
Chapter 12

ASL: A Small Language

We present in this chapter a simple language: ASL (A Small Language). This language is basically
the λ-calculus (the purely functional kernel of Caml) enriched with a conditional construct. The
conditional must be a special construct, because our language will be submitted to call-by-value:
thus, the conditional cannot be a function.

ASL programs are built up from numbers, variables, functional expressions (λ-abstractions),
applications and conditionals. An ASL program consists of a global declaration of an identifier
getting bound to the value of an expression. The primitive functions that are available are equality
between numbers and arithmetic binary operations. The concrete syntax of ASL expressions can
be described (ambiguously) as:

Expr ::= INT
| IDENT
| "if" Expr "then" Expr "else" Expr "fi"
| "(" Expr ")"
| "\" IDENT "." Expr

and the syntax of declarations is given as:

Decl ::= "let" IDENT "be" Expr ";"
| Expr ";"

Arithmetic binary operations will be written in prefix position and will belong to the class IDENT.
The \ symbol will play the role of the Caml keyword function.

We start by defining the abstract syntax of ASL expressions and of ASL toplevel phrases. Then
we define a parser in order to produce abstract syntax trees from the concrete syntax of ASL
programs.

12.1 ASL abstract syntax trees

We encode variable names by numbers. These numbers represent the binding depth of variables.
For instance, the function of x returning x (the ASL identity function) will be represented as:

Abs("x", Var 1)

85

86 CHAPTER 12. ASL: A SMALL LANGUAGE

And the ASL application function which would be written in Caml:

(function f -> (function x -> f(x)))

would be represented as:

Abs("f", Abs("x", App(Var 2, Var 1)))

and should be viewed as the tree:
Abs

Abs"f"

"x" App

Var 2 Var 1

¡¡ª @@R

¡¡ª @@R

¡¡ª @@R

Var n should be read as “an occurrence of the variable bound by the nth abstraction node encoun-
tered when going toward the root of the abstract syntax tree”. In our example, when going from
Var 2 to the root, the 2nd abstraction node we encounter introduces the "f" variable.

The numbers encoding variables in abstract syntax trees of functional expressions are called
“De Bruijn1 numbers”. The characters that we attach to abstraction nodes simply serve as docu-
mentation: they will not be used by any of the semantic analyses that we will perform on the trees.
The type of ASL abstract syntax trees is defined by:

#type asl = Const of int
| Var of int
| Cond of asl * asl * asl
| App of asl * asl
| Abs of string * asl
#
#and top_asl = Decl of string * asl;;
Type asl defined.

Type top_asl defined.

12.2 Parsing ASL programs

Now we come to the problem of defining a concrete syntax for ASL programs and declarations.
The choice of the concrete aspect of the programs is simply a matter of taste. The one we choose

here is close to the syntax of λ-calculus (except that we will use the backslash character because
there is no “λ” on our keyboards). We will use the curried versions of equality and arithmetic
functions. We will also use a prefix notation (à la Lisp) for their application. We will write “+ (+
1 2) 3” instead of “(1+2)+3”. The “if e1 then e2 else e3” construct will be written “if e1

then e2 else e3 fi”, and will return the then part when e1 is different from 0 (0 acts thus as
falsity in ASL conditionals).

1They have been proposed by N.G. De Bruijn in [10] in order to facilitate the mechanical treatment of λ-calculus
terms.

12.2. PARSING ASL PROGRAMS 87

12.2.1 Lexical analysis

The concrete aspect of ASL programs will be either declarations of the form:

let identifier be expression;

or:

expression;

which will be understood as:

let it be expression;

The tokens produced by the lexical analyzer will represent the keywords let, be, if and else, the \
binder, the dot, parentheses, integers, identifiers, arithmetic operations and terminating semicolons.
We reuse here most of the code that we developed in chapter 10 or in the answers to its exercises.

Skipping blank spaces:

#let rec spaces = function
[< ’‘ ‘|‘\t‘|‘\n‘; spaces _ >] -> ()
#| [< >] -> ();;
spaces : char stream -> unit = <fun>

The type of tokens is given by:

#type token = LET | BE | LAMBDA | DOT | LPAR | RPAR
| IF | THEN | ELSE | FI | SEMIC
| INT of int | IDENT of string;;
Type token defined.

Integers:

#let int_of_digit = function
‘0‘..‘9‘ as c -> (int_of_char c) - (int_of_char ‘0‘)
#| _ -> raise (Failure "not a digit");;
int_of_digit : char -> int = <fun>

#let rec integer n = function
[< ’ ‘0‘..‘9‘ as c; (integer (10*n + int_of_digit c)) r >] -> r
#| [< >] -> INT n;;
integer : int -> char stream -> token = <fun>

We restrict ASL identifiers to be composed of lowercase letters, the eight first being significative.
An explanation about the ident function can be found in the chapter dedicated to the answers to
exercises (chapter 17). The function given here is slightly different and tests its result in order to
see wether it is a keyword (let, be, . . .) or not:

#let ident_buf = make_string 8 ‘ ‘;;
ident_buf : string = " "

#let rec ident len = function

88 CHAPTER 12. ASL: A SMALL LANGUAGE

[< ’ ‘a‘..‘z‘ as c;
(if len >= 8 then ident len
else begin
set_nth_char ident_buf len c;
ident (succ len)
end) s >] -> s
#| [< >] -> (match sub_string ident_buf 0 len
with "let" -> LET
| "be" -> BE
| "if" -> IF
| "then" -> THEN
| "else" -> ELSE
| "fi" -> FI
| s -> IDENT s);;
ident : int -> char stream -> token = <fun>

A reasonable lexical analyzer would use a hash table to recognize keywords faster.
Primitive operations are recognized by the following function, which also detects illegal operators

and ends of input:

#let oper = function
[< ’‘+‘|‘-‘|‘*‘|‘/‘|‘=‘ as c >] -> IDENT(make_string 1 c)
#| [< ’c >] -> prerr_string "Illegal character: ";
prerr_endline (char_for_read c);
raise (Failure "ASL parsing")
#| [< >] -> prerr_endline "Unexpected end of input";
raise (Failure "ASL parsing");;
oper : char stream -> token = <fun>

The lexical analyzer has the same structure as the one given in chapter 10 except that leading
blanks are skipped.

#let rec lexer str = spaces str;
#match str with
[< ’‘(‘; spaces _ >] -> [< ’LPAR; lexer str >]
#| [< ’‘)‘; spaces _ >] -> [< ’RPAR; lexer str >]
#| [< ’‘\\‘; spaces _ >] -> [< ’LAMBDA; lexer str >]
#| [< ’‘.‘; spaces _ >] -> [< ’DOT; lexer str >]
#| [< ’‘;‘; spaces _ >] -> [< ’SEMIC; lexer str >]
#| [< ’‘0‘..‘9‘ as c;
(integer (int_of_digit c)) tok;
spaces _ >] -> [< ’tok; lexer str >]
#| [< ’‘a‘..‘z‘ as c;
(set_nth_char ident_buf 0 c; ident 1) tok;
spaces _ >] -> [< ’tok; lexer str >]
#| [< oper tok; spaces _ >] -> [< ’tok; lexer str >]
#;;

12.2. PARSING ASL PROGRAMS 89

lexer : char stream -> token stream = <fun>

The lexical analyzer returns a stream of tokens that the parser will receive as argument.

12.2.2 Parsing

The final output of our parser will be abstract syntax trees of type asl or top_asl. This implies
that we will detect unbound identifiers at parse-time. In this case, we will raise the Unbound
exception defined as:

#exception Unbound of string;;
Exception Unbound defined.

We also need a function which will compute the binding depths of variables. That function simply
looks for the position of the first occurrence of a variable name in a list. It will raise Unbound if
there is no such occurrence.

#let binding_depth s rho =
let rec bind n = function
[] -> raise (Unbound s)
| t::l -> if s = t then Var n else bind (n+1) l
in bind 1 rho
#;;
binding_depth : string -> string list -> asl = <fun>

We also need a global environment, containing names of already bound identifiers. The global
environment contains predefined names for the equality and arithmetic functions. We represent
the global environment as a reference since each ASL declaration will augment it with a new name.

#let init_env = ["+";"-";"*";"/";"="];;
init_env : string list = ["+"; "-"; "*"; "/"; "="]

#let global_env = ref init_env;;
global_env : string list ref = ref ["+"; "-"; "*"; "/"; "="]

We now give a parsing function for ASL programs. Blanks at the beginning of the string are
skipped.

#let rec top = function
[< ’LET; ’IDENT id; ’BE; expression e; ’SEMIC >] -> Decl(id,e)
| [< expression e; ’SEMIC >] -> Decl("it",e)
#
#and expression = function
[< (expr !global_env) e >] -> e
#
#and expr rho =
let rec rest e1 = function
[< (atom rho) e2; (rest (App(e1,e2))) e >] -> e
| [< >] -> e1

90 CHAPTER 12. ASL: A SMALL LANGUAGE

in function
[< ’LAMBDA; ’IDENT id; ’DOT; (expr (id::rho)) e >] -> Abs(id,e)
| [< (atom rho) e1; (rest e1) e2 >] -> e2
#
#and atom rho = function
[< ’IDENT id >] ->
(try binding_depth id rho with Unbound s ->
print_string "Unbound ASL identifier: ";
print_string s; print_newline();
raise (Failure "ASL parsing"))
| [< ’INT n >] -> Const n
| [< ’IF; (expr rho) e1; ’THEN; (expr rho) e2;
’ELSE; (expr rho) e3; ’FI >] -> Cond(e1,e2,e3)
| [< ’LPAR; (expr rho) e; ’RPAR >] -> e;;
top : token stream -> top_asl = <fun>

expression : token stream -> asl = <fun>

expr : string list -> token stream -> asl = <fun>

atom : string list -> token stream -> asl = <fun>

The complete parser that we will use reads a string, converts it into a stream, and produces the
token stream that is parsed:

#let parse_top s = top(lexer(stream_of_string s));;
parse_top : string -> top_asl = <fun>

Let us try our grammar (we do not augment the global environment at each declaration: this will
be performed after the semantic treatment of ASL programs). We need to write double \ inside
strings, since \ is the string escape character.

#parse_top "let f be \\x.x;";;
- : top_asl = Decl ("f", Abs ("x", Var 1))

#parse_top "let x be + 1 ((\\x.x) 2);";;
- : top_asl =

Decl ("x", App (App (Var 1, Const 1), App (Abs ("x", Var 1), Const 2)))

Unbound identifiers and undefined operators are correctly detected:

#parse_top "let y be g 3;";;
Unbound ASL identifier: g

Uncaught exception: Failure "ASL parsing"

#parse_top "f (if 0 then + else - fi) 2 3;";;
Unbound ASL identifier: f

Uncaught exception: Failure "ASL parsing"

#parse_top "^ x y;";;
Illegal character: ^

Uncaught exception: Failure "ASL parsing"

