
Sklml: Functional Parallel Programming

User Manual

Version 1.0

Quentin Carbonneaux, François Clément, Pierre Weis 1

September 29, 2011

1INRIA Rocquencourt - France

Contents

1 Skeleton based programming and Sklml 1

1.1 The system design goals . 1

1.2 The skeleton model of Sklml . 2

1.2.1 Parallel execution model . 3

1.2.2 A simple example: farming computation . 3

1.3 Skeleton syntax, semantics, and types . 4

1.3.1 The skl construction . 5

1.3.2 The farm skeleton . 6

1.3.3 The ||| skeleton . 7

1.3.4 The *** skeleton . 7

1.3.5 The +++ skeleton . 7

1.3.6 The loop skeleton . 8

1.3.7 The farm_vector skeleton . 8

1.3.8 The rails skeleton . 9

1.4 Coloring skeletons . 9

2 Compiling and running a Sklml application 10

2.1 Compiling . 10

2.1.1 Effective compilation using sklmlc . 10

2.1.2 Handling dependencies with sklmldep . 11

2.1.3 Behind the scene . 12

2.1.4 About hello.ml . 12

2.2 Running . 12

2.2.1 Sequential execution . 12

2.2.2 Parallel execution . 12

3 Real programming with Sklml 15

3.1 Stream handling . 15

3.2 Using the extra library . 15

3.2.1 The extra skeletons . 15

3.2.2 The domain decomposition toolkit . 16

1

Abstract

Writing parallel programs is not easy, and debugging them is usually a nightmare. Over the last years, several

researchers coped with these difficulties by developing a structured approach to parallel programming via

template based compiler techniques. The skeleton programming approach uses a set of predefined patterns

for parallel computations. The skeletons are higher order functional templates that describe the program

underlying parallelism. So, marrying a full-fledged functional language and a carefully crafted skeleton

algebra seems to be the way to go to obtain a powerful parallel programming environment.

This document describes the Sklml (["sk@lEmEl]) system that embeds an innovative compositional skeleton

algebra into the Ocaml language.

Sklml provides an optimizing compiler and a runtime computing network manager. Thanks to its skeleton

algebra, Sklml provides two evaluation regimes to programs: a regular sequential evaluation (merely used for

prototyping and debugging) and a parallel evaluation obtained via a recompilation of the source program in

parallel mode. Sklml is also designed to be a parallel computation driver running worker programs written

in heterogeneous external languages (e.g. C, C++, Fortran).

Chapter 1

Skeleton based programming and Sklml

In a skeleton based parallel programming model [2, 6, 4] a set of skeletons, i.e. second order functionals

modeling common parallelism patterns are provided to the programmer. The programmer uses skeletons

to describe the parallel structure of an application and uses a plain sequential programming language to

express the sequential portions of the parallel application. There is no way to express parallel activities but

skeletons: there are no notions of explicit process creation, scheduling, termination, nor any communication

primitives, shared memory concepts, nor any mean to detect execution on parallel architecture.

Sklml is a programming environment that allows to write parallel programs in Ocaml1 according to a

new skeleton model derived from CamlP3l[3]2. It provides a seamless integration of parallel programming in

functional programming and advanced features like sequential logical debugging (i.e. functional debugging

of a parallel program via execution of the described parallel architecture on a single sequential machine) and

strong static typing, useful both in teaching parallel programming and in building full-scale applications.

In this chapter, we will first discuss the goals of our system design, then recall the basic notions of the

skeleton model for structured parallel programming and describe the skeleton model provided by Sklml,

providing an informal sequential and parallel semantics.

1.1 The system design goals

Sklml is a complete rewrite of CamlP3l to improve the usability and code quality of the system. However,

orignial goals of CamlP3l are still leading directions for Sklml. CamlP3l put the ideas of algorithmic skeletons

in the Ocaml functional language in order to benefit from the strong typing discipline and all the programming

facilities offered by Ocaml.

We also keep a salient feature of CamlP3l: the dual interpretation of skeletons as a sequential and

parallel specification of programs. This is a real advantage since it lets the programmer debug, trace, place

breakpoints in its code in the traditional way. When the code is logically correct (i.e. it executes correctly

in sequential mode), the programmer is guaranteed to obtain a correct parallel execution. This is definitely

not the case of programs written using a sequential language and directly calling communication library

primitives such as the Unix socket interface or the MPI or PVM libraries. In effect, these library introduce

1See http://caml.inria.fr/.
2CamlP3l was a major rework of the initial OcamlP3l[5] based on the p3l[9] Pisa Parallel Programming Language

1

their own set of problems and pitfalls, while imposing the inextricable interleaving of the program logic with

low level management of data exchange and handling of process creation and monitoring.

Furthermore, the compilation and execution of Sklml programs is extremely simplified: we provide the

sklmlc compiler as an alternative to the regular Ocaml compiler; programs compiled in sequential mode are

regular system executables, while their parallel version, compiled in parallel mode, must be launched with

the sklrun runtime job manager to specify the available computation resources (physical machines, relative

computing prower), as described in section 2.2.2.

Finally, in order to keep a strong conviction of the equivalence between parallel and sequential execution

of Sklml programs, the whole code of the Sklml framework has been rewritten from scratch, so that the

sequential and parallel runtime share a large common infrastructure, up to the point that the parallel

runtime uses the stream library of the sequential runtime.

1.2 The skeleton model of Sklml

A skeleton parallel programming model supports so-called ‘structured parallel programming’ [2, 6, 4]. Using

such a model, the parallel structure and behaviour of any application has to be expressed by using skeletons

picked up out of a collection of predefined ones, possibly in a nested way. Each skeleton models a typical

pattern of parallel computation (or form of parallelism) and it is parametric in the computation performed

in parallel. As an example, pipeline and farm have been often included in skeleton collections. A pipeline

models the execution of a number of computations (stages) in cascade over a stream of input data items.

Therefore, the pipeline skeleton models all those computations where a function fn(fn−1(. . . (f2(f1(x))) . . .))

has to be computed (the fi being the functions computed in cascade). A farm models the execution of a

given function in parallel over a stream of input data items. Therefore, farms model all those computations

where a function f(x) has to be computed independently over n input data items in parallel.

In a skeleton model, a programmer must select the proper skeletons to program his application leaving

all the implementation and optimization to the compiler. This means, for instance, that the programmer

has no responsibility in deriving code for creating parallel processes, mapping and scheduling processes on

target hardware, establishing communication frameworks (channels, shared memory locations, etc) or per-

forming actual interprocess communications. All these activities, needed in order to implement the skeleton

application code onto the target hardware are completely in charge of the compile and runtime support of

the skeleton programming environment. In some cases, the support also computes some parameters such as

the parallelism degree or the communication grain needed to optimize the execution of the skeleton program

onto the target hardware [7, 1, 8].

Current Sklml version supplies three kinds of skeletons:

• Task parallel skeletons model parallelism exploited between independant processing activities relative

to different input data. In this set, we have: pipe (||| in infix form) (cf. 1.3.3) and farm (cf. 1.3.2).

• Data parallel skeletons model parallelism exploited computing different parts of the same input data.

In this set, we provide farm_vector (cf. 1.3.7) and rails (cf. 1.3.8). The farm_vector skeleton models

the parallel application of a generic function f to all the items of a vector data structure. So does the

rails skeletons with fixed size vectors. The skeletons prduct (*** in infix form) and sum (+++ in infix

form) are also data parallel, they act on data built of smaller elements and find their roots in basic

functional programming (cf. section 1.3.4 and 1.3.5).

2

• Service skeletons or control skeletons, which are not parallel per se. Service skeletons encapsulate

Ocaml non-parallel code within other skeletons (loop skeleton, cf. 1.3.6) or transform a sequential code

into a valid Sklml skeleton (the skl syntactic construct, cf. 1.3.1).

1.2.1 Parallel execution model

Structure of Sklml programs

A Sklml program has three sections:

1. a set of plain sequential function definitions written in Ocaml;

2. a set of skeleton definitions;

3. a pardo invocation.

Set (1) has nothing mysterious: it is just regular Ocaml programming. Set (2) is specific to Sklml, the

skeletons defined here are values of type (α, β) skel. Although (α, β) skel is intended to be the type

of skeletons from α values to β values, this type is still fully abstract, hence no skeleton of set (2) can be

applied to anything. In Sklml, the only way to apply (or use, or run) an (α, β) skel value is to turn it

into a true function via the provided primitive parfun:

val parfun : (’a, ’b) skel -> ’a stream -> ’b stream;;

This transformation must occur into the pardo invocation (the third section of a Sklml program). The

pardo function is the Sklml primitive that starts the computation of a Sklml program. To launch the

execution, the pardo primitive should be applied to the main function of the parallel program. Then pardo

applies the main function to the parfun primitive, hence allowing main to turn skeletons of set (2) into

regular Ocaml functions from streams to streams. Last but not least, the main procedure must define an

initial stream of values and apply the freshly obtained functions to this initial stream.

Interpretation of Sklml programs

The processes that execute a parallel program are launched on a computation grid by a dedicated program

available on every node. This program starts instances of the compiled code for the current architecture and

tells each instance which sequential function it has to run, and connects it to the other nodes. When all

processes are up and running, the parfun primitive sends the input stream in the computational network

and returns the stream of results.

Notice that the execution model assumes an unlimited number of homogenous processors. In practice,

there are much more processes than processors, and processors have heterogeneous capacity. The Sklml

library handles this situation in a transparent way. However, the programmer may help the library by

providing hints on the computing power of processors and hints on complexity of sequential functions (see

the color anotations in section 1.4).

1.2.2 A simple example: farming computation

Let us examine a complete Sklml program. The source of program Sis in figure 1.1. The program Scomputes

the square of each element of an input stream.

The structure of program Sis as follows:

3

1 open Skl;;

2 let square x = x * x;;

3 let print_result x = print_int x; print_newline ();;

4 let main { Parfun.parfun = parfun; } =

5 let square_worker = skl () -> square in

6 let farm_worker = farm (farm_worker (), 4) in

7 let compute = parfun farm_worker in

8 let s = Sklstream.of_list [1;2;3;4;5;6;7;8] in

9 let result = compute s in

10 Sklstream.iter print_result result

11 ;;

12 Parfun.pardo main;;

Figure 1.1: Sklml code using a farm to square a stream of integers.

1. First section contains two simple Ocaml functions: square and print result (ligne 2 and 3).

2. The main function gets a parfun argument. In lines 5 and 6 main defines two skeletons: the square worker

base skeleton and the farm worker skeleton that uses four square worker to compute the results in

parallel.

3. The farm worker skeleton is turned into the compute function using the parfun primitive (line 7),

because of its type, the parfun function can be applied several times inside the main function to

transform skeletons.

4. The compute is applied to the input stream s giving a result stream named result.

5. The results are displayed using the Sklmlfunction Sklstream.iter to iterate the printing functions

over every element of the output stream.

6. The last toplevel statement in line 12 will run the main function and it will pass to main the appropriate

parfun argument. This parfun function, depending on the compilation mode is either a parallel process

launcher or a sequential implementation of the skeleton semantics.

Figure 1.2: Overall process network of the simple farm squaring a stream of double.

1.3 Skeleton syntax, semantics, and types

Each skeleton, once started by a parfun application, is a stream processor, transforming an input stream

into an output stream and is equipped with two semantics.

4

Sequential semantics a suitable sequential Ocaml function transforming all the elements of the input

stream.

Parallel semantics a process network implementing the stream transformation in parallel.

From a Ocaml point of view, a skeleton taking elements of type α and returning elements of type β has

the type (α, β) skel.

1.3.1 The skl construction

The skl syntactic construction lets the programmer lift a regular Ocaml function f to the universe of

skeletons. This construct is the Sklml correspondant of the fun construct of the Ocaml language. It provides

let (succ_skl : unit -> (int, int) skel) =

skl () -> succ in ...

let (add_skl : int -> (int, int) skel) =

skl i -> fun x -> x + i in ...

Figure 1.3: Sklml code using the skl construct.

a way to define a skeleton generator that associates a skeleton to the value of an initialization parameter,

that is a value of any non-functional type that is marshaled and sent to the remote worker at initialization

time. An example of such an initialization is given in figure 1.4.

let (my_skeletons : (int, int) skel list) =

List.map (skl i -> (+) i) [1; 2; 3; 4; 5; 6; 7; 8;] in ...

Figure 1.4: Sklml code creating initialized skeletons.

Indeed, the initialization parameter is mandatory for at least two reasons:

• it solves the “initialization problem” in a nice way;

• it is needed in order to make one of the programming constraints described in the next paragraph

lighter.

Golden rules. Using the skl construct, two rules must be respected:

1. No free variables shall appear in the body of a skl construct, except global variables.

2. The type of the initialization parameter must be a marshalable type. In particular, it can not contain

functional values.

If you you do not respect these rules, in the best case, your code will not compile, in the worse case it will

behave in the strangest way. If the constraint (2) is violated, a runtime error will occur at initialization time.

Note: these rules are in sharp contrast with the OcamlP3l system for which the programmer had to move all

its parfun applications to the toplevel to let the library know what skeletons he will be using in its code.

5

The code in figure 1.5 violates constraint (1); the right way to implement this behavior is to properly use

the initialization parameter, as shown in figure 1.4.

A good practice to write a Sklml skl skeleton is to write it as a standard Ocaml function, then abstract

all the free variables violating rule (1) as extra arguments in the intialization parameter.

let main { parfun = parfun; } =

let (my_skeletons : (int, int) skel) =

List.map (fun x -> (skl () -> (+) x) ())

[1; 2; 3; 4; 5; 6; 7; 8;] in

...

Figure 1.5: Wrong Sklml code.

Finally, note that the body of the skl construct is running on the remote slave. Hence, slave specific

initializations must be done after the arrow of the skl construct. For example, in the example of figure 1.6,

the two strings are printed on the slave’s displays; so if the slaves are remote, you might never see the output!

let main { parfun = parfun; } =

let skls =

List.map (skl s -> Printf.eprintf "%s\n" s; succ)

["hello"; "world";] in

let print_int_list =

List.iter (fun i -> print_int i; print_newline ()) in

let run_skl l sk =

Sklstream.to_list (parfun sk (Sklstream.of_list l)) in

let ss’ = List.map (run_skl [1; 2; 3;]) skls in

List.iter print_int_list ss’

;;

pardo main;;

Figure 1.6: skl initializations with side effects.

1.3.2 The farm skeleton

The farm skeleton computes in parallel a function f over the data items in its input stream. From a functional

viewpoint, given a stream of data items x1, . . . , xn, and a function f , the expression farm(f, k) computes

f(x1), . . . , f(xn). Parallelism is gained by having k independent processes that compute f on different items

of the input stream. The farm skeleton has type:

val farm : ((’a, ’b) skel * int) -> (’a, ’b) skel;;

The farm function takes a pair of parameters as argument:

• the first one denotes the skeleton expression of the farm worker;

6

• the second one specifies the degree of parallelism of the farm, i.e. the number of worker processes that

have to be set up in the farm.

1.3.3 The ||| skeleton

The pipe, or pipeline, skeleton is denoted by the infix operator |||; it performs in parallel the computations

relative to different stages of a function composition over data items of the input stream. Functionally,

f1|||f2 . . . |||fn computes fn(. . . f2(f1(xi)) . . .) over all the data items xi in the input stream. Parallelism

is now gained by having n independent parallel processes. Each process computes a function fi over the

data items produced by the process computing fi−1 and delivers its results to the process computing fi+1.

val (|||) : (’a, ’b) skel -> (’b, ’c) skel -> (’a, ’c) skel;;

In terms of (parallel) processes, a sequence of data appearing onto the input stream of a pipe is submitted to

the first pipeline stage. This stage computes the function f1 onto every data item appearing onto the input

stream. Each output data item computed by the first stage is submitted to the second stage, computing the

function f2 and so on, until the output of the n− 1 stage is submitted to the last stage. Eventually, the last

stage delivers its own output onto the pipeline output channel.

1.3.4 The *** skeleton

The *** skeleton is denoted by the infix operator ***; it performs two computation in parallel by splitting its

input, then computing on the two resulting values and merging the results. Functionally, f1***f2 computes

(f1(xi,1), f2(xi,2)) on each element (xi,1, xi,2) of the input stream. Parallelism is gained by running the

computation of f1 and f2 in parallel.

val (***) :

(’a, ’b) skel -> (’c, ’d) skel -> (’a * ’c, ’b * ’d) skel;;

A typical usage of the *** skeleton is when one wants to compute the function f : x → g(x) + h(x) by

running the computation of g and h in parallel. The Sklml way to implement this parallel scheme is shown

in figure 1.7.

let split_skl = skl () -> fun x -> (x, x) in

let merge_skl = skl () -> fun (x, y) -> x + y in

let f_skl = (split_skl ()) ||| (g *** h) ||| (merge_skl ()) in

...

Figure 1.7: Using *** to compute f : x → g(x) + h(x).

1.3.5 The +++ skeleton

The +++ skeleton is denoted by the infix operator +++, it is used when data can be of two kinds, i.e. the type

of data is a sum of two other types. When treatments on data depend on its kind, parallelism can be gained

by computing the two function applications of successive elements at the same time. Using composition it

7

becomes possible to create values of more than two types. Then the +++ skeleton can be seen as a way to

express a simple pattern matching on incoming data.

val (+++) :

(’a, ’c) skel -> (’b, ’c) skel -> ((’a, ’b) sum, ’c) skel;;

The type sum is defined as follow:

type (’a, ’b) sum = (’a, ’b) Sk.sum = Inl of ’a | Inr of ’b;;

Note: The +++ skeleton can be used to express a skeleton often provided by skeleton libraries, the if-then-else

skeleton. This implementation is distributed in the standard Sklml distribution in the extra library, see

section 3.2.

1.3.6 The loop skeleton

The loop skeleton computes a function f over all the elements of its input stream until a boolean condition

g is verified.

val loop : (’a, bool) skel * (’a, ’a) skel -> (’a, ’a) skel;;

This skeleton was designed to find a fixpoint of a function with respect to some criterion. Figure 1.8 is the

Ocaml description of the action of the loop skeleton on an input value xi.

let rec loop_aux xi =

if not g(xi)

then xi

else loop_aux f(xi) in

loop_aux f(xi)

Figure 1.8: loop semantics in Ocaml.

1.3.7 The farm_vector skeleton

The farm_vector skeleton computes in parallel a function over all the data items of a vector, generating the

(new) vector of results. Therefore, for each vector X in the input stream, farm vector(f, n) computes the

function f over all items of X = [x1, . . . , xn], using n distinct parallel processes that compute f over distinct

vector items
[

f(x1), . . . , f(xn)
]

.

val farm_vector :

((’a, ’b) skel * int) -> (’a array, ’b array) skel;;

In terms of parallel processes, a vector appearing onto the input stream of a farm_vector is split in n

elements and each element is processed by one of the n workers. Workers simply apply f to the elements

they receive. Then all results are merged in an output vector by a dedicated process.

8

1.3.8 The rails skeleton

The rails skeleton looks like the farm_vector skeleton, except that it uses an array of skeletons.

val rails : ((’a, ’b) skel) array -> (’a array, ’b array) skel;;

This skeleton will take as input arrays having the same size as the vector of skeletons given as argument.

Because input vectors have the same size as the vector of skeletons, the Sklml runtime can provide the

garantee that the worker fi will always process the ith element of the input vector. This can be very useful

when the treatment of elements of an input vector is not homogeneous.

Note: with the rails skeleton, the treatment might not be homogeneous, if the data itself is also not homo-

geneous the *** skeleton must be used, see section 1.3.4.

Note: the skeleton farm_vector can not be substituted to rails, even if the number of workers and the

number of elements in input vectors are the same, since using farm_vector the elements having the same

index in the input vectors will not always be processed by the same worker.

1.4 Coloring skeletons

Because not all tasks have the same computational needs and not all processors have the same computational

power, the Sklml system allows to attribute a color to each task and each processor. The color annotations

inform the Sklml system of the computational strength of the nodes of the network and the computational

requirements of the tasks.

Colors on skeletons. In Sklml, the programmer only annotates the color of atomic skeletons, (the skeletons

created by the skl construct as described in section 1.3.1). The color of other skeletons is automatically

computed by summing the colors of the atomic skeletons they enclose.

The colorize function takes a skeleton sk and an integer col and change the color of sk to be col, if

and only if the skeleton was created using the skl construct.

val colorize : (’a, ’b) skel -> int -> (’a, ’b) skel;;

Colors on nodes. Only assigning colors to tasks does not make sense, one has to tell the Sklml system

how much resources are available on each processor. This information is given at launch time, see details in

chapter 2.

9

Chapter 2

Compiling and running a Sklml

application

The Sklml distribution provides convenient tools to compile and run programs. These tools can be very

effective, however an overview of the internals is still required to get out of tricky situations. This chapter

gives an overview of the power tools bundled within Sklml and an overview of what is going on behind the

hood.

Throughout this chapter we use the simple example given in figure 2.1. We stress the point that you

are highly encouraged to type this program yourself in your favorite text editor because this example, while

quite short, is in fact very subtle. As an exercise try to guess all possible outputs (if any) of this code.

In the following sections we assume the example of figure 2.1 to have been written in the file hello.ml.

2.1 Compiling

2.1.1 Effective compilation using sklmlc

Compiling a Sklml program is achieved by the sklmlc compiler. In the current implementation sklmlc is a

simple wrapper over the Ocaml compiler. The Ocaml compiler can not compile Sklml source code directly,

because of the special skl syntax. This peculiar Sklml syntax is handled in a pre-processing phase triggered

by sklmlc.

The sklmlc compiler can deal with all the options of the Ocaml compiler. A new -mode option tells

sklmlc whether a program needs to be linked using the parallel or the sequential runtime. Thus, to compile

the example file hello.ml in sequential mode, two commands are needed :

sklmlc -mode seq -o hello.cmo -c hello.ml

sklmlc -mode seq -o hello.byt hello.cmo

If you want the parallel version, just type:

sklmlc -mode par -o hello.cmo -c hello.ml

sklmlc -mode par -o hello.byt hello.cmo

As expected the two commands can be reduced to one:

10

open Skl;;

open Parfun;;

let stream_of_string s =

let rec explode i =

if i = String.length s then [] else

s.[i] :: explode (succ i)

in

Sklstream.of_list (explode 0)

;;

let id x = x;;

let put_char c =

Printf.printf "%c%!" c; c

;;

let main { Parfun.parfun = pf; } =

let skl_put_char = skl b -> if b then put_char else id in

let skl_farm b nw = farm (skl_put_char b, nw) in

let stream = stream_of_string "Hello world!\n" in

Sklstream.iter ignore

(pf (skl_farm true 10) stream);

Sklstream.iter (fun x -> ignore (put_char x))

(pf (skl_farm false 10) stream)

;;

pardo main;;

Figure 2.1: One simple “Hello world” application for Sklml.

sklmlc -mode seq -o hello.byt hello.ml # for the sequential

sklmlc -mode par -o hello.byt hello.ml # for the parallel

The reader familiar with the Ocaml system might ask where is the native Sklml compiler. In fact, the

sklmlc compiler automatically selects the relevant Ocaml compiler: if called with some filenames ending

with cmx* it uses the Ocaml native compiler, otherwise it uses the bytecode compiler.

The Sklml compiler can compile any valid Ocaml code (except for bad usage of the new skl reserved

keyword).

2.1.2 Handling dependencies with sklmldep

When bigger projects are created in Ocaml it is usual to automate the compilation process because of the

number of source files. This is usually done using make. However, because of relations between modules,

11

compilation needs to be done in a specific order. This order is provided to make by the ocamldep tool.

Because of the skl syntactic construct, ocamldep will fail during the analysis of Sklml code. Thus, a specific

tool wrapping ocamldep is provided within the Sklml system : sklmldep. This dependency generator behaves

exactly as ocamldep, and also parses standard Ocaml code as long as this one does not use erroneously the

skl keyword.

2.1.3 Behind the scene

The two tools presented above have one common option which might be informative in some critical situations

and for the self education of the reader, the -debug option. This option will make the Sklml tools output

the commands they will trigger.

2.1.4 About hello.ml

The example file compiled in this section was created to show the subtle design invariants of the Sklml

system, more precisely, it shows the contrast between data order and computations order. It is distributed

as an example in the current Sklml version. It is in the Sklml archive in the directory example/Hello.

2.2 Running

2.2.1 Sequential execution

When compiled against the sequential execution runtime, a Sklml application is a classical executable pro-

gram, and you run it as any regular Ocaml program.

./hello.byt

2.2.2 Parallel execution

Parallel execution model reviewed

The parallel execution model is briefly described in section 1.2.1. The pardo call contact a program provided

in the Sklml distribution named spawnd. This program can run in two modes, a master mode and a slave

mode. The combination of one master and several slaves provides a way to use computational resources

to the Sklml runtime. Indeed, when a Sklml application needs to launch one task remotely it contacts the

master spawnd and gives him information necessary to start the task (i.e. an identifier representing the task

itself, its color and its initialization parameter). Then, the master spawnd, which keeps track of the load of

each of its slaves, contacts one of them and gives it the information just received. The slave finally spawns

the task on the remote machine.

This launching mechanism implies that at least one spawnd program must be running on each machine

used by the computation. If the computation ends correctly, all spawnd programs are killed.

Lauching parallel computations with sklrun

The sklrun program has been created because the task of launching the spawnd program on all the machines

used by the computation is tedious.

12

This convenient tool is configured using a file storing human readable information. Many examples of

such a file are provided in the standard Sklml distribution, they are all named sklrun.conf. Figure 2.2 is

an example of such a file.

(* Master node *) {

name = "Master";

host = "127.0.0.1";

shell = "sh -c ’%c’";

spawnd = "spawnd";

}

(* Local slave *) {

name = "Local slave";

shell = "sh -c ’%c 2>local-log~’";

color = 2;

host = "127.0.0.1";

skl_path = "./hello";

spawnd = "spawnd";

}

Figure 2.2: Sample sklrun.conf file.

Once the file sklrun.conf corresponding to your application has been created, sklrun will do the job

of starting spawnd and launching your application with the appropriate options:

sklrun -conf ./sklrun.conf ./hello

Use the -conf option to specify the file in which sklrun must read its configuration then give the name

of the Sklml application. If your application needs to be launched with options you will have to give the

command line between double quotes:

sklrun -conf ./sklrun.conf "./hello -some -options 42"

Note: a good way to write a sklrun.conf file is to take an existing one, for example, the one given in figure 2.2,

and to change options relative to your application (mainly the skl_path one).

Basic description of sklrun’s configuration file. The configuration file needs at least two sections,

sections are enclosed within braces. The first section is always about the master spawnd node, it must have

the following fields filled : name, host, shell, spawnd. One field is affected using a construct of the type

〈field〉 = 〈value〉〈optional semicolon〉

It is good style to always put a semicolon in an assignement. A 〈value〉 can be a string (separated by double

quotes) or an integer (in its decimal representation). Strings assigned to the field shell are subject to

expansion, a %c will be replaced by the command that has to be launched by the shell, a %h will be replaced

by the host field of the current section. This expansion mechanism can be used to have ssh or rsh as a

shell command, thus allowing to reach non local machines.

13

A more accurate description of the configuration file format can be found in the manual page related to

sklrun. This manual page comes with the Sklml distribution and is installed in an appropriate directory by

the installation process.

The spawnd application

Most of the time the spawnd program will be launched by the sklrun helper. However, the knowledge of

spawnd might enlighten when strange behaviors are exhibited.

The spawnd application, as explained before, can run in two modes, a slave mode and a master mode.

A slave spawnd is always connected to a master spawnd. Thus, to start a computation network, the master

must be launched first. To launch a master spawnd, use the -master option. This option takes an integer

as parameter which denotes the number of slaves that will be handled by it.

on master terminal

$ spawnd -master 1

spawnd: listenning for slaves on 0.0.0.0:52714

When launched this way the spawnd program displays on its standard output the address it listens on. This

address must be used to connect slaves. Slaves are started using the -slave option. This option takes the

IPv4 address of the master spawnd as parameter.

on slave terminal

$ spawnd -slave 127.0.0.1:52714

on master terminal

$ spawnd -master 1

spawnd: listenning for slaves on 0.0.0.0:52714

spawnd: slave accepted (127.0.0.1)

spawnd: listenning for sklml program on 0.0.0.0:43044

When the slave spawnd is successfuly connected to the master, this one displays an informative message.

And, when all slaves are connected to the master (just after the first one in the example above), the master

spawnd is ready to handle requests of a Sklml application on the address dumped.

The spawnd program has more than two options, it can be tweaked in many ways, details can be found

in its manual page available in the standard Sklml distribution.

14

Chapter 3

Real programming with Sklml

3.1 Stream handling

When reified as standard Ocaml functions, the Sklml skeletons become functions acting on stream. As

explained before, this reification is achieved using the parfun function. Sklmlstreams are values of an

abstract type of the Sklstream module. They intend to represent the stream of data transmitted on the

network and are heavily used inside the Sklml runtime for this purpose.

There are several ways to create a Sklml stream, figure 3.1 summarizes the different ways to generate and

consume a stream.

Function Type Description

singleton ’a -> ’a stream Generate a one element stream.

of_list ’a list -> ’a stream Transform a list into a stream.

of_fun (unit -> ’a option) Make a stream of a function,

-> ’a stream if None is returned, ends the

stream.

of_vect ’a array -> ’a stream Transform an array into a stream.

to_list ’a stream -> ’a list Transform a list into a stream.

to_vect ’a stream -> ’a array Transform an array into a stream.

Figure 3.1: Generating and consuming streams.

3.2 Using the extra library

The Sklml distribution embeds a simple library intended to provide some useful tools which are not part of

the core system.

3.2.1 The extra skeletons

Additional skeletons are in the Skl_extra module. Currently, this module contains some simple helpers.

15

1. The rails_same skeleton. It should be used when a rails computation needs to be used with the

same skeleton.

2. The if_then_else skeleton. Given a skeleton to compute a predicate and two “branching” skeletons

it executes either one or the other depending on the result of the predicate.

3.2.2 The domain decomposition toolkit

The Sklml system has been developped with a team of numerical analysts working on parallelism using

domain decompostion. A dedicated toolkit for such computations has been developped using the Sklmlcore

and is provided with the standard distribution.

A domain decomposition algorithm performs a computation on a data set splitted into several parts. The

global computation is acheived in several steps. At each step on each part of the data, one worker performs

a computation and can send some data, which will be called borders, to some other workers. This sequence

of steps is stopped when a global convergence criterion is reached.

Using the general description of domain decomposition above, the following type for the domain skeleton

creator can be derived.

type ’a borders = (’a border) list

and ’a border = (int * ’a);;

type (’a, ’b) worker_spec = (’a borders, ’a * ’b) Skl.t * int list;;

val make_domain : ((’a, ’b) worker_spec) array ->

(’b array, bool) Skl.t -> (’a array, (’a * ’b) array) Skl.t

;;

Note: the type Skl.t is the same type as the skel type in other code samples above.

The type definition defines a border as a pair of a user data and an integer. This additional integer

identifies the worker which sent this border. On worker is specified with a value of type worker_spec, this

value will be a pair storing the computational behavior of the worker as a standard skeleton and a integer

list called the connectivity table. This table gives the list of workers whose boders are needed to do one

computation step. The domain decompostion toolkit gives the guarantee that, at each step, one worker will

get the borders of the workers given in its connectivity table. The skeleton representing the computational

part of one worker takes as input a list of borders and returns its border data and one additional data of

type β. This additional data is used by the convergence criterion which is also given as a skeleton taking

a list of data of type β and returning a boolean. The looping will continue while the boolean returned by

the convergence criterion is true and will stop when it becomes false. To use the domain decomposition

toolkit, open the module Make_domain.

Note: the domain skeleton created by makedomain present the same looping behavior as the loop skeleton,

thus, in any cases, one computation step is done before testing using the convergence criterion.

Note: the make_domain helper is built using Sklmlcore skeletons, this is why it is an external library, the

source of this helper is in the standard distribution in the file src/extra/make_domain.ml.

16

Bibliography

[1] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High level

programming language and its structured support. Concurrency Practice and Experience, 7(3):225–255,

May 1995.

[2] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations. Research Monographs

in Parallel and Distributed Computing. Pitman, 1989.

[3] R. Di Cosmo, Z. Li, M. Danelutto, S. Pelagatti, X. Leroy, P. Weis, and F. Clément. The CamlP3l program-

ming language. Software and documentation available on the Web, http://camlp3l.inria.fr/eng.htm,

1999.

[4] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A methodology for the develop-

ment and support of massively parallel programs. Future Generation Computer Systems, 8(1–3):205–220,

July 1992.

[5] Marco Danelutto, Roberto Di Cosmo, Xavier Leroy, and Susanna Pelagatti. OcamlP3l: a functional

parallel programming system. Technical Report 98-01, LIENS - DMI, Ecole Normale Supérieure, 1998.

[6] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu. Parallel Program-

ming Using Skeleton Functions. In PARLE’93, pages 146–160. Springer, 1993. LNCS No. 694.

[7] S. Pelagatti. A methodology for the development and the support of massively parallel programs. Tech-

nical Report TD-11/93, Dept. of Computer Science – Pisa, 1993. PhD Thesis.

[8] S. Pelagatti. Structured development of parallel programs. Taylor&Francis, London, 1998.

[9] S. Pelagatti. Task and data parallelism in P3L. In Fethi A. Rabhi and Sergei Gorlatch, editors, Patterns

and Skeletons for Parallel and Distributed Computing, chapter 6, pages 155–186. Springer-Verlag, London,

2002.

17

Index

farm skeleton, 2

*** skeleton, 7

+++ skeleton, 7

farm_vector skeleton, 8

farm skeleton, 6

if-then-else skeleton, 8

loop skeleton, 8

rails skeleton, 9

skl syntactic construction, 5

rails_same skeleton, 16

colors, 9

control skeletons, 3

data parallel skeletons, 2

domain decomposition, 16

golden rules, 5

pipeline, 2, 7

Sklml compiler, 10

Sklml dependency generator, 12

task parallel skeletons, 2

18

