspond to the following OCaml code:
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open Graphics;;

let n = 300;; (* the size of the square screen windows in pixels *)

let res = 100;; (* the resolution: maximum number of iterations allowed *)

(* convert an integer in the range 0..res into a screen color *)

let color_of c res = Pervasives.truncate

(((float c)/.(float res))*.(float Graphics.white));;

(* compute the color of a pixel by iterating z_m+1=z_m^2+c *)

(* j is the k-th row, initialized so that j.(i),k are the coordinates *)

(* of the pixel (i,k) *)

let pixel_row (j,k,res,n) =

let zr = ref 0.0 in

let zi = ref 0.0 in

let cr = ref 0.0 in

let ci = ref 0.0 in

let zrs = ref 0.0 in

let zis = ref 0.0 in

let d = ref (2.0 /. ((float n) -. 1.0)) in

let colored_row = Array.create n (Graphics.black) in

for s = 0 to (n-1) do

let j1 = ref (float j.(s)) in

let k1 = ref (float k) in

begin

zr := !j1 *. !d -. 1.0;

zi := !k1 *. !d -. 1.0;

cr := !zr;

ci := !zi;

zrs := 0.0;

zis := 0.0;

for i=0 to (res-1) do

begin

if(not((!zrs +. !zis) > 4.0))

then

begin

zrs := !zr *. !zr;

zis := !zi *. !zi;

zi := 2.0 *. !zr *. !zi +. !ci;

zr := !zrs -. !zis +. !cr;

Array.set colored_row s (color_of i res);

end;

end

done

end

done;
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(colored_row,k);;

In this code, the global complex interval sampled stays within (-1.0, -1.0) and (1.0,

1.0). In this 2-unit wide square, the pixel row functions computes rows of pixels separated

by the distance d. The pixel row function takes four parameters: size, the number of

pixels in a row; resolution, the resolution; k, the index of the row to be drawn; and, j,

an array which will be filled with the integers representing the colors of pixels in the row.

These values will be converted into real colors by the color row function. In this program,

the threshold is fixed to be 4.0. We name zr and zi the real and imaginary parts of zi;

similarly, the real and imaginary parts of c are cr and ci; zrs and zis are temporary

variables for the square of zr and zi; d is the distance between two rows.

The Mandelbrot computation over the whole set of points within (-1.0,-1.0) and

(1.0,1.0) in the complex plane can be computed in parallel exploiting farm parallelism.

The set of points is split by gen rows into a bunch of pixel rows that build up the input

stream, the computation of the Mandelbrot set on each row of complex points is indepen-

dent and can be performed by the worker processes using pixel row and the result is a

stream of rows of pixel colors, each corresponding to an input pixel row.

(* draw a line on the screen using fast image functions *)

let show_a_result r =

match r with

(col,j) ->

draw_image (make_image [| col |]) 0 j;;

(* generate the tasks *)

let gen_rows =

let seed = ref 0 in

let ini = Array.create n 0 in

let iniv =

for i=0 to (n-1) do

Array.set ini i i

done; ini in

(function () ->

if(!seed < n)

then let r = (iniv,!seed,res,n) in (seed:=!seed+1;r)

else raise End_of_file)

;;

The actual farm is defined by the mandel function which uses the parfun skeleton

to transform a farm instance with 10 workers into an OCaml sequential function. Notice

that the seq skeleton has been used to turn the pixel row function into a stream pro-

cess, which can be used to instantiate a skeleton. Finally the pardo skeleton takes care of

opening/closing a display window on the end-node (the one running pardo), and of actu-

ally activating the farm invoking mandel. The function show a result actually displays a

pixel row on the end-node. Notice that this code would need to be written anyway, maybe

arranged in a different way, for a purely sequential implementation.

(* the skeleton expression to compute the image *)

let mandel = parfun (fun () -> farm(seq(pixel_row),10));;
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pardo (fun () ->

print_string "opening...";print_newline();

open_graph (" "^(string_of_int n)^"x"^(string_of_int n));

(* here we do the parallel computation *)

List.iter show_a_result

(P3lstream.to_list (mandel (P3lstream.of_fun gen_rows)));

print_string "Finishing";print_newline();

for i=0 to 50000000 do let _ =i*i in () done;

print_string "Finishing";print_newline();

close_graph()

)

2.2 Sequential execution

We assume the program being written in a file named mandel.ml. We compile the sequen-

tial version using camlp3lc as follows:

camlp3lc --sequential mandel

Remark 2.2.1 In the current implementation, this boils down to adding on top of mandel.ml

the line

open Seqp3l;;

to obtain a temporary file mandel.seq.ml which is then compiled via the regular Caml

compiler ocamlc with the proper modules and libraries linked. Depending on the configu-

ration of your system, this may look like the following

ocamlc -custom unix.cma graphics.cma seqp3l.cmo

-o mandel.seq mandel.seq.ml

-cclib -lunix -cclib -lgraphics -cclib -L/usr/X11R6/lib

-cclib -lX11

We highly recommend not to use explicit call to ocamlc: use the camlp3lc compiler

that is especially devoted to the compilation of CamlP3lprograms. ¦

After the compilation, we get an executable file, mandel.seq, whose execution produces

the picture shown on the left side of 2.1.

2.3 Graphical execution

It is often useful to look at the structure of the application process network, for example

when tuning the performance of the final program. In CamlP3l, this can be done by

compiling the program with the special option --graphical which automatically creates

a picture displaying the ‘logical’ parallel program structure.

camlp3lc --graphical mandel.ml
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Figure 2.1: A snapshot of the execution of mandel.ml (left is sequential execution,
right is parallel execution on 5 machines).

Remark 2.3.1 In the current implementation, this boils down to adding on top of mandel.ml

the line

open Grafp3l;;

to obtain a temporary file mandel.gra.ml which is then compiled via ocamlc with the

proper modules and libraries. Depending on the configuration of your system, this may

look like the following

ocamlc -custom graphics.cma grafp3l.cmo -o mandel.gra mandel.gra.ml

-cclib -lgraphics -cclib -L/usr/X11R6/lib -cclib -lX11

Once more, we highly recommend not to use explicit calls to ocamlc: use the camlp3lc

compiler that is especially devoted to the compilation of CamlP3lprograms. ¦

After compilation, we get the executable file mandel.gra, whose execution produces

the following picture.
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2.4 Parallel execution

Once we have checked the sequential version of our code, and got a picture of the structure

of the parallel network, we are ready to speed up the computation by using a network of

computers.

2.4.1 Compilation for parallel execution

We call the compiler with the special option --parallel devoted to compilation for parallel

execution:

camlp3lc --parallel mandel

Remark 2.4.1 In the current implementation this boils down to adding on top of mandel.ml

the lines

open Parp3l;;

open Nodecode;;

open Template;;

to obtain a temporary file mandel.par.ml which is then compiled via ocamlc with the

proper modules and libraries. Depending on the configuration of your system, this may

look like the following

ocamlc -custom unix.cma p3lpar.cma -o mandel.par mandel.par.ml

-cclib -lunix -cclib -lgraphics -cclib -L/usr/X11R6/lib

-cclib -lX11

Once again, we highly recommend not to use explicit calls to ocamlc: use the camlp3lc

compiler that is especially devoted to the compilation of CamlP3lprograms. ¦

The compilation produces an executable file named mandel.par.

2.5 Common options

The parallel compilation of CamlP3l programs creates executables that are equipped with

the following set of predefined options:

• -p3lroot, to declare this invocation of the program as the root node.

• -dynport, to force this node to use a dynamic port number instead of the default

p3lport; in addition the option outputs it (useful if you want to run more slave

copies on the same machine).

• -debug, to enable debugging for this node at level n. Currently all levels are equal.

• -ip, to force the usage of a specified ip address. Useful when you are on a laptop

named localhost and you want to be able to choose among network interfaces.

• -strict, to specify a strict mapping between physical and virtual processors.

• -version, to print version information.

• -help or --help Displays this list of options.
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2.5.1 Parallel computation overview

The executable produced by using the --parallel option of the compiler behaves either

as a generic computation node, or as the unique root configuration node, according to the

set of arguments provided at launch time.

To set up and launch the parallel computation network, we need to run multiple

invocations of the parallel executable:

• run one copy instance of mandel.par, with no arguments, on each machine that takes

part to the parallel computation; These processes wait for configuration information

sent by the designated root node,

• create a root node, by launching one extra copy of mandel.par with the special

option -p3lroot.

As soon as created, the root node configures all other participating nodes and then executes

locally the pardo encapsulated sequential code.

In addition to the -p3lroot special option, the root node invocation must specify

the information concerning the machines involved in the computational network (their ip

address or name, their port and color).

2.6 Launching the parallel computation

Here is a simple script to launch the parallel network on several machines:

#!/bin/sh

# The list of machines

NODES="machine1 machine2 machine3 machine4"

# The name of executable to be launched

PAR="./mandel.par"

echo -n "Launching CamlP3l $PAR on the cluster:"

for NODE in $NODES; do #(*1*)

echo -n " $NODE"

#launching a generic computation node on each machine

ssh $NODE $PAR 1> log-$NODE 2> err-$NODE &

# a possible coloring of machines

case $NODE in #(*2*)

machine1) COLORED_NODES="$COLOREDNODES $NODE#1";;

*) COLORED_NODES="$COLOREDNODES $NODE#2";;

esac

done

echo "Starting computation with $COUNT node(s): $COLORED_NODES..."

# launch the unique root configuration node #(*3*)

$PAR -p3lroot $COLOREDNODES 1> log-root 2> err-root

echo "Finished."

This script assumes mandel.par to be accessible to all participating machines and does

the following:
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• runs mandel.par on all participating machines (#(*1*)),

• generates a coloring for participating nodes (#(*2*)),

• launches the computation starting the root process on the local machine (#(*3*))

providing the list of colored participating hosts.

In future versions, especially those incorporating the MPI communication layer, the

startup mechanism will possibly work differently (typically, the initialization steps will be

performed by the MPI layer).

2.7 Common errors

A few words of warning now: even if the user program is now easy to write, compile and

execute, you should not forget that the underlying machinery is quite sophisticated, and

that in some situations you may not get what you expected. Two typical problems you

may encounter are the following:

output value: code mismatch If you see this error in the parallel execution of your

program, it means that two incompatible versions of your program are trying to

communicate. OCaml uses an MD5 check of the code area before sending closures

over a channel, because this operation only makes sense between “identical” pro-

grams.

Two possible reasons for the error are:

• an old version of your program is still running somewhere and is trying to

communicate with the newer version you are running now. You should kill all

the running processes and try again.

• you are running copies of the program compiled for different architectures. This

feature is not yet supported, and you should run the program on homogeneous

architectures.

references You should remember that the user functions provided to the skeletons will be

all executed on different machines, so their behaviour must not rely on the existence

of implicitly shared data, like global references: if you do, the sequential behaviour

and the parallel one will be different. This does not imply that all user function

be real functions (you can use local store to keep a counter for example), but an

access to a global reference is certainly a mistake (since every node will access its

own private copy of the data, thus defeating the purpose of the shared data).
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Chapter 3

More programming examples

3.1 Generating and consuming streams

Streams to be feed to the parallel networks can be created and consumed using functions

in P3lstream. Main functions are as follows:

Function Description Secs
P3lstream.of list transforms a list in a valid stream 3.1.1, 3.1.2,

3.5
P3lstream.iter iterates on all elements of a stream 3.1.1, 3.1.2,

3.1.3
P3lstream.of fun allows stream generation

iterating a sequential function
which explicitely raises End_Of_File 3.1.3

P3lstream.to list transforms streams into lists 3.1.4

3.1.1 Generating streams from lists

let rec generate_list_of_float n s =

if ( n <= 0 ) then []

else s :: (generate_list_of_float (n-1) (s +. 1.0))

;;

let initseq n s = P3lstream.of_list (generate_list_of_float n s);;

let finseq y =

P3lstream.iter (fun x -> print_float x; print_newline()) y;;

(* Define stage1 and stage 2, can be anything......*)

let stage1 _ x = x +. x;;

let stage2 _ x = x *. x;;

(* definizione network del pipe *)

let pipe = parfun (fun () -> seq(stage1) ||| seq(stage2));;
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(* pardo activation *)

pardo

(fun () ->

let s = initseq 10 1.0 in

let y = pipe s in

finseq y

);;

3.1.2 Generating streams from files

let read_input_float fd =

Scanf.fscanf fd "%f" (fun n -> n);;

let rec fgenerate_list_of_float cin n=

if ( n <= 0 ) then []

else

(try

(let s = (read_input_float cin) in

Printf.printf "Ecco %f\n" s;

s:: (fgenerate_list_of_float cin (n-1)))

with

End_of_file -> [];

)

;;

(* stream generation *)

let initseq cin n =

P3lstream.of_list (fgenerate_list_of_float cin n);;

(* prints out stream *)

let finseq cout y =

P3lstream.iter (fun x -> Printf.fprintf cout "%f" x; output_string cout "\n") y;;

(* Defines stage1 and stage 2 *)

let stage1 _ x = x +. x;;

let stage2 _ x = x *. x;;

(* defining a two stage pipe network *)

let pipe = parfun (fun () -> seq(stage1) ||| seq(stage2));;

(* pardo activation *)

pardo

(fun () ->

let cin = open_in "pippo" and cout = open_out "pluto" in

let s = initseq cin 10 in

let y = pipe s in

finseq cout y
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)

;;

3.1.3 Generating streams repeatedly calling a function

Here, the stream is generated by repeatedly calling function generate input stream via

P3lstream.of_fun.

%quinto-esempioUM.ml

(* generating the input stream calling repetedly a function *)

let generate_input_stream =

let x = ref 0.0 in

(function () ->

begin

x := !x +. 1.0;

if(!x < 10.0) then !x else raise End_of_file

end);;

(* prints out an integer stream *)

let finseq y =

P3lstream.iter (fun x -> print_float x; print_newline()) y;;

(* Defines stage1 and stage 2 as identity*)

let stage1 _ x = x;;

let stage2 _ x = x;;

let pipe = parfun (fun () -> seq(stage1) ||| seq(stage2));;

(* pardo activation *)

pardo

(fun () ->

let s = P3lstream.of_fun generate_input_stream in

let y = pipe s in

finseq y

)

;;

3.1.4 Transforming streams into lists

(* generating the input stream calling repeatedly a function *)

let generate_input_stream =

let x = ref 0.0 in

(function () ->

begin

x := !x +. 1.0;

if(!x < 10.0) then !x else raise End_of_file

end);;

(* Defines stage1 and stage 2*)
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let stage1 _ x = x +. 1.;;

let stage2 _ x = x +. 7.;;

let print_result x =

print_float x; print_newline();;

let pipe = parfun (fun () -> seq(stage1) ||| seq(stage2));;

(* pardo activation *)

pardo

(fun () ->

let is = P3lstream.of_fun generate_input_stream in

(* transforms a stream into a list *)

let l = P3lstream.to_list (pipe is) in

List.iter print_result (List.map (fun n -> n*. 4.) l)

)

;;

3.2 Global and local definitions

As discussed in Section2.7, global variables must not be used in an CamlP3l pragram, as

their value on different processing nodes will be different and updates will have effect only

on the node which executes them.

On the other hand, we can have both local and global definitions which are evaluated

before or after specializing a procesing node. For instance we can share the same file

descriptor between all the processing nodes partecipating to a skeleton. See examples in

Section 1.3.3.

3.3 Managing command line: option

To be done

3.4 Directing allocation: colors

To be done

3.5 Mixing Unix processes with CamlP3l

The following code defines a farm in which each worker computes the square over a stream

of float. However, the function is computed by an external command which is spawned

and connected via stdin / stdout to the farm worker in the seq skeleton. In the following

code, care is taken to activate the external process only once. spawned is true only if the

Unix process and connecting pipes descriptor are maintained in variables cin and cout.

Notice that pattern matching in (* * *) is not exhaustive, because if process has been

already spawned cin and cout must contain a valid descriptor.

let farm_worker _ =

let conto = ref 0 and spawned = ref false
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and cin = ref None

and cout = ref None in

(fun x ->

conto := !conto + 1;

if not !spawned then

begin

let (ic,oc) = Unix.open_process "./square"

in cin := Some ic; cout := Some oc; spawned:=true

end;

let Some ic, Some oc = (!cin , !cout) in (* * *)

Printf.fprintf oc "%d\n" x; Pervasives.flush oc;

let i = Scanf.fscanf ic "%d" (fun x -> x) in

)

;;

let compute = parfun (fun () -> farm(seq(farm_worker),4));;

let print_result x = print_int x; print_newline();;

pardo(fun () ->

let is = P3lstream.of_list [1;2;3;4;5;6;7;8;9] in

let s’ = compute is in P3lstream.iter print_result s’;

);;

The important thing is remember to fflush data output in the external commend source

otherwise we block. The following is an example of valid C definition for the square

program.

#include <stdio.h>

#define TRUE 1

int main(void)

{

int i;

while (TRUE) {

/* reading from standard input */

scanf("%d",&i);

/* writing on strandard output */

printf("%d\n",i*i);

/* fflushing buffers otherwise you block the output stream */

fflush(NULL);

}

exit(0);

}
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Chapter 4

Implementing CamlP3l

Now, let us point out the peculiar features relative to the implementation of CamlP3l.

First, we will discuss the mechanism used to implement different processes onto different

nodes, by exploiting a particular form of “closure communication”. Then, we will point

out some details relative to the interprocess communication layer and we will motivate the

choice of the Unix sockets as the CamlP3l communication layer. Finally, we will discuss

some details of the templates we used to implement the skeletons provided by CamlP3l.

4.1 Closure passing as distributed higher order pa-

rameterization

A sequential implementation of an CamlP3l program is quite easy to provide: just use a

library seqp3l.ml which implements each skelton with a valid OCaml sequential function.

The type safety is a direct consequence of the fact that we are not using here anything

from outside the safe core of Ocaml.

Similarly, providing the graphical semantics poses no real challenge.

But what about the parallel semantics? What is the right way to implement such

a thing? We must guarantee the type safety and ensure that the runtime is reasonably

small as to allow the verification of its properties, which will become an important point

in industrial applications. Both points posed problems which we overcame during the

development of the system.

First of all, to ensure that the system is manageable and safe, we immediately discarded

the approach based on parsing the source file to extract the code corresponding to each

node of the network: this would impose to use external tools to perform an analysis of the

user code which is difficult, error prone, and whose semantics would have a very unclear

status.

Instead, we choose to use an SPMD approach: all the nodes of the network will run

the same program (in a sense this is the “template process interpreter code”, as we will see

in while) , which will be the result of the compilation of the full user code, and a control

node1 will dispatch to the rest of the nodes in the network the parameterization information

needed to specialize it to the particular function it is really supposed to perform (emitter,

collector, sequential node running a given function f , etc.).

1The control node runs the same program as the others, but it is invoked by the user with a

special designating option -p3lroot.
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In order to achieve this behavior, the control node performs the following tasks:

• executes the parfun skeleton expression definitions, which has as a consequence to

build a data structure describing all the parallel process networks. From this data

structure, we compute behind the scenes the configuration information for each node

in the process network.

• executes the pardo expression: this has the following effect

– maps virtual nodes to the processor pool given on the command line,

– initializes a socket connection with all the participating nodes,

– gets the port addresses from each of them (a fixed port number —p3lport—

or some dynamically generated number if more than one copy run on the same

machine),

– sends out to each node the addresses of its connected neighbors (this step

together with the previous two provides an implementation of a centralized

deadlock free algorithm to interconnect the other nodes into the process net-

work specified by the skeleton expression),

– sends out to each node the specialization information that consists of the func-

tion it must perform.

This very last task requires a sophisticated operation: sending a function (or a closure)

over a communication channel. This is usually not possible in traditional functional pro-

gramming languages, since sending an arbitrary function supposes that we are able to find

on the receiving side the code corresponding to the function name received or that we can

transfer executable code (a feature known as mobility today). Now, mobility is necessary

to send closures between arbitrary programs (since two different programs have no reason

to know each other’s function code), but not between two copies of the same program:

in the latter case, it suffices to send what essentially amounts to a code pointer. Starting

from version 1.06, OCaml contains a modified marshaling library, originary designed for

the CamlP3l system, that performs closure sending between copies of the same program

(this is checked by means of an MD5 signature of the program code). The ocaml run

time system takes care of dealing with differences in endianness and word size between

communicating machines, as well as flattening tree-shaped data structures.

On the other side, all the other nodes simply wait for a connection to come in from the

root node, then send out the address of the port they allocate to do further communication,

wait for the list of neighbors and for the specialization function, then simply perform it

until termination.

To summarize, in the implementation the possibility of sending closures allowed us to

obtain a kind of higher order distributed parameterization that kept the runtime code to

a minimum size (the source codes of the full system is less than twenty kilobytes).

4.2 Communication and process support

As far as the general mechanism of closure passing is concerned, no particular require-

ment/restrictions have been posed onto the physical communication implementation. Even

considering the fact that we need to move data between the different processes making up

the parallel implementation of an CamlP3l program, we derived no particular constraint

onto the communication layer.
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Thus, at the very beginning of the CamlP3l project, we faced the problem of choosing

a suitable communication system. We had as a goal to come out with the maximum

“portability” of CamlP3l. Furthermore, we wanted to fully demonstrate the feasibility of

integrating the parallel skeleton world within a functional framework. These two goals

had priority over the classical “efficiency and performance” goal one usually has to achieve

when dealing with parallelism.

The result is that we have adopted the plain Unix socket world as the communication

layer. This has some (very) positive consequences on the overall CamlP3l design:

• the socket communication support is generally available on Unix/Linux and Win-

dows system

• no particular customization of the support is needed to match the CamlP3l features,

• the point-to-point, connection oriented, stream model provided by Unix sockets is

perfect to model data streams flowing around between the processes belonging to

the process network derived by CamlP3l to implement the user skeleton code,

• last but not least, there was an existing and suitable ocaml interface to Unix system

calls, including those relative to sockets.

On the down side, the adoption of Unix sockets presents an evident disadvantage which

is the low performance achieved in communications (a raw synchronization (i.e. zero length

data communication) takes several milliseconds to be performed, even in those cases when

the data transmission media turns out to be free, i.e. no collisions are detected).

At the moment, we are considering to use in the next version of CamlP3l a communi-

cation layer based on an optimized communication library such as MPI [13], as an efficient

alternative to the socket communication layer, which will be nevertheless retained for its

ease of deployment, that makes it attractive for programming courses.

Porting to MPI will require some modifications in the template code used within

CamlP3l, and will not necessarily completely solve the performance problems of the socket

communication layer when run on a network of computers, where most MPI libraries are

still implemented using sockets, but will allow to target real multiprocessor machines where

MPI is efficiently implemented, without touching the user code. Also, we will be able to

delegate to the MPI system the administrative tasks involved in copying and launching

the programs on the different machines.

As far as the process model is concerned, we felt happy with the Unix one. All we need

is a mechanism allowing an instance of the template interpreter (the one specialized by

using the closure passing mechanism) to be run onto different workstations belonging to

a local area network. The Unix rsh mechanism matches this requirement. Note that, as

processes are generated and run on different machines just at the beginning of the CamlP3l

program execution, any considerations about performance in rsh-ing is irrelevant.

4.3 Template implementation

CamlP3l implements each skeleton appearing in the application code by generating a proper

instantiation of the corresponding implementation template. In CamlP3l, a single imple-

mentation template is provided for each one of the skeletons supported. The implementa-

tion templates provided within the current prototype closely resemble the ones discussed

in the informal parallel semantics section (Section 1.3). Actually, only the reduce template

is slightly different, in that the tree discussed in Section 1.3.7 is actually implemented

by a process network similar to the one discussed for the farm, where partially evaluated
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data is iteratively passed back from the collector to the emitter process. We are currently

studying a more efficient mechanism based on a formal calculus for data distribution and

computation over dense arrays [?, ?, ?].

Each template appearing in CamlP3l:

• is parametric in the parallelism degree exploited As an example the farm template

may accommodate any positive numbers of worker processes. Currently, the pro-

grammer must specify this parameter, which is the second parameter of a farm(f,n)

skeleton call.

• is parametric in the function computed as the body of the skeleton For instance,

the farm skeleton accepts as a parameter the function that has to be computed by

the worker processes. This function must be a skeleton itself. Therefore, either it

is a seq skeleton call, or it is a skeleton call modeling a parallel computation. In

the former case, the skeleton is implemented by a process network whose workers

just perform the sequential computation f denoted by some seq(f). In the latter

case, each worker process is itself a process network known by the emitter and

collector processes implementing the farm just as channels where data has to be

delivered/fetched.

• provides a set of process templates i.e. parametric process specifications that can be

instantiated to get the real process codes building out the implementation template

process network. As an example, consider again the farm template. The emitter

process behavior can be fully specified by the data type of items that have to be

processed, by the channel from which those data items have to be read and by the set

of channels onto which the data items have to be scheduled (written) to the worker

processes, possibly with some “clever” (e.g. achieving load balancing) scheduling

strategy. Such a process can be completely specified by providing a function

farmetempl (OutChanSel f) ic ocl

whose first parameter provides the worker scheduling function, the second one pro-

vides the input channel where data has to be fetched and the third one provides the

set of channels used to deliver tasks to be computed to the farm workers. The type

of such a function turns out to be

val farmetempl : (’a, ’b) Parp3l.action -> in_channel ->

out_channel list -> unit

The process template definition in the CamlP3l code looks like the following:

let farmetempl (OutChanSel f) ic ocl =

while true do

try

let theoc = f ocl in

match (Marshal.from_channel ic) with

UserPacket(p,seqn,tl) ->

Marshal.to_channel

theoc

(UserPacket (p,seqn,Farmtag::tl))

[Marshal.Closures];

flush theoc;

| EndStream ->

List.iter
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(fun x -> Marshal.to_channel

x

EndStream

[Marshal.Closures];

flush x)

ocl;

List.iter close_out ocl; close_in ic; exit 0

with End_of_file -> List.iter close_out ocl;

close_in ic

done;;

Therefore the whole compilation process transforming an CamlP3l skeleton program into

the parallel process network implementing the program can be summarized in the following

steps:

1. the skeleton code is parsed and transformed into a skeleton tree data structure,

recording all the significant details of the skeleton nesting supplied by the user code,

2. the skeleton tree is traversed and processes are assigned to each skeleton according

to the implementation templates. During this phase, processes are denoted by their

input/output channels, identified via a unique number.

3. once the number and the kind of parallel processes building out the skeleton code

implementation is known, code is generated that either delivers the proper closures,

derived by using the process templates, to the “template interpreter” instances run-

ning on distinct workstations (this happens just on one node, the “root” one), or

waits for a closure and repeatedly computes this closure on the proper input and

output channels until an EndOfFile mark is received.
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Chapter 5

Multivariant semantics and

logical debugging

By providing modules that implement the three CamlP3l skeleton semantics (the sequential

one, the parallel one and the graphical one), we allow the CamlP3l user to perform the

following parallel application development process:

• develop skeleton code modeling the application at hand. This just requires a full

understanding of the skeleton sequential semantics and usually allows the user to

reuse consistent portions of existing applications written in plain ocaml or legacy in

C, C++ etc.

• test the functionality of the new application by supplying relevant input data items

and looking at the results computed using the sequential skeleton semantics. In case

of problems, the user may run the sequential debugging tools to overcome problems.

• link the parallel skeleton semantics module and run the application onto the work-

station network. Provided that the application was sequentially correct, no new

errors should be found at this step (we assume that the run time is guaranteed cor-

rect!). In practice, a few errors can occur ussually related to wrong assumption on

global variables. If your code uses global variables updating them durin gexecution,

this will work OK in the sequential semantics as memory is actually shared but not

in the parallel version as update will be only seen locally on the processing node.

• look at the performance results of running the application on the number of proces-

sors available and possibly adjust the significant performance parameters, such as

the number of workers of the farm, map and reduce and the color of each of them.

This is actually the real problem in the development of an efficient parallel applica-

tion. Forthcoming versions of CamlP3l will include analytical performance models

for the templates and these models will be used to automatically guess colors and

giude the complier in the compiler. During performance tuning, the programmer

may link the graphic semantic skeleton module and look at the results of the pro-

gram execution, i.e. at the resulting process graph, in order to understand where

bottlenecks are or which parts of the program must be further decomposed using

skeletons in order to get better performant application code.

Let us spend now some words concerning logical, sequential debugging of CamlP3l

applications.
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A user developing an CamlP3l application may link the sequential skeleton semantics

module to his/her code and debug the application by using the plain sequential debugging

tools of ocaml. This debugging activity can be performed on a single machine, provided

the machine supplies ocaml. Also, performance tuning can be directed using standard

sequential profiling tools such as gprof.

Once the application has been debugged, i.e. the user perceives it computes the ex-

pected results, he/she can compile the parallel version of the application by linking the

parallel skeleton semantics. As we guarantee that the implementation templates for the

different skeletons of CamlP3l are correct (deadlock free, load-balanced, etc.) and as we

guarantee that the process transforming the skeleton code in the process code is correct,

the user does not need to perform explicit activities in order to check that the results

computed by the parallel code are correct.

In particular, the user does not need to check that all the processes have been correctly

scheduled for execution, or that the communication channels have been set up properly

between these processes, or that data of type ’a has been never delivered on channels

transmitting data of type ’b. This is a very short list of bad things that may affect the

correct behavior of an explicitly parallel program, indeed. The fact that the user is not

required at all to take them into account is one of the biggest pro’s of the functional

skeleton approach.
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Chapter 6

Related work, conclusions

and perspectives

6.1 Related work

Many researchers are currently working on skeletons and most of them are building some

kind of parallel implementation, but our work, as far as we know, is unique in its combi-

nation of a fully functional strongly typed language with the skeleton approach.

In particular, Darlington’s group at Imperial College in London is actively working on

skeletons. They have explored the problems relative to implementing a skeleton program-

ming system, but the approach taken uses an imperative language as the implementation

language. Currently there is a “local” prototype implementation but no public domain

implementation of their skeleton approach and they seem deeply involved in the study of

the data-parallel and coordination aspects of skeletons. [9, 8, 1]

A different approach relative to skeleton parallel programming within a functional

framework has been discussed by Bratvold [4]. Bratvold takes into account plain ML

programs and looks for skeletons within them, compiling these skeletons by using process

networks that look like implementation templates. However, both the final target language

and the implementation language are imperative.

Finally, Sérot [17, 16], presents an embedding of skeletons within ocaml that seems to

be close to our work, although independently developed. The message passing is performed

by interfacing the MPI library with ocaml. The skeletons taken into account are different.

She considers data-parallel farm, roughly corresponding to our mapvector skeleton, and

two further skeletons, scm and filt. filt is a plain filter skeleton, canceling data items

from a list, while scm (Split, Compute and Merge) looks like a map skeleton working on

lists with explicit, user defined, decomposition/recomposition functions.

Sérot’s implementation of the skeletons within ocaml is quite different from ours and

only allows one skeleton at a time to be realized on the processor networks, thus preventing

skeleton composition (you cannot nest two scm skeletons for example), and only allowing

for a limited form of staging of the parallel computation: you can perform an scm, then

when this is finished, you can reorganize your network and perform another scm. This

way, the mapping of virtual processors to real processors on the network is a trivial task,

and is done inside each skeleton at run-time instead of beforehand in a specific pass like in

CamlP3l. Sérot implements the skeletons included in his model by providing second order
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functions that directly call MPI and realize an SPMD execution model.

As for the relevant effort done in the field of languages for mobile agents, like for

example [12, 11], it should be noted that they address quite a different kind of problems,

but once stable, these languages could form the basis of a next generation fully fault-

tolerant and dynamically load-balanced version of our system.

6.2 Conclusions and perspectives

Here we showed how a skeleton parallel programming modelcan be successfully married

with the functional programming environments such as the one provided by OCaml.

In particular, we discussed a powerful skeletal model, how skeletons can be embedded

within OCaml as second order functions and how modules implementing both the sequential

and the parallel skeleton and discuss the typical application development cycle in CamlP3l.

The whole process preserves the strong typing properties of ocaml.

At the moment, the prototype CamlP3l implementation is being tested as described in

this paper and is available from the CamlP3l project home Web page

http://camlp3l.inria.fr/.

In the near future we want first of all to include a more powerful MAP skeleton working

on dense arrays with an arbitrary number of dimensions[?, ?, ?]. This will call for a more

efficient communication layer, by using colective MPI communications [13] instead of the

plainUnix socket library. At the same time, we investigate the feasibility of porting the

system on the ubiquitous Windows boxes, for didactical purposes. Finally, we already

developed a parallel numerical code [?] and plan to write some more significant parallel

applications in order to fully test the prototype.
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