
10
Program Analysis

Tools

Program analysis tools provide supplementary information to the programmer in ad-
dition to the feedback from the compiler and the linker. Some of these tools perform
a static analysis, i.e. they look at the code (either as text or in the form of a syntax
tree) and determine certain properties like interdependency of modules or uncaught
exceptions. Other tools perform a dynamic analysis, i.e. they look at the flow of execu-
tion. Analysis tools are useful for determining the number of calls to certain functions,
getting a trace of the flow of arguments, or determining the time spent in certain parts
of the program. Some are interactive, like the tools for debugging. In this case pro-
gram execution is modified to account for user interaction. It is then possible to set
breakpoints, in order to look at values or to restart program execution with different
arguments.

The Objective Caml distribution includes such tools. Some of them have rather un-
usual characteristics, mostly dealing with static typing. It is, in fact, this static typing
that guarantees the absence of type errors during program execution and enables the
compiler to produce efficient code with a small memory footprint. Typing information
is partly lost for constructed Objective Caml values. This creates certain difficulties,
e.g. the impossibility of showing the arguments of polymorphic functions.

Chapter Overview

This short chapter presents the program analysis tools in the Objective Caml distribu-
tion. The first chapter describes the ocamldep command, which finds the dependencies
in a set of Objective Caml files that make up an application.

The second section deals with debugging tools including tracing the execution of func-
tions and the ocamldebug debugger, running under Unix.

272 Chapter 10 : Program Analysis Tools

The third section takes a look at the profiler, which can be used to analyze the execution
of a program with an eye towards its optimization.

Dependency Analysis

Dependency analysis of a set of implementation and interface files that make up an
Objective Caml application pursues a double end. The first is to get a global view of
the interdependencies between modules. The second is to use this information in order
to recompile only the absolutely necessary files after modifications of certain files.

The ocamldep command takes a set of .ml and .mli files and outputs the dependencies
between files in Makefile1 format.

These dependencies originate from global declarations in other modules, either by using
dot.notation (e.g. M1.f) or by opening a module (e.g. open M1).

Suppose the following files exist:

dp.ml :
let print vect v =

for i = 0 to Array.length v do

Printf.printf "%f " v.(i)

done;

print newline () ; ;

and d1.ml :
let init n e =

let v = Array.create 4 3.14 in

Dp.print vect v;

v; ;

Given the name of these files, the ocamldep command will output the following depen-
dencies:

$ ocamldep dp.ml d1.ml array.ml array.mli printf.ml printf.mli

dp.cmo: array.cmi printf.cmi

dp.cmx: array.cmx printf.cmx

d1.cmo: array.cmi dp.cmo

d1.cmx: array.cmx dp.cmx

array.cmo: array.cmi

array.cmx: array.cmi

printf.cmo: printf.cmi

printf.cmx: printf.cmi

1. Makefile files are used by the make command for the maintenance of a set of programs or files to
keep everything up to date after modifications to some of them.

Debugging Tools 273

The dependencies are determined for both the bytecode and the native compiler. The
output is to be read in the following manner: production of the file dp.cmo depends
on the files array.cmi and printf.cmi. Files with the extension .cmi depend on files
with the same name and extension .mli. And the same holds by analogy for .ml files
with .cmo and .cmx files.

The object files of the distribution do not show up in the dependency lists. In fact,
if ocamldep does not find the files array.ml and printf.ml in the current directory,
it will find them in the library directory of the installation and produce the following
output:

$ ocamldep dp.ml d1.ml
d1.cmo: dp.cmo
d1.cmx: dp.cmx

To give new file search paths to the ocamldep command, the -I directory option is
used, which adds a directory to the list of include directories.

Debugging Tools

There are two debugging tools. The first is a trace mechanism that can be used on
the global functions in the toplevel loop. The second tool is a debugger that is not
used in the normal toplevel loop. After a first program run it is possible to go back
to breakpoints, and to inspect values or to restart certain functions with different
arguments. This second tool only runs under Unix, because it duplicates the running
process via a fork (see page 582).

Trace

The trace of a function is the list of the values of its parameters together with its result
in the course of a program run.

The trace commands are directives in the toplevel loop. They allow to trace a function,
stop its trace or to stop all active traces. These three directives are shown in the table
below.

#trace name trace function name

#untrace name stop tracing function name

#untrace all stop all traces

Here is a first example of the definition of a function f:
let f x = x + 1; ;

val f : int -> int = <fun>

f 4; ;

274 Chapter 10 : Program Analysis Tools

- : int = 5

Now we will trace this function, so that its arguments and its return value will be
shown.
#trace f; ;

f is now traced.

f 4; ;

f <-- 4

f --> 5

- : int = 5

Passing of the argument 4 to f is shown, then the function f calculates the desired
value and the result is returned and also shown. The arguments of a function call are
indicated by a left arrow and the return value by an arrow to the right.

Functions of Several Arguments

Functions of several arguments (or functions returning a closure) are also traceable.
Each argument passed is shown. To distinguish the different closures, the number
of arguments already passed to the closures is marked with a *. Let the function
verif div take 4 numbers (a, b, q, r) corresponding to the integer division: a = bq +r.

let verif div a b q r =

a = b*q + r; ;

val verif_div : int -> int -> int -> int -> bool = <fun>

verif div 11 5 2 1; ;

- : bool = true

Its trace shows the passing of 4 arguments:
#trace verif div; ;

verif_div is now traced.

verif div 11 5 2 1; ;

verif_div <-- 11

verif_div --> <fun>

verif_div* <-- 5

verif_div* --> <fun>

verif_div** <-- 2

verif_div** --> <fun>

verif_div*** <-- 1

verif_div*** --> true

- : bool = true

Recursive Functions

The trace gives valuable information about recursive functions, e.g. poor stopping
criteria are easily detected.

Debugging Tools 275

Let the function belongs to which tests whether an integer belongs to a list of integers
be defined in the following manner:
let rec belongs to (e : int) l = match l with

[] → false

| t :: q → (e = t) || belongs to e q ; ;

val belongs_to : int -> int list -> bool = <fun>

belongs to 4 [3;5;7] ; ;

- : bool = false

belongs to 4 [1; 2; 3; 4; 5; 6; 7; 8] ; ;

- : bool = true

The trace of the function invocation belongs to 4 [3;5;7] will show the four calls
of this function and the results returned.
#trace belongs to ; ;

belongs_to is now traced.

belongs to 4 [3;5;7] ; ;

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [3; 5; 7]

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [5; 7]

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [7]

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- []

belongs_to* --> false

belongs_to* --> false

belongs_to* --> false

belongs_to* --> false

- : bool = false

At each call of the function belongs to the argument 4 and the list to search in are
passed as arguments. When the list becomes empty, the functions return false as a
return value which is passed along to each waiting recursive invocation.

The following example shows the section of the list when the element searched for
appears:
belongs to 4 [1; 2; 3; 4; 5; 6; 7; 8] ; ;

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [1; 2; 3; 4; 5; 6; 7; 8]

belongs_to <-- 4

belongs_to --> <fun>

276 Chapter 10 : Program Analysis Tools

belongs_to* <-- [2; 3; 4; 5; 6; 7; 8]

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [3; 4; 5; 6; 7; 8]

belongs_to <-- 4

belongs_to --> <fun>

belongs_to* <-- [4; 5; 6; 7; 8]

belongs_to* --> true

belongs_to* --> true

belongs_to* --> true

belongs_to* --> true

- : bool = true

As soon as 4 becomes head of the list, the functions return true which gets passed
along to each waiting recursive invocation.

If the sequence of statements around || were changed, the function belongs to would
still return the right result but would always have to go over the complete list.
let rec belongs to (e : int) = function

[] → false

| t :: q → belongs to e q || (e = t) ; ;

val belongs_to : int -> int list -> bool = <fun>

#trace belongs to ; ;

belongs_to is now traced.

belongs to 3 [3;5;7] ; ;

belongs_to <-- 3

belongs_to --> <fun>

belongs_to* <-- [3; 5; 7]

belongs_to <-- 3

belongs_to --> <fun>

belongs_to* <-- [5; 7]

belongs_to <-- 3

belongs_to --> <fun>

belongs_to* <-- [7]

belongs_to <-- 3

belongs_to --> <fun>

belongs_to* <-- []

belongs_to* --> false

belongs_to* --> false

belongs_to* --> false

belongs_to* --> true

- : bool = true

Even though 3 is the first element of the list, it is traversed completely. So, trace also
provides a mechanism for the efficiency analysis of recursive functions.

Polymorphic Functions

The trace does not show the value corresponding to an argument of a parameterized
type. If for example the function belongs to can be written without an explicit type

Debugging Tools 277

constraint:
let rec belongs to e l = match l with

[] → false

| t :: q → (e = t) || belongs to e q ; ;

val belongs_to : ’a -> ’a list -> bool = <fun>

The type of the function belongs to is now polymorphic, and the trace does no longer
show the value of its arguments but replaces them with the indication (poly).
#trace belongs to ; ;

belongs_to is now traced.

belongs to 3 [2;3;4] ; ;

belongs_to <-- <poly>

belongs_to --> <fun>

belongs_to* <-- [<poly>; <poly>; <poly>]

belongs_to <-- <poly>

belongs_to --> <fun>

belongs_to* <-- [<poly>; <poly>]

belongs_to* --> true

belongs_to* --> true

- : bool = true

The Objective Caml toplevel loop can only show monomorphic types. Moreover, it
only keeps the inferred types of global declarations. Therefore, after compilation of
the expression belongs to 3 [2;3;4], the toplevel loop in fact no longer possesses
any further type information about the function belongs to apart form the type ’a

-> ’a list -> bool. The (monomorphic) types of 3 and [2;3;4] are lost, because
the values do not keep any type information: this is static typing. This is the reason
why the trace mechanism attributes the polymorphic types ’a and ’a list to the
arguments of the function belongs to and does not show their values.

It is this absence of typing information in values that entails the impossibility of con-
structing a generic print function of type ’a -> unit.

Local Functions

Local functions cannot be traced for the same reasons as above, relating again to static
typing. Only global type declarations are kept in the environment of the toplevel loop.
Still the following programming style is common:
let belongs to e l =

let rec bel aux l = match l with

[] → false

| t :: q → (e = t) || (bel aux q)

in

bel aux l; ;

val belongs_to : ’a -> ’a list -> bool = <fun>

The global function only calls on the local function, which does the interesting part of
the work.

278 Chapter 10 : Program Analysis Tools

Notes on Tracing

Tracing is actually the only multi-platform debugging tool. Its two weaknesses are the
absence of tracing information for local functions and the inability to show the value
of polymorphic parameters. This strongly restricts its usage, mainly during the first
steps with the language.

Debug

ocamldebug, is a debugger in the usual sense of the word. It permits step-by-step
execution, the insertion of breakpoints and the inspection and modification of values
in the environment.

Single-stepping a program presupposes the knowledge of what comprises a program
step. In imperative programming this is an easy enough notion: a step corresponds
(more or less) to a single instruction of the language. But this definition does not
make much sense in functional programming; one instead speaks of program events.
These are applications, entries to functions, pattern matching, a conditional, a loop,
an element of a sequence, etc.

Warning This tool only runs under Unix.

Compiling with Debugging Mode

The -g compiler option produces a .cmo file that allows the generation of the necessary
instructions for debugging. Only the bytecode compiler knows about this option. It is
necessary to set this option during compilation of the files encompassing an application.
Once the executable is produced, execution in debug mode can be accomplished with
the following ocamldebug command:

ocamldebug [options] executable [arguments]

Take the following example file fact.ml which calculates the factorial function:
let fact n =

let rec fact aux p q n =

if n = 0 then p

else fact aux (p+q) p (n-1)

in

fact aux 1 1 n; ;

The main program in the file main.ml goes off on a long recursion after the call of
Fact.fact on −1.
let x = ref 4; ;

let go () =

x := -1;

Fact.fact !x; ;

Debugging Tools 279

go () ; ;

The two files are compiled with the -g option:

$ ocamlc -g -i -o fact.exe fact.ml main.ml
val fact : int -> int
val x : int ref
val go : unit -> int

Starting the Debugger

Once an executable is compiled with debug mode, it can be run in this mode.

$ ocamldebug fact.exe
Objective Caml Debugger version 3.00

(ocd)

Execution Control

Execution control is done via program events. It is possible to go forward and backwards
by n program events, or to go forward or backwards to the next breakpoint (or the nth
breakpoint). A breakpoint can be set on a function or a program event. The choice of
language element is shown by line and column number or the number of characters.
This locality may be relative to a module.

In the example below, a breakpoint is set at the fourth line of module Main:

(ocd) step 0
Loading program... done.
Time : 0
Beginning of program.
(ocd) break @ Main 4
Breakpoint 1 at 5028 : file Main, line 4 column 3

The initialisations of the module are done before the actual program. This is the reason
the breakpoint at line 4 occurs only after 5028 instructions.

We go forward or backwards in the execution either by program elements or by break-
points. run and reverse run the program just to the next breakpoint. The first in the
direction of program execution, the second in the backwards direction. The step com-
mand advanced by 1 or n program elements, entering into functions, next steps over
them. backstep and previous respectively do the same in the backwards direction.
finish finally completes the current functions invocations, whereas start returns to
the program element before the function invocation.

280 Chapter 10 : Program Analysis Tools

To continue our example, we go forward to the breakpoint and then execute three
program instructions:

(ocd) run

Time : 6 - pc : 4964 - module Main

Breakpoint : 1

4 <|b|>Fact.fact !x;;

(ocd) step

Time : 7 - pc : 4860 - module Fact

2 <|b|>let rec fact_aux p q n =

(ocd) step

Time : 8 - pc : 4876 - module Fact

6 <|b|>fact_aux 1 1 n;;

(ocd) step

Time : 9 - pc : 4788 - module Fact

3 <|b|>if n = 0 then p

Inspection of Values

At a breakpoint, the values of variables in the activation record can be inspected. The
print and display commands output the values associated with a variable according
to the different depths.

We will print the value of n, then go back three steps to print the contents of x:

(ocd) print n

n : int = -1

(ocd) backstep 3

Time : 6 - pc : 4964 - module Main

Breakpoint : 1

4 <|b|>Fact.fact !x;;

(ocd) print x

x : int ref = {contents=-1}

Access to the fields of a record or via the index of an array is accepted by the printing
commands.

(ocd) print x.contents

1 : int = -1

Execution Stack

The execution stack permits a visualization of the entanglement of function invocations.
The backtrace or bt command shows the stack of calls. The up and down commands
select the next or preceding activation record. Finally, the frame command gives a
description of the current record.

Profiling 281

Profiling

This tool allows measuring a variety of metrics concerning program execution, includ-
ing how many times a particular function or control structure (including conditionals,
pattern matchers and loops) are executed. The results are recorded in a file. By exam-
ining this information, you may be able to locate either algorithmic errors or crucial
locations for optimization.

In order for the profiler to do its work, it is necessary to compile the code using a
special mode that adds profiling instructions. There are two profiling modes: one for
the bytecode compiler, and the other for the native-code compiler. There are also two
commands used to analyze the results. Analysis of native code will retrieve the time
spent in each function.

Profiling an application therefore proceeds in three stages:

1. compilation in profiling mode;

2. program execution;

3. presentation of measurements.

Compilation Commands

The commands to compile in profiling mode are the following:

• ocamlcp -p options for the bytecode compiler;

• ocamlopt -p options for the native-code compiler.

These compilers produce the same type of files as the usual commands (see chapter 7).
The different options are described in figure 10.1.

f function call
i branch of if
l while and for loops
m branches of match
t branches of try
a all options

Figure 10.1: Options of the profiling commands

These indicate which control structures must be taken into account. By default, the
fm options are activated.

282 Chapter 10 : Program Analysis Tools

Program Execution

Bytecode Compiler

The execution of a program compiled in profiling mode will, if it terminates, produce
a file named ocamlprof.dump which contains the information wanted.

We resume the example of the product of a list of integers. We write the following file
f1.ml:
let rec interval a b =

if b < a then []

else a :: (interval (a+1) b); ;

exception Found zero ; ;

let mult list l =

let rec mult rec l = match l with

[] → 1

| 0::_ → raise Found zero

| n :: x → n * (mult rec x)

in

try mult rec l with Found zero → 0

; ;

and the file f2.ml which uses the functions of f1.ml:
let l1 = F1.interval 1 30; ;

let l2 = F1.interval 31 60; ;

let l3 = l1 @ (0 :: l2); ;

print int (F1.mult list l1); ;

print newline () ; ;

print int (F1.mult list l3); ;

print newline () ; ;

The compilation of these files in profiling mode is shown in the following:

ocamlcp -i -p a -c f1.ml
val profile_f1_ : int array
val interval : int -> int -> int list
exception Found_zero
val mult_list : int list -> int

With the -p option, the compiler adds a new function (profile f1) for the initializa-
tion of the counters in module F1. It is the same for file f2.ml:

Profiling 283

ocamlcp -i -p a -o f2.exe f1.cmo f2.ml
val profile_f2_ : int array
val l1 : int list
val l2 : int list
val l3 : int list

Native Compiler

The native code compilation gives the following result:

$ ocamlopt -i -p -c f1.ml
val interval : int -> int -> int list
exception Found_zero
val mult_list : int list -> int
$ ocamlopt -i -p -o f2nat.exe f1.cmx f2.ml

Only the -p option without argument is used. The execution of f2nat.exe produces
a file named gmon.out which is in a format that can be handled by the usual Unix
commands (see page 284).

Presentation of the Results

Since the information gathered by the two profiling modes differs, their presentation
follows suit. In the first (bytecode) mode comments on the number of passages through
the control structures are added to the program text. In the second (native) mode, the
time spent in its body and the number of calls is associated with each function.

Bytecode Compiler

The ocamlprof command gives the analysis of the measurement results. It uses the
information contained in the file camlprof.dump. This command takes the source of
the program on entry, then reads the measurements file and produces a new program
text with the desired counts added as comments.

For our example this gives:

ocamlprof f1.ml

let rec interval a b =

(* 62 *) if b < a then (* 2 *) []

else (* 60 *) a::(interval (a+1) b);;

exception Found_zero ;;

let mult_list l =

(* 2 *) let rec mult_rec l = (* 62 *) match l with

284 Chapter 10 : Program Analysis Tools

[] -> (* 1 *) 1

| 0::_ -> (* 1 *) raise Found_zero

| n::x -> (* 60 *) n * (mult_rec x)

in

try mult_rec l with Found_zero -> (* 1 *) 0

;;

These counters reflect the calculations done in F2 quite well. There are two calls of
mult list and 62 of the auxiliary function mult rec. Examination of the different
branches of the pattern matching show 60 passages through the common case, one
through the pattern [] and the only match where the head is 0, raising an exception,
which can be seen in the counter of the try statement.

The ocamlprof command accepts two options. The first -f file indicates the name of
the file to contain the measurements. The second -F string specifies a string to add
to the comments associated with the control structures treated.

Native Compilation

To get the time spent in the calls of the functions for multiplying the elements of a
list, we write the following file f3.ml:
let l1 = F1.interval 1 30; ;

let l2 = F1.interval 31 60; ;

let l3 = l1 @ (0 :: l2); ;

for i=0 to 100000 do

F1.mult list l1;

F1.mult list l3

done; ;

print int (F1.mult list l1); ;

print newline () ; ;

print int (F1.mult list l3); ;

print newline () ; ;

This is the same file as f2.ml with a loop of 100000 iterations.

Execution of the program creates the file gmon.out. This is in a format readable by
gprof, a command that can be found on Unix systems. The following call to gprof
prints information about the time spent and the call graph. Since the output is rather
long, we show only the first page which contains the name of the functions that are
called at least once and the time spent in each.

$ gprof f3nat.exe

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

Exercises 285

92.31 0.36 0.36 200004 1.80 1.80 F1_mult_rec_45

7.69 0.39 0.03 200004 0.15 1.95 F1_mult_list_43

0.00 0.39 0.00 2690 0.00 0.00 oldify

0.00 0.39 0.00 302 0.00 0.00 darken

0.00 0.39 0.00 188 0.00 0.00 gc_message

0.00 0.39 0.00 174 0.00 0.00 aligned_malloc

0.00 0.39 0.00 173 0.00 0.00 alloc_shr

0.00 0.39 0.00 173 0.00 0.00 fl_allocate

0.00 0.39 0.00 34 0.00 0.00 caml_alloc3

0.00 0.39 0.00 30 0.00 0.00 caml_call_gc

0.00 0.39 0.00 30 0.00 0.00 garbage_collection

...

The main lesson is that almost all of the execution time is spent in the function
F1 mult rec 45, which corresponds to the function F1.mult rec in file f1.ml. On the
other hand we recognize a lot of other functions that are called. The first on the list
are memory management functions in the runtime library (see chapter 9).

Exercises

Tracing Function Application

This exercise shows the evaluation of arguments at the moment of function application.

1. Activate tracing of the function List.fold left and evaluate the following
expression:
List.fold left (-) 1 [2; 3; 4; 5]; ;

What does the trace show you?

2. Define the function fold left int, identical to List.fold left, but with type:
(int → int → int) → int → int list → int.
Trace this function. Why is the output of the trace different?

Performance Analysis

We continue the exercise proposed in chapter 9, page 247, where we compared the
evolution of the heap of two programs (one tail recursive and the other not) for calcu-
lating primes. This time we will compare the execution times of each function with the
profiling tools. This exercise shows the importance of inline expansion (see chapter 7).

1. Compile the two programs erart and eranrt with profiling options using the
bytecode compiler and the native code compiler respectively.

2. Execute the programs passing them the numbers 3000 4000 5000 6000 on the
command line.

3. Visualize the results with the ocamlprof and gprof commands. What can you
say about the results?

286 Chapter 10 : Program Analysis Tools

Summary

This chapter presented the different programming support tools that come with the
Objective Caml distribution.

The first tool performs a static analysis in order to determine the dependencies of a
set of compilation units. This information can then be put in a Makefile, allowing for
separate compilation (if you alter one source file in a program, you only have to compile
that file, and the files that have dependencies to it, rather than the entire program).

Other tools give information about the execution of a program. The interactive toplevel
offers a trace of the execution; but, as we have seen, polymorphism imposes quite heavy
restrictions on the observable values. In fact, only the global declarations of monomor-
phic values are visible, which nevertheless includes the arguments of monomorphic
functions and permits tracing of recursive functions.

The last tools are those in the tradition of development under Unix, namely a debugger
and a profiler. With the first, you can execute a program step by step to examine it’s
operation, and the second gives information about its performance. Both are usable
only under Unix.

To Learn More

The results produced by the ocamldep command can be visualized in graphical form
by the ocamldot utility, which can be found on the following page:

Link: http://www.cis.upenn.edu/˜tjim/ocamldot/index.html

ocamldot makes use of an independent program (dot), also downloadable:

Link: http://www.research.att.com/sw/tools/graphviz/

Several generic Makefile templates for Objective Caml have been proposed to ease
the burden of project management:

Link: http://caml.inria.fr/FAQ/Makefile ocaml-eng.html

Link: http://www.ai.univie.ac.at/˜markus/ocaml sources

These integrate the output of ocamldep.

In [HF+96] a performance evaluation of about twenty implementations of functional
languages, among them several ML implementations, can be found. The benchmark is
an example of numerical calculations on large datastructures.

