
15
Object-Oriented

Programming

As you may have guessed from the name, Objective Caml supports object-oriented
programming. Unlike imperative programming, in which execution is driven by explicit
sequencing of operations, or functional programming, where it is driven by the required
computations, object-oriented programming can be thought of as data driven. Using
objects introduces a new organization of programs into classes of related objects. A
class groups together data and operations. The latter, also known as methods, define
the possible behaviors of an object. A method is invoked by sending a message to an
object. When an object receives a message, it performs the action or the computation
corresponding to the method specified by the message. This is different from applying
a function to arguments because a message (which contains the method name) is sent
to an object. It is up to the object itself to determine the code that will actually
be executed; such a delayed binding between name and code makes behavior more
adaptable and code easier to reuse.

With object-oriented programming, relations are defined between classes. Classes also
define how objects communicate through message parameters. Aggregation and inher-
itance relations between classes allow new kinds of application modeling. A class that
inherits from another class includes all definitions from the parent’s class. However, it
may extend the set of data and methods and redefine inherited behaviors, provided typ-
ing constraints are respected. We will use a graphical notation1 to represent relations
between classes.

Objective Caml’s object extensions are integrated with the type system of the lan-
guage: a class declaration defines a type with the same name as the class. Two kinds
of polymorphism coexist. One of them is parametric polymorphism, which we have
already seen with parameterized types: parameterized classes. The other one, known
as inclusion polymorphism, uses the subtyping relation between objects and delayed
binding. If the type of the class sc is a subtype of the class c then any object from sc

1. A number of notations exist for describing relations, e.g. UML (Unified Modeling Language).

436 Chapter 15 : Object-Oriented Programming

may be used in place of an object from c. The subtype constraint must be stated ex-
plicitly. Inclusion polymorphism makes it possible to construct non-homogeneous lists
where the type of each element is a subtype of a type common to all list elements.
Since binding is delayed, sending the same message to all elements of such a list can
activate different methods according to the sub-classes of the actual elements.

On the other hand, Objective Caml does not include the notion of method overloading,
which would allow several definitions for one method name. Without this restriction,
type inference might encounter ambiguous situations requiring additional information
from the programmer.

It should be emphasized that Objective Caml is the only language with an object
extension that provides both parameterized and inclusion polymorphism, while still
being fully statically typed through type inference.

Chapter Plan

This chapter describes Objective Caml’s object extension. This extension does not
change any of the features of the language that we already studied in the previous
chapters. A few new reserved keywords are added for the object-oriented syntax.

The first section describes class declaration syntax, object instantiation, and mes-
sage passing. The second section explains the various relations that may exist be-
tween classes. The third section clarifies the notion of object type and demonstrates
the richness of the object extension, thanks to abstract classes, multiple inheritance,
and generic parameterized classes. The fourth section explains the subtyping relation
and shows its power through inclusion polymorphism. The fifth section deals with a
functional style of object-oriented programming, where the internal state of the object
is not modified, but a modified copy of the receiving object is returned. The sixth sec-
tion clarifies other parts of the object-oriented extension, such as interfaces and local
declarations in classes, which allow class variables to be created.

Classes, Objects, and Methods

The object-oriented extension of Objective Caml is integrated with the functional and
imperative kernels of the language, as well as with its type system. Indeed, this last
point is unique to the language. Thus we have an object-oriented, statically typed
language, with type inference. This extension allows definition of classes and instances,
class inheritance (including multiple inheritance), parameterized classes, and abstract
classes. Class interfaces are generated from their definition, but may be made more
precise through a signature, similarly to what is done for modules.

Object-Oriented Terminology

We summarize below the main object-oriented programming terms.

Classes, Objects, and Methods 437

class: a class describes the contents of the objects that belong to it: it describes an
aggregate of data fields (called instance variables), and defines the operations
(called methods).

object: an object is an element (or instance) of a class; objects have the behaviors
of their class. The object is the actual component of programs, while the class
specifies how instances are created and how they behave.

method: a method is an action which an object is able to perform.

sending a message sending a message to an object means asking the object to exe-
cute or invoke one of its methods.

Class Declaration

The simplest syntax for defining a class is as follows. We shall develop this definition
throughout this chapter.

Syntax :

class name p1 . . . pn =

object
...

instance variables
...

methods
...

end

p1, . . . , pn are the parameters for the constructor of the class; they are omitted if the
class has no parameters.

An instance variable is declared as follows:

Syntax :
val name = expr
or
val mutable name = expr

When a data field is declared mutable, its value may be modified. Otherwise, the value
is always the one that was computed when expr was evaluated during object creation.

Methods are declared as follows:

Syntax : method name p1 . . . pn = expr

Other clauses than val and method can be used in a class declaration: we shall introduce
them as needed.

438 Chapter 15 : Object-Oriented Programming

Our first class example. We start with the unavoidable class point:

• the data fields x and y contain the coordinates of the point,

• two methods provide access to the data fields (get x and get y),

• two displacement methods (moveto: absolute displacement) and (rmoveto: rela-
tive displacement),

• one method presents the data as a string (to string),

• one method computes the distance to the point from the origin (distance).

class point (x init,y init) =

object

val mutable x = x init

val mutable y = y init

method get x = x

method get y = y

method moveto (a,b) = x <- a ; y <- b

method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy

method to string () =

"(" ^ (string of int x) ^ ", " ^ (string of int y) ^")"

method distance () = sqrt (float(x*x + y*y))

end ; ;

Note that some methods do not need parameters; this is the case for get x and get y.
We usually access instance variables with parameterless methods.

After we declare the class point, the system prints the following text:

class point :

int * int ->

object

val mutable x : int

val mutable y : int

method distance : unit -> float

method get_x : int

method get_y : int

method moveto : int * int -> unit

method rmoveto : int * int -> unit

method to_string : unit -> string

end

This text contains two pieces of information. First, the type for objects of the class;
this type will be abbreviated as point. The type of an object is the list of names and
types of methods in its class. In our example, point is an abbreviation for:

< distance : unit → unit; get x : int; get y : int;
moveto : int * int → unit; rmoveto : int * int → unit;
to string : unit → unit >

Next, we have a constructor for instances of class point, whose type is int*int -->
point. The constructor allows us to construct point objects (we´ll just say “points”
to be brief) from the initial values provided as arguments. In this case, we construct a

Classes, Objects, and Methods 439

point from a pair of integers (meaning the initial position). The constructor point is
used with the keyword new.

It is possible to define class types:
type simple point = < get x : int; get y : int; to string : unit → unit > ; ;
type simple_point = < get_x : int; get_y : int; to_string : unit -> unit >

Note
Type point does not repeat all the informations shown after a class dec-
laration. Instance variables are not shown in the type. Only methods have
access to these instance variables.

Warning A class declaration is a type declaration. As a conse-
quence, it cannot contain a free type variable.

We will come back to this point later when we deal with type constraints (page 454)
and parameterized classes (page 460).

A Graphical Notation for Classes

We adapt the UML notation for the syntax of Objective Caml types. Classes are
denoted by a rectangle with three parts:

• the top part shows the name of the class,

• the middle part lists the attributes (data fields) of a class instance,

• the bottom part shows the methods of an instance of the class.

Figure 15.1 gives an example of the graphical representation for the class caml.

color
age
eyes

caml

drinks

sleeps

runs

Figure 15.1: Graphical representation of a class.

Type information for the fields and methods of a class may be added.

440 Chapter 15 : Object-Oriented Programming

Instance Creation

An object is a value of a class, called an instance of the class. Instances are created
with the generic construction primitive new, which takes the class and initialization
values as arguments.

Syntax : new name expr1 . . . exprn

The following example creates several instances of class point, from various initial
values.
let p1 = new point (0,0); ;
val p1 : point = <obj>

let p2 = new point (3,4); ;
val p2 : point = <obj>

let coord = (3,0); ;
val coord : int * int = 3, 0

let p3 = new point coord; ;
val p3 : point = <obj>

In Objective Caml, the constructor of a class is unique, but you may define your own
specific function make point for point creation:
let make point x = new point (x,x) ; ;
val make_point : int -> point = <fun>

make point 1 ; ;
- : point = <obj>

Sending a Message

The notation # is used to send a message to an object. 2

Syntax : obj1#name p1 . . . pn

The message with method name “name” is sent to the object obj. The arguments p1,
. . . , pn are as expected by the method name. The method must be defined by the class
of the object, i.e. visible in the type. The types of arguments must conform to the types
of the formal parameters. The following example shows several queries performed on
objects from the class point.
p1#get x; ;
- : int = 0

p2#get y; ;
- : int = 4

p1#to string () ; ;
- : string = "(0, 0)"

p2#to string () ; ;

2. In most object-oriented languages, a dot notation is used. However, the dot notation was already
used for records and modules, so a new symbol was needed.

Relations between Classes 441

- : string = "(3, 4)"

if (p1#distance ()) = (p2#distance ())
then print string ("That’s just chance\n")

else print string ("We could bet on it\n"); ;
We could bet on it

- : unit = ()

From the type point of view, objects of type point can be used by polymorphic func-
tions of Objective Caml, just as any other value in the language:
p1 = p1 ; ;
- : bool = true

p1 = p2; ;
- : bool = false

let l = p1::[]; ;
val l : point list = [<obj>]

List.hd l; ;
- : point = <obj>

Warning Object equality is defined as physical equality.

We shall clarify this point when we study the subtyping relation (page 469).

Relations between Classes

Classes can be related in two ways:

1. An aggregation relation, named Has-a:
class C2 is related by Has-a with class C1 when C2 has a field whose type is that
of class C1. This relation can be generalized as: C2 has at least one field whose
type is that of class C1.

2. An inheritance relation, named Is-a:
class C2 is a subclass of class C1 when C2 extends the behavior of C1. One big
advantage of object-oriented programming is the ability to extend the behavior
of an existing class while reusing the code written for the original class. When a
class is extended, the new class inherits all the fields (data and methods) of the
class being extended.

Aggregation

Class C1 aggregates class C2 when at least one of its instance variables has type C2.
One gives the arity of the aggregation relation when it is known.

442 Chapter 15 : Object-Oriented Programming

An Example of Aggregation

Let us define a figure as a set of points. Therefore we declare class picture (see figure
15.2), in which one of the fields is an array of points. Then the class picture aggregates
point, using the generalized relation Has-a.
class picture n =

object

val mutable ind = 0

val tab = Array.create n (new point(0,0))

method add p =

try tab.(ind)<-p ; ind <- ind + 1

with Invalid argument("Array.set")

→ failwith ("picture.add:ind =" ^ (string of int ind))

method remove () = if (ind > 0) then ind <-ind-1

method to string () =

let s = ref "["

in for i=0 to ind-1 do s:= !s ^ " " ^ tab.(i)#to string () done ;
(!s) ^ "]"

end ; ;
class picture :

int ->

object

val mutable ind : int

val tab : point array

method add : point -> unit

method remove : unit -> unit

method to_string : unit -> string

end

To build a figure, we create an instance of class picture, and insert the points as
required.
let pic = new picture 8; ;
val pic : picture = <obj>

pic#add p1; pic#add p2; pic#add p3; ;
- : unit = ()

pic#to string () ; ;
- : string = "[(0, 0) (3, 4) (3, 0)]"

A Graphical Notation for Aggregation

The relation between class picture and class point is represented graphically in figure
15.2. An arrow with a diamond at the tail represents aggregation. In this example, class
picture has 0 or more points. Furthermore, we show above the arrow the arity of the
relation.

Relations between Classes 443

0..*

remove : unit -> unit

add_point : point -> unit

picture

ind : int
tab : point array

to_string : unit -> string

moveto : (int * int) -> unit

to_string : unit -> string

get_y : int

get_x : int

x : int
y : int

point

rmoveto : (int * int) -> unit

distance : unit -> float

Figure 15.2: Aggregation relation.

Inheritance Relation

This is the main relation in object-oriented programming. When class c2 inherits from
class c1, it inherits all fields from the parent class. It can also define new fields, or
redefine inherited methods to specialize them. Since the parent class has not been
modified, the applications using it do not need to be adapted to the changes introduced
in the new class.

The syntax of inheritance is as follows:

Syntax : inherit name1 p1 . . . pn [as name2]

Parameters p1, . . . , pn are what is expected from the constructor of class name1. The
optional keyword as associates a name with the parent class to provide access to its
methods. This feature is particularly useful when the child class redefines a method of
the parent class (see page 445).

An Example of Simple Inheritance

Using the classic example, we can extend class point by adding a color attribute to
the points. We define the class colored point inheriting from class point. The color
is represented by the field c of type string. We add a method get color that returns
the value of the field. Finally, the string conversion method is overridden to recognize
the new attribute.

Note
The x and y variables seen in to string are the fields, not the class
initialization arguments.

class colored point (x,y) c =

object

444 Chapter 15 : Object-Oriented Programming

inherit point (x,y)

val mutable c = c

method get color = c

method set color nc = c <- nc

method to string () = "(" ^ (string of int x) ^

", " ^ (string of int y) ^ ")" ^

" [" ^ c ^ "] "

end ; ;
class colored_point :

int * int ->

string ->

object

val mutable c : string

val mutable x : int

val mutable y : int

method distance : unit -> float

method get_color : string

method get_x : int

method get_y : int

method moveto : int * int -> unit

method rmoveto : int * int -> unit

method set_color : string -> unit

method to_string : unit -> string

end

The constructor arguments for colored point are the pair of coordinates required for
the construction of a point and the color for the colored point.

The methods inherited, newly defined or redefined correspond to the behaviors of
instances of the class.
let pc = new colored point (2,3) "white"; ;
val pc : colored_point = <obj>

pc#get color; ;
- : string = "white"

pc#get x; ;
- : int = 2

pc#to string () ; ;
- : string = "(2, 3) [white] "

pc#distance; ;
- : unit -> float = <fun>

We say that the class point is a parent class of class colored point and that the
latter is the child of the former.

Warning When redefining a method in a child class, you must
respect the method type defined in the parent class.

A Graphical Notation for Inheritance

The inheritance relation between classes is denoted by an arrow from the child class to
the parent class. The head of the arrow is a closed triangle. In the graphical represen-

Other Object-oriented Features 445

tation of inheritance, we only show the new fields and methods, and redefined methods
in the child class. Figure 15.3 displays the relation between class colored point and
its parent point.

set_color : string -> unit

get_color : string

to_string : unit -> string

colored_point

moveto : (int * int) -> unit
rmoveto : (int * int) -> unit

distance : unit -> float

to_string : unit -> string

get_y : int

get_x : int

point

x : int
y : int c : string

Figure 15.3: Inheritance Relation.

Since it contains additional methods, type colored point differs from type point.
Testing for equality between instances of these classes produces a long error message
containing the whole type of each class, in order to display the differences.
p1 = pc; ;
Characters 6-8:

This expression has type

colored_point =

< distance : unit -> float; get_color : string; get_x : int; get_y :

int; moveto : int * int -> unit; rmoveto : int * int -> unit;

set_color : string -> unit; to_string : unit -> string >

but is here used with type

point =

< distance : unit -> float; get_x : int; get_y : int;

moveto : int * int -> unit; rmoveto : int * int -> unit;

to_string : unit -> string >

Only the first object type has a method get_color

Other Object-oriented Features

References: self and super

When defining a method in a class, it may be convenient to be able to invoke a method
from a parent class. For this purpose, Objective Caml allows the object itself, as well
as (the objects of) the parent class to be named. In the former case, the chosen name
is given after the keyword object, and in the latter, after the inheritance declaration.

446 Chapter 15 : Object-Oriented Programming

For example, in order to define the method to string of colored points, it is better to
invoke the method to string from the parent class and to extend its behavior with a
new method, get color.
class colored point (x,y) c =

object (self)

inherit point (x,y) as super

val c = c

method get color = c

method to string () = super#to string () ^ " [" ^ self#get color ^ "] "

end ; ;

Arbitrary names may be given to the parent and child class objects, but the names
self and this for the current class and super for the parent are conventional. Choos-
ing other names may be useful with multiple inheritance since it makes it easy to
differentiate the parents (see page 457).

Warning
You may not reference a variable of an instance’s parent
if you declare a new variable with the same name since
it masks the former.

Delayed Binding

With delayed binding the method used when a message is sent is decided at run-
time; this is opposed to static binding where the decision is made at compile time. In
Objective Caml, delayed binding of methods is used; therefore, the exact piece of code
to be executed is determined by the recipient of the message.

The above declaration of class colored point redefines the method to string. This
new definition uses method get color from this class. Now let us define another class
colored point 1, inheriting from colored point; this new class redefines method
get color (testing that the character string is appropriate), but does not redefine
to string.

class colored point 1 coord c =

object

inherit colored point coord c

val true colors = ["white"; "black"; "red"; "green"; "blue"; "yellow"]

method get color = if List.mem c true colors then c else "UNKNOWN"

end ; ;

Method to string is the same in both classes of colored points; but two objects from
these classes will have a different behavior.
let p1 = new colored point (1,1) "blue as an orange" ; ;
val p1 : colored_point = <obj>

p1#to string () ; ;
- : string = "(1, 1) [blue as an orange] "

let p2 = new colored point 1 (1,1) "blue as an orange" ; ;

Other Object-oriented Features 447

val p2 : colored_point_1 = <obj>

p2#to string () ; ;
- : string = "(1, 1) [UNKNOWN] "

The binding of get color within to string is not fixed when the class colored point

is compiled. The code to be executed when invoking the method get color is de-
termined from the methods associated with instances of classes colored point and
colored point 1. For an instance of colored point, sending the message to string
causes the execution of get color, defined in class colored point. On the other hand,
sending the same message to an instance of colored point 1 invokes the method from
the parent class, and the latter triggers method get color from the child class, con-
trolling the relevance of the string representing the color.

Object Representation and Message Dispatch

An object is split in two parts: one may vary, the other is fixed. The varying part
contains the instance variables, just as for a record. The fixed part corresponds to a
methods table, shared by all instances of the class.

The methods table is a sparse array of functions. Every method name in an application
is given a unique id that serves as an index into the methods table. We assume the
existence of a machine instruction GETMETHOD(o,n), that takes two parameters: an
object o and an index n. It returns the function associated with this index in the
methods table. We write f n for the result of the call GETMETHOD(o,n). Compiling the
message send o#m computes the index n of the method name m and produces the code
for applying GETMETHOD(o,n) to object o. This corresponds to applying function f n
to the receiving object o. Delayed binding is implemented through a call to GETMETHOD
at run time.

Sending a message to self within a method is also compiled as a search for the index
of the message, followed by a call to the function found in the methods table.

In the case of inheritance, since the method name always has the same index, regardless
of redefinition, only the entry in new class’ methods table is changed for redefinitions.
So sending message to string to an instance of class point will apply the conversion
function of a point, while sending the same message to an instance of colored point
will find at the same index the function corresponding to the method which has been
redefined to recognize the color field.

Thanks to this index invariance, subtyping (see page 465) is insured to be coherent
with respect to the execution. Indeed if a colored point is explicitly constrained to be
a point, then upon sending the message to string the method index from class point
is computed, which coincides with that from class colored point. Searching for the
method will be done within the table associated with the receiving instance, i.e. the
colored point table.

Although the actual implementation in Objective Caml is different, the principle of
dynamic search for the method to be used is still the same.

448 Chapter 15 : Object-Oriented Programming

Initialization

The class definition keyword initializer is used to specify code to be executed during
object construction. An initializer can perform any computation and field access that
is legal in a method.

Syntax : initializer expr

Let us again extend the class point, this time by defining a verbose point that will
announce its creation.
class verbose point p =

object(self)

inherit point p

initializer

let xm = string of int x and ym = string of int y

in Printf.printf ">> Creation of a point at (%s %s)\n"

xm ym ;
Printf.printf " , at distance %f from the origin\n"

(self#distance ()) ;
end ; ;

new verbose point (1,1); ;
>> Creation of a point at (1 1)

, at distance 1.414214 from the origin

- : verbose_point = <obj>

An amusing but instructive use of initializers is tracing class inheritance on instance
creation. Here is an example:
class c1 =

object

initializer print string "Creating an instance of c1\n"

end ; ;

class c2 =

object

inherit c1

initializer print string "Creating an instance of c2\n"

end ; ;

new c1 ; ;
Creating an instance of c1

- : c1 = <obj>

new c2 ; ;
Creating an instance of c1

Creating an instance of c2

- : c2 = <obj>

Constructing an instance of c2 requires first constructing an instance of the parent
class.

Other Object-oriented Features 449

Private Methods

A method may be declared private with the keyword private. It will appear in the
interface to the class but not in instances of the class. A private method can only be
invoked from other methods; it cannot be sent to an instance of the class. However,
private methods are inherited, and therefore can be used in definitions of the hierarchy3.

Syntax : method private name = expr

Let us extend the class point: we add a method undo that revokes the last move. To do
this, we must remember the position held before performing a move, so we introduce
two new fields, old x and old y, together with their update method. Since we do not
want the user to have direct access to this method, we declare it as private. We redefine
the methods moveto and rmoveto, keeping note of the current position before calling
the previous methods for performing a move.
class point m1 (x0,y0) =

object(self)

inherit point (x0,y0) as super

val mutable old x = x0

val mutable old y = y0

method private mem pos () = old x <- x ; old y <- y

method undo () = x <- old x; y <- old y

method moveto (x1, y1) = self#mem pos () ; super#moveto (x1, y1)

method rmoveto (dx, dy) = self#mem pos () ; super#rmoveto (dx, dy)

end ; ;
class point_m1 :

int * int ->

object

val mutable old_x : int

val mutable old_y : int

val mutable x : int

val mutable y : int

method distance : unit -> float

method get_x : int

method get_y : int

method private mem_pos : unit -> unit

method moveto : int * int -> unit

method rmoveto : int * int -> unit

method to_string : unit -> string

method undo : unit -> unit

end

We note that method mem pos is preceded by the keyword private in type point m1.
It can be invoked from within method undo, but not on another instance. The situation
is the same as for instance variables. Even though fields old x and old y appear in the
results shown by compilation, that does not imply that they may be handled directly
(see page 438).
let p = new point m1 (0, 0) ; ;

3. The private of Objective Caml corresponds to protected of Objective C, C++ and Java

450 Chapter 15 : Object-Oriented Programming

val p : point_m1 = <obj>

p#mem pos () ; ;
Characters 0-1:

This expression has type point_m1

It has no method mem_pos

p#moveto(1, 1) ; p#to string () ; ;
- : string = "(1, 1)"

p#undo () ; p#to string () ; ;
- : string = "(0, 0)"

Warning A type constraint may make public a method declared
with attribute private.

Types and Genericity

Besides the ability to model a problem using aggregation and inheritance relations,
object-oriented programming is interesting because it provides the ability to reuse
or modify the behavior of classes. However, extending an Objective Caml class must
preserve the static typing properties of the language.

With abstract classes, you can factorize code and group their subclasses into one “com-
munication protocol”. An abstract class fixes the names and types of messages that
may be received by instances of child classes. This technique will be better appreciated
in connection with multiple inheritance.

The notion of an open object type (or simply an open type) that specifies the required
methods allows code to work with instances using generic functions. But you may need
to make the type constraints precise; this will be necessary for parameterized classes,
which provide the genericity of parameterized polymorphism in the context of classes.
With this latter object layer feature, Objective Caml can really be generic.

Abstract Classes and Methods

In abstract classes, some methods are declared without a body. Such methods are called
abstract. It is illegal to instantiate an abstract class; new cannot be used. The keyword
virtual is used to indicate that a class or method is abstract.

Syntax : class virtual name = object . . . end

A class must be declared abstract as soon as one of its methods is abstract. A method
is declared abstract by providing only the method type.

Syntax : method virtual name : type

When a subclass of an abstract class redefines all of the abstract methods of its parent,
then it may become concrete; otherwise it also has to be declared abstract.

Types and Genericity 451

As an example, suppose we want to construct a set of displayable objects, all with a
method print that will display the object’s contents translated into a character string.
All such objects need a method to string. We define class printable. The string
may vary according to the nature of the objects that we consider; therefore method
to string is abstract in the declaration of printable and consequently the class is
also abstract.
class virtual printable () =

object(self)

method virtual to string : unit → string

method print () = print string (self#to string ())
end ; ;

class virtual printable :

unit ->

object

method print : unit -> unit

method virtual to_string : unit -> string

end

We note that the abstractness of the class and of its method to string is made clear
in the type we obtain.

From this class, let us try to define the class hierarchy of figure 15.4.

2 0..n

printable

colored_point

rectangle point picture

Figure 15.4: Relations between classes of displayable objects.

It is easy to redefine the classes point, colored point and picture by adding to their
declarations a line inherit printable () that provides them with a method print
through inheritance.
let p = new point (1,1) in p#print () ; ;
(1, 1)- : unit = ()

let pc = new colored point (2,2) "blue" in pc#print () ; ;
(2, 2) with color blue- : unit = ()

let t = new picture 3 in t#add (new point (1,1)) ;

452 Chapter 15 : Object-Oriented Programming

t#add (new point (3,2)) ;
t#add (new point (1,4)) ;
t#print () ; ;

[(1, 1) (3, 2) (1, 4)]- : unit = ()

Subclass rectangle below inherits from printable, and defines method to string.
Instance variables llc (resp. urc) mean the lower left corner point (resp. upper right
corner point) in the rectangle.
class rectangle (p1,p2) =

object

inherit printable ()
val llc = (p1 : point)

val urc = (p2 : point)

method to string () = "[" ^ llc#to string () ^ "," ^ urc#to string () ^ "]"

end ; ;
class rectangle :

point * point ->

object

val llc : point

val urc : point

method print : unit -> unit

method to_string : unit -> string

end

Class rectangle inherits from the abstract class printable, and thus receives method
print. It has two instance variables of type point: the lower left corner (llc) and upper
right corner. Method to string sends the message to string to its point instance
variables llc and urc.

let r = new rectangle (new point (2,3), new point (4,5)); ;
val r : rectangle = <obj>

r#print () ; ;
[(2, 3),(4, 5)]- : unit = ()

Classes, Types, and Objects

You may remember that the type of an object is determined by the type of its methods.
For instance, the type point, inferred during the declaration of class point, is an
abbreviation for type:

point =

< distance : unit -> float; get_x : int; get_y : int;

moveto : int * int -> unit; rmoveto : int * int -> unit;

to_string : unit -> string >

Types and Genericity 453

This is a closed type; that is, all methods and associated types are fixed. No addi-
tional methods and types are allowed. Upon a class declaration, the mechanism of
type inference computes the closed type associated with class.

Open Types

Since sending a message to an object is part of the language, you may define a function
that sends a message to an object whose type is still undefined.
let f x = x#get x ; ;
val f : < get_x : ’a; .. > -> ’a = <fun>

The type inferred for the argument of f is an object type, since a message is sent to x,
but this object type is open. In function f, parameter x must have at least a method
get x. Since the result of sending this message is not used within function f, its type
has to be as general as possible (i.e. a variable of type ’a). So type inference allows
the function f to be used with any object having a method get x. The double points
(..) at the end of the type < get x : ’a; .. > indicate that the type of x is open.

f (new point(2,3)) ; ;
- : int = 2

f (new colored point(2,3) "emerald") ; ;
- : int = 2

class c () =

object

method get x = "I have a method get_x"

end ; ;
class c : unit -> object method get_x : string end

f (new c ()) ; ;
- : string = "I have a method get_x"

Type inference for classes may generate open types, particularly for initial values in
instance construction. The following example constructs a class couple, whose initial
values a and b have a method to string.
class couple (a,b) =

object

val p0 = a

val p1 = b

method to string () = p0#to string () ^ p1#to string ()
method copy () = new couple (p0,p1)

end ; ;
class couple :

(< to_string : unit -> string; .. > as ’a) *

(< to_string : unit -> string; .. > as ’b) ->

object

val p0 : ’a

val p1 : ’b

method copy : unit -> couple

method to_string : unit -> string

454 Chapter 15 : Object-Oriented Programming

end

The types of both a and b are open types, with method to string. We note that
these two types are considered to be different. They are marked “as ’a” and “as ’b”,
respectively. Variables of types ’a and ’b are constrained by the generated type.

We use the sharp symbol to indicate the open type built from a closed type obj type:

Syntax : #obj type

The type obtained contains all of the methods of type obj type and terminates with
a double point.

Type Constraints.

In the chapter on functional programming (see page 28), we showed how an expression
can be constrained to have a type more precise than what is produced by inference.
Object types (open or closed) can be used to enhance such constraints. One may want
to open a priori the type of a defined object, in order to apply it to a forthcoming
method. We can use an open object constraint:

Syntax : (name:#type)

Which allows us to write:
let g (x : #point) = x#message; ;
val g :

< distance : unit -> float; get_x : int; get_y : int; message : ’a;

moveto : int * int -> unit; print : unit -> unit;

rmoveto : int * int -> unit; to_string : unit -> string; .. > ->

’a = <fun>

The type constraint with #point forces x to have at least all of the methods of point,
and sending message “message” adds a method to the type of parameter x.

Just as in the rest of the language, the object extension of Objective Caml provides
static typing through inference. When this mechanism does not have enough informa-
tion to determine the type of an expression, a type variable is assigned. We have just
seen that this process is also valid for typing objects; however, it sometimes leads to
ambiguous situations which the user must resolve by explicitly giving type information.

class a point p0 =

object

val p = p0

method to string () = p#to string ()
end ; ;

Characters 6-89:

Some type variables are unbound in this type:

class a_point :

(< to_string : unit -> ’b; .. > as ’a) ->

object val p : ’a method to_string : unit -> ’b end

The method to_string has type unit -> ’a where ’a is unbound

Types and Genericity 455

We resolve this ambiguity by saying that parameter p0 has type #point.
class a point (p0 : #point) =

object

val p = p0

method to string () = p#to string ()
end ; ;

class a_point :

(#point as ’a) -> object val p : ’a method to_string : unit -> string end

In order to set type constraints in several places in a class declaration, the following
syntax is used:

Syntax : constraint type1 = type2

The above example can be written specifying that parameter p0 has type ’a, then
putting a type constraint upon variable ’a.
class a point (p0 : ’a) =

object

constraint ’a = #point

val p = p0

method to string () = p#to string ()
end ; ;

class a_point :

(#point as ’a) -> object val p : ’a method to_string : unit -> string end

Several type constraints can be given in a class declaration.

Warning An open type cannot appear as the type of a method.

This strong restriction exists because an open type contains an uninstantiated type
variable coming from the rest of the type. Since one cannot have a free variable type
in a type declaration, a method containing such a type is rejected by type inference.
class b point p0 =

object

inherit a point p0

method get = p

end ; ;
Characters 6-77:

Some type variables are unbound in this type:

class b_point :

(#point as ’a) ->

object val p : ’a method get : ’a method to_string : unit -> string end

The method get has type #point where .. is unbound

In fact, due to the constraint “constraint ’a = #point”, the type of get is the open
type #point. The latter contains a free variable type noted by a double point (..),
which is not allowed.

456 Chapter 15 : Object-Oriented Programming

Inheritance and the Type of self

There exists an exception to the prohibition of a type variable in the type of methods:
a variable may stand for the type of the object itself (self). Consider a method testing
the equality between two points.
class point eq (x,y) =

object (self : ’a)
inherit point (x,y)

method eq (p:’a) = (self#get x = p#get x) && (self#get y = p#get y)

end ; ;
class point_eq :

int * int ->

object (’a)

val mutable x : int

val mutable y : int

method distance : unit -> float

method eq : ’a -> bool

method get_x : int

method get_y : int

method moveto : int * int -> unit

method print : unit -> unit

method rmoveto : int * int -> unit

method to_string : unit -> string

end

The type of method eq is ’a -> bool, but the type variable stands for the type of the
instance at construction time.

You can inherit from the class point eq and redefine the method eq, whose type is
still parameterized by the instance type.
class colored point eq (xc,yc) c =

object (self : ’a)
inherit point eq (xc,yc) as super

val c = (c:string)

method get c = c

method eq (pc : ’a) = (self#get x = pc#get x) && (self#get y = pc#get y)

&& (self#get c = pc#get c)

end ; ;
class colored_point_eq :

int * int ->

string ->

object (’a)

val c : string

val mutable x : int

val mutable y : int

method distance : unit -> float

method eq : ’a -> bool

method get_c : string

method get_x : int

method get_y : int

method moveto : int * int -> unit

method print : unit -> unit

method rmoveto : int * int -> unit

Types and Genericity 457

method to_string : unit -> string

end

The method eq from class colored point eq still has type ’a -> bool; but now the
variable ’a stands for the type of an instance of class colored point eq. The definition
of eq in class colored point eq masks the inherited one. Methods containing the type
of the instance in their type are called binary methods. They will cause some limitations
in the subtyping relation described in page 465.

Multiple Inheritance

With multiple inheritance, you can inherit data fields and methods from several classes.
When there are identical names for fields or methods, only the last declaration is
kept, according to the order of inheritance declarations. Nevertheless, it is possible to
reference a method of one of the parent classes by associating different names with
the inherited classes. This is not true for instance variables: if an inherited class masks
an instance variable of a previously inherited class, the latter is no longer directly
accessible. The various inherited classes do not need to have an inheritance relation.
Multiple inheritance is of interest because it increases class reuse.

Let us define the abstract class geometric object, which declares two virtual methods
compute area and compute peri for computing the area and perimeter.
class virtual geometric object () =

object

method virtual compute area : unit → float

method virtual compute peri : unit → float

end; ;

Then we redefine class rectangle as follows:
class rectangle 1 ((p1,p2) :’a) =

object

constraint ’a = point * point

inherit printable ()
inherit geometric object ()
val llc = p1

val urc = p2

method to string () =

"["^llc#to string ()^","^urc#to string ()^"]"
method compute area () =

float (abs(urc#get x - llc#get x) * abs(urc#get y - llc#get y))

method compute peri () =

float ((abs(urc#get x - llc#get x) + abs(urc#get y - llc#get y)) * 2)

end; ;
class rectangle_1 :

point * point ->

object

val llc : point

val urc : point

458 Chapter 15 : Object-Oriented Programming

method compute_area : unit -> float

method compute_peri : unit -> float

method print : unit -> unit

method to_string : unit -> string

end

This implementation of classes respects the inheritance graph of figure 15.5.

geometric_objectprintable

rectangle_2

Figure 15.5: Multiple inheritance.

In order to avoid rewriting the methods of class rectangle, we may directly inherit
from rectangle, as shown in figure 15.6.

printable

rectangle geometric_object

rectangle_3

Figure 15.6: Multiple inheritance (continued).

In such a case, only the abstract methods of the abstract class geometric object must
be defined in rectangle 2.
class rectangle 2 (p2 :’a) =

object

constraint ’a = point * point

inherit rectangle p2

inherit geometric object ()
method compute area () =

Types and Genericity 459

float (abs(urc#get x - llc#get x) * abs(urc#get y - llc#get y))

method compute peri () =

float ((abs(urc#get x - llc#get x) + abs(urc#get y - llc#get y)) * 2)

end; ;

Continuing in the same vein, the hierarchies printable and geometric object could
have been defined separately, until it became useful to have a class with both behaviors.
Figure 15.7 displays the relations defined in this way.

printable geometric_object

printable_rect geometric_rect

rectangle_4

Figure 15.7: Multiple inheritance (end).

If we assume that classes printable rect and geometric rect define instance vari-
ables for the corners of a rectangle, we get class rectangle 3 with four points (two
per corner).
class rectangle 3 (p1,p2) =

inherit printable rect (p1,p2) as super print

inherit geometric rect (p1,p2) as super geo

end; ;

In the case where methods of the same type exist in both classes ... rect, then only
the last one is visible. However, by naming parent classes (super ...), it is always
possible to invoke a method from either parent.

Multiple inheritance allows factoring of the code by integrating methods already writ-
ten from various parent classes to build new entities. The price paid is the size of
constructed objects, which are bigger than necessary due to duplicated fields, or inher-
ited fields useless for a given application. Furthermore, when there is duplication (as in
our last example), communication between these fields must be established manually
(update, etc.). In the last example for class rectangle 3, we obtain instance variables
of classes printable rect and geometric rect. If one of these classes has a method
which modifies these variables (such as a scaling factor), then it is necessary to prop-
agate these modifications to variables inherited from the other class. Such a heavy
communication between inherited instance variables often signals a poor modeling of
the given problem.

460 Chapter 15 : Object-Oriented Programming

Parameterized Classes

Parameterized classes let Objective Caml’s parameterized polymorphism be used in
classes. As with the type declarations of Objective Caml, class declarations can be
parameterized with type variables. This provides new opportunities for genericity and
code reuse. Parameterized classes are integrated with ML-like typing when type infer-
ence produces parameterized types.

The syntax differs slightly from the declaration of parameterized types; type parameters
are between brackets.

Syntax : class [’a, ’b, . . .] name = object . . . end

The Objective Caml type is noted as usual: (’a,’b,...) name.

For instance, if a class pair is required, a naive solution would be to set:
class pair x0 y0 =

object

val x = x0

val y = y0

method fst = x

method snd = y

end ; ;
Characters 6-106:

Some type variables are unbound in this type:

class pair :

’a ->

’b -> object val x : ’a val y : ’b method fst : ’a method snd : ’b end

The method fst has type ’a where ’a is unbound

One again gets the typing error mentioned when class a point was defined (page 452).
The error message says that type variable ’a, assigned to parameter x0 (and therefore
to x and fst), is not bound.

As in the case of parameterized types, it is necessary to parameterize class pair with
two type variables, and force the type of construction parameters x0 and y0 to obtain
a correct typing:
class [’a,’b] pair (x0:’a) (y0:’b) =

object

val x = x0

val y = y0

method fst = x

method snd = y

end ; ;
class [’a, ’b] pair :

’a ->

’b -> object val x : ’a val y : ’b method fst : ’a method snd : ’b end

Type inference displays a class interface parameterized by variables of type ’a and ’b.

When a value of a parameterized class is constructed, type parameters are instantiated
with the types of the construction parameters:

Types and Genericity 461

let p = new pair 2 ’X’; ;
val p : (int, char) pair = <obj>

p#fst; ;
- : int = 2

let q = new pair 3.12 true; ;
val q : (float, bool) pair = <obj>

q#snd; ;
- : bool = true

Note
In class declarations, type parameters are shown between brackets, but in
types, they are shown between parentheses.

Inheritance of Parameterized Classes

When inheriting from a parameterized class, one has to indicate the parameters of the
class. Let us define a class acc pair that inherits from (’a,’b) pair; we add two
methods for accessing the fields, get1 and get2,
class [’a,’b] acc pair (x0 : ’a) (y0 : ’b) =

object

inherit [’a,’b] pair x0 y0

method get1 z = if x = z then y else raise Not found

method get2 z = if y = z then x else raise Not found

end; ;
class [’a, ’b] acc_pair :

’a ->

’b ->

object

val x : ’a

val y : ’b

method fst : ’a

method get1 : ’a -> ’b

method get2 : ’b -> ’a

method snd : ’b

end

let p = new acc pair 3 true; ;
val p : (int, bool) acc_pair = <obj>

p#get1 3; ;
- : bool = true

We can make the type parameters of the inherited parameterized class more precise,
e.g. for a pair of points.
class point pair (p1,p2) =

object

inherit [point,point] pair p1 p2

end; ;
class point_pair :

point * point ->

object

462 Chapter 15 : Object-Oriented Programming

val x : point

val y : point

method fst : point

method snd : point

end

Class point pair no longer needs type parameters, since parameters ’a and ’b are
completely determined.

To build pairs of displayable objects (i.e. having a method print), we reuse the abstract
class printable (see page 451), then we define the class printable pair which inherits
from pair.
class printable pair x0 y0 =

object

inherit [printable, printable] acc pair x0 y0

method print () = x#print () ; y#print ()
end; ;

This implementation allows us to construct pairs of instances of printable, but it
cannot be used for objects of another class with a method print.

We could try to open type printable used as a type parameter for acc pair:
class printable pair (x0) (y0) =

object

inherit [#printable, #printable] acc pair x0 y0

method print () = x#print () ; y#print ()
end; ;

Characters 6-149:

Some type variables are unbound in this type:

class printable_pair :

(#printable as ’a) ->

(#printable as ’b) ->

object

val x : ’a

val y : ’b

method fst : ’a

method get1 : ’a -> ’b

method get2 : ’b -> ’a

method print : unit -> unit

method snd : ’b

end

The method fst has type #printable where .. is unbound

This first attempt fails because methods fst and snd contain an open type.

So we shall keep the type parameters of the class, while constraining them to the open
type #printable.
class [’a,’b] printable pair (x0) (y0) =

object

constraint ’a = #printable

constraint ’b = #printable

Types and Genericity 463

inherit [’a,’b] acc pair x0 y0

method print () = x#print () ; y#print ()
end; ;

class [’a, ’b] printable_pair :

’a ->

’b ->

object

constraint ’a = #printable

constraint ’b = #printable

val x : ’a

val y : ’b

method fst : ’a

method get1 : ’a -> ’b

method get2 : ’b -> ’a

method print : unit -> unit

method snd : ’b

end

Then we construct a displayable pair containing a point and a colored point.
let pp = new printable pair

(new point (1,2)) (new colored point (3,4) "green"); ;
val pp : (point, colored_point) printable_pair = <obj>

pp#print () ; ;
(1, 2)(3, 4) with color green- : unit = ()

Parameterized Classes and Typing

From the point of view of types, a parameterized class is a parameterized type. A value
of such a type can contain weak type variables.
let r = new pair [] [] ; ;
val r : (’_a list, ’_b list) pair = <obj>

r#fst; ;
- : ’_a list = []

r#fst = [1;2]; ;
- : bool = false

r; ;
- : (int list, ’_a list) pair = <obj>

A parameterized class can also be viewed as a closed object type; therefore nothing
prevents us from also using it as an open type with the sharp notation.
let compare nothing (x : (’a, ’a) #pair) =

if x#fst = x#fst then x#mess else x#mess2; ;
val compare_nothing :

< fst : ’a; mess : ’b; mess2 : ’b; snd : ’a; .. > -> ’b = <fun>

This lets us construct parameterized types that contain weak type variables that are
also open object types.

464 Chapter 15 : Object-Oriented Programming

let prettytype x (y : (’a, ’a) #pair) = if x = y#fst then y else y; ;
val prettytype : ’a -> ((’a, ’a) #pair as ’b) -> ’b = <fun>

If this function is applied to one parameter, we get a closure, whose type variables are
weak. An open type, such as #pair, still contains uninstantiated parts, represented by
the double point (..). In this respect, an open type is a partially known type parameter.
Upon weakening such a type after a partial application, the displayer specifies that the
type variable representing this open type has been weakened. Then the notation is
#pair.

let g = prettytype 3; ;
val g : ((int, int) _#pair as ’a) -> ’a = <fun>

Now, if function g is applied to a pair, its weak type is modified.
g (new acc pair 2 3); ;
- : (int, int) acc_pair = <obj>

g; ;
- : (int, int) acc_pair -> (int, int) acc_pair = <fun>

Then we can no longer use g on simple pairs.
g (new pair 1 1); ;
Characters 4-16:

This expression has type (int, int) pair = < fst : int; snd : int >

but is here used with type

(int, int) acc_pair =

< fst : int; get1 : int -> int; get2 : int -> int; snd : int >

Only the second object type has a method get1

Finally, since parameters of the parameterized class can also get weakened, we obtain
the following example.
let h = prettytype [] ; ;
val h : ((’_b list, ’_b list) _#pair as ’a) -> ’a = <fun>

let h2 = h (new pair [] [1;2]); ;
val h2 : (int list, int list) pair = <obj>

h; ;
- : (int list, int list) pair -> (int list, int list) pair = <fun>

The type of the parameter of h is no longer open. The following application cannot be
typed because the argument is not of type pair.
h (new acc pair [] [4;5]); ;
Characters 4-25:

This expression has type

(’a list, int list) acc_pair =

< fst : ’a list; get1 : ’a list -> int list; get2 : int list -> ’a list;

snd : int list >

but is here used with type

Subtyping and Inclusion Polymorphism 465

(int list, int list) pair = < fst : int list; snd : int list >

Only the first object type has a method get1

Note
Parameterized classes of Objective Caml are absolutely necessary as soon
as one has methods whose type includes a type variable different from the
type of self.

Subtyping and Inclusion Polymorphism

Subtyping makes it possible for an object of some type to be considered and used as
an object of another type. An object type ot2 could be a subtype of ot1 if:

1. it includes all of the methods of ot1,

2. each method of ot2 that is a method of ot1 is a subtype of the ot1 method.

The subtype relation is only meaningful between objects: it can only be expressed be-
tween objects. Furthermore, the subtype relation must always be explicit. It is possible
to indicate either that a type is a subtype of another, or that an object has to be
considered as an object of a super type.

Syntax :
(name : sub type :> super type)

(name :> super type)

Example

Thus we can indicate that an instance of colored point can be used as an instance
of point:
let pc = new colored point (4,5) "white"; ;
val pc : colored_point = <obj>

let p1 = (pc : colored point :> point); ;
val p1 : point = <obj>

let p2 = (pc :> point); ;
val p2 : point = <obj>

Although known as a point, p1 is nevertheless a colored point, and sending the method
to string will trigger the method relevant for colored points:
p1#to string () ; ;
- : string = "(4, 5) with color white"

This way, it is possible to build lists containing both points and colored points:
let l = [new point (1,2) ; p1] ; ;
val l : point list = [<obj>; <obj>]

List.iter (fun x → x#print () ; print newline ()) l; ;
(1, 2)

466 Chapter 15 : Object-Oriented Programming

(4, 5) with color white

- : unit = ()

Of course, the actions that can be performed on the objects of such a list are restricted
to those allowed for points.
p1#get color () ; ;
Characters 1-3:

This expression has type point

It has no method get_color

The combination of delayed binding and subtyping provides a new form of polymor-
phism: inclusion polymorphism. This is the ability to handle values of any type having
a subtype relation with the expected type. Although static typing information guaran-
tees that sending a message will always find the corresponding method, the behavior
of the method depends on the actual receiving object.

Subtyping is not Inheritance

Unlike mainstream object-oriented languages such as C++, Java, and SmallTalk, sub-
typing and inheritance are different concepts in Objective Caml. There are two main
reasons for this.

1. Instances of the class c2 may have a type that is a subtype of the object type
c1 even if the class c2 does not inherit from the class c1. Indeed, the class
colored point can be defined independently from the class point, provided the
type of its instances are constrained to the object type point.

2. Class c2 may inherit from the class c1 but have instances whose type is not a
subtype of the object type c1. This is illustrated in the following example, which
uses the ability to define an abstract method that takes an as yet undetermined
instance as an argument of the class being defined. In our example, this is method
eq of class equal.

class virtual equal () =

object(self:’a)
method virtual eq : ’a → bool

end; ;
class virtual equal : unit -> object (’a) method virtual eq : ’a -> bool end

class c1 (x0:int) =

object(self)

inherit equal ()
val x = x0

method get x = x

method eq o = (self#get x = o#get x)

end; ;
class c1 :

int ->

object (’a) val x : int method eq : ’a -> bool method get_x : int end

Subtyping and Inclusion Polymorphism 467

class c2 (x0:int) (y0:int) =

object(self)

inherit equal ()
inherit c1 x0

val y = y0

method get y = y

method eq o = (self#get x = o#get x) && (self#get y = o#get y)

end; ;
class c2 :

int ->

int ->

object (’a)

val x : int

val y : int

method eq : ’a -> bool

method get_x : int

method get_y : int

end

We cannot force the type of an instance of c2 to be the type of instances of c1:
let a = ((new c2 0 0) :> c1) ; ;
Characters 11-21:

This expression cannot be coerced to type

c1 = < eq : c1 -> bool; get_x : int >;

it has type c2 = < eq : c2 -> bool; get_x : int; get_y : int >

but is here used with type < eq : c1 -> bool; get_x : int; get_y : int >

Type c2 = < eq : c2 -> bool; get_x : int; get_y : int >

is not compatible with type c1 = < eq : c1 -> bool; get_x : int >

Only the first object type has a method get_y

Types c1 and c2 are incompatible because the type of eq in c2 is not a subtype of the
type of eq in c1. To see why this is true, let o1 be an instance of c1. If o21 were an
instance of c2 subtyped to c1, then since o21 and o1 would both be of type c1 the type
of eq in c2 would be a subtype of the type of eq in c1 and the expression o21#eq(o1)
would be correctly typed. But at run-time, since o21 is an instance of class c2, the
method eq of c2 would be triggered. But this method would try to send the message
get y to o1, which does not have such a method; our type system would have failed!

For our type system to fulfill its role, the subtyping relation must be defined less näively.
We do this in the next paragraph.

Formalization

Subtyping between objects. Let t =< m1 : τ1; . . . mn : τn > and t′ =< m1 : σ1 ;
. . . ; mn : σn;mn+1 : σn+1; etc . . . > we shall say that t′ is a subtype of t, denoted by
t′ ≤ t, if and only if σi ≤ τi for i ∈ {1, . . . , n}.

468 Chapter 15 : Object-Oriented Programming

Function call. If f : t → s, and if a : t′ and t′ ≤ t then (fa) is well typed, and has
type s.

Intuitively, a function f expecting an argument of type t may safely receive ‘an argu-
ment of a subtype t′ of t.

Subtyping of functional types. Type t′ → s′ is a subtype of t → s, denoted by
t′ → s′ ≤ t → s, if and only if

s′ ≤ s and t ≤ t′

The relation s′ ≤ s is called covariance, and the relation t ≤ t′ is called contravari-
ance. Although surprising at first, this relation between functional types can easily be
justified in the context of object-oriented programs with dynamic binding.

Let us assume that two classes c1 and c2 both have a method m. Method m has type
t1 → s1 in c1, and type t2 → s2 in c2. For the sake of readability, let us denote
by m(1) the method m of c1 and m(2) that of c2. Finally, let us assume c2 ≤ c1,
i.e. t2 → s2 ≤ t1 → s1, and let us look at a simple example of the covariance and
contravariance relations.

Let g : s1 → α, and h (o : c1) (x : t1) = g(o#m(x))

Covariance: function h expects an object of type c1 as its first argument. Since
c2 ≤ c1, it is legal to pass it an object of type c2. Then the method invoked
by o#m(x) is m(2), which returns a value of type s2. Since this value is passed
to g which expects an argument of type s1, clearly we must have s2 ≤ s1.

Contravariance: for its second argument, h requires a value of type t1. If, as above,
we give h a first argument of type c2, then method m(2) is invoked. Since it
expects an argument of type t2, t1 ≤ t2.

Inclusion Polymorphism

By “polymorphism” we mean the ability to apply a function to arguments of any
“shape” (type), or to send a message to objects of various shapes.

In the context of the functional/imperative kernel of the language, we have already seen
parameterized polymorphism, which enables you to apply a function to arguments of
arbitrary type. The polymorphic parameters of the function have types containing
type variables. A polymorphic function will execute the same code for various types of
parameters. To this end, it will not depend on the structure of these arguments.

The subtyping relation, used in conjunction with delayed binding, introduces a new
kind of polymorphism for methods: inclusion polymorphism. It lets the same message
be sent to instances of different types, provided they have been constrained to the
same subtype. Let us construct a list of points where some of them are in fact colored
points treated as points. Sending the same message to all of them triggers the execution

Functional Style 469

of different methods, depending on the class of the receiving instance. This is called
inclusion polymorphism because it allows messages from class c, to be sent to any
instance of class sc that is a subtype of c (sc :> c) that has been constrained to c.
Thus we obtain a polymorphic message passing for all classes of the tree of subtypes
of c. Contrary to parameterized polymorphism, the code which is executed may be
different for these instances.

Thanks to parameterized classes, both forms of polymorphism can be used together.

Equality between Objects

Now we can explain the somewhat surprising behavior of structural equality between
objects which was presented on page 441. Two objects are structurally equal when
they are physically the same.
let p1 = new point (1,2); ;
val p1 : point = <obj>

p1 = new point (1,2); ;
- : bool = false

p1 = p1; ;
- : bool = true

This comes from the subtyping relation. Indeed we can try to compare an instance o2
of a class sc that is a subtype of c, constrained to c, with an instance of o1 from class
c. If the fields which are common to these two instances are equal, then these objects
might be considered as equal. This is wrong from a structural point of view because
o2 could have additional fields. Therefore Objective Caml considers that two objects
are structurally different when they are physically different.

let pc1 = new colored point (1,2) "red"; ;
val pc1 : colored_point = <obj>

let q = (pc1 :> point); ;
val q : point = <obj>

p1 = q; ;
- : bool = false

This restrictive view of equality guarantees that an answer true is not wrong, but an
answer false guarantees nothing.

Functional Style

Object-oriented programming usually has an imperative style. A message is sent to an
object that physically modifies its internal state (i.e. its data fields). It is also possible to
use a functional approach to object-oriented programming: sending a message returns
a new object.

470 Chapter 15 : Object-Oriented Programming

Object Copy

Objective Caml provides a special syntactic construct for returning a copy of an object
self with some of the fields modified.

Syntax : {< name1=expr1;. . . ; namen=exprn >}

This way we can define functional points where methods for relative moves have no
side effect, but instead return a new point.
class f point p =

object

inherit point p

method f rmoveto x (dx) = {< x = x + dx >}

method f rmoveto y (dy) = {< y = y + dy >}

end ; ;
class f_point :

int * int ->

object (’a)

val mutable x : int

val mutable y : int

method distance : unit -> float

method f_rmoveto_x : int -> ’a

method f_rmoveto_y : int -> ’a

method get_x : int

method get_y : int

method moveto : int * int -> unit

method print : unit -> unit

method rmoveto : int * int -> unit

method to_string : unit -> string

end

With the new methods, movement no longer modifies the receiving object; instead a
new object is returned that reflects the movement.
let p = new f point (1,1) ; ;
val p : f_point = <obj>

print string (p#to string ()) ; ;
(1, 1)- : unit = ()

let q = p#f rmoveto x 2 ; ;
val q : f_point = <obj>

print string (p#to string ()) ; ;
(1, 1)- : unit = ()

print string (q#to string ()) ; ;
(3, 1)- : unit = ()

Since these methods construct an object, it is possible to send a message directly to
the result of the method f rmoveto x.
print string ((p#f rmoveto x 3)#to string ()) ; ;
(4, 1)- : unit = ()

Functional Style 471

The result type of the methods f rmoveto x and f rmoveto y is the type of the instance
of the defined class, as shown by the ’a in the type of f rmoveto x.
class f colored point (xc, yc) (c:string) =

object

inherit f point(xc, yc)

val color = c

method get c = color

end ; ;
class f_colored_point :

int * int ->

string ->

object (’a)

val color : string

val mutable x : int

val mutable y : int

method distance : unit -> float

method f_rmoveto_x : int -> ’a

method f_rmoveto_y : int -> ’a

method get_c : string

method get_x : int

method get_y : int

method moveto : int * int -> unit

method print : unit -> unit

method rmoveto : int * int -> unit

method to_string : unit -> string

end

Sending f rmoveto x to an instance of f colored point returns a new instance of
f colored point.
let fpc = new f colored point (2,3) "blue" ; ;
val fpc : f_colored_point = <obj>

let fpc2 = fpc#f rmoveto x 4 ; ;
val fpc2 : f_colored_point = <obj>

fpc2#get c; ;
- : string = "blue"

One can also obtain a copy of an arbitrary object, using the the primitive copy from
module Oo:
Oo.copy ; ;
- : (< .. > as ’a) -> ’a = <fun>

let q = Oo.copy p ; ;
val q : f_point = <obj>

print string (p#to string ()) ; ;
(1, 1)- : unit = ()

print string (q#to string ()) ; ;
(1, 1)- : unit = ()

p#moveto(4,5) ; ;
- : unit = ()

print string (p#to string ()) ; ;
(4, 5)- : unit = ()

472 Chapter 15 : Object-Oriented Programming

print string (q#to string ()) ; ;
(1, 1)- : unit = ()

Example: a Class for Lists

A functional method may use the object itself, self, to compute the value to be
returned. Let us illustrate this point by defining a simple hierarchy of classes for rep-
resenting lists of integers.

First we define the abstract class, parameterized by the type of list elements.
class virtual [’a] o list () =

object

method virtual empty : unit → bool

method virtual cons : ’a → ’a o list

method virtual head : ’a
method virtual tail : ’a o list

end; ;

We define the class of non empty lists.
class [’a] o cons (n ,l) =

object (self)

inherit [’a] o list ()
val car = n

val cdr = l

method empty () = false

method cons x = new o cons (x, (self : ’a #o list :> ’a o list))

method head = car

method tail = cdr

end; ;
class [’a] o_cons :

’a * ’a o_list ->

object

val car : ’a

val cdr : ’a o_list

method cons : ’a -> ’a o_list

method empty : unit -> bool

method head : ’a

method tail : ’a o_list

end

We should note that method cons returns a new instance of ’a o cons. To this effect,
the type of self is constrained to ’a #o list, then subtyped to ’a o list. With-
out subtyping, we would obtain an open type (’a #o list), which appears in the
type of the methods, and is strictly forbidden (see page 456). Without the additional
constraint, the type of self could not be a subtype of ’a o list.

This way we obtain the expected type for method cons. So now we know the trick and
we define the class of empty lists.

Other Aspects of the Object Extension 473

exception EmptyList ; ;
class [’a] o nil () =

object(self)

inherit [’a] o list ()
method empty () = true

method cons x = new o cons (x, (self : ’a #o list :> ’a o list))

method head = raise EmptyList

method tail = raise EmptyList

end ; ;

First of all we build an instance of the empty list, and then a list of integers.
let i = new o nil () ; ;
val i : ’_a o_nil = <obj>

let l = new o cons (3,i); ;
val l : int o_list = <obj>

l#head; ;
- : int = 3

l#tail#empty () ; ;
- : bool = true

The last expression sends the message tail to the list containing the integer 3, which
triggers the method tail from the class ’a o cons. The message empty(), which
returns true, is sent to this result. You can see that the method which has been
executed is empty from the class ’a o nil.

Other Aspects of the Object Extension

In this section we describe the declaration of “object” types and local declarations in
classes. The latter can be used for class variables by making constructors that reference
the local environment.

Interfaces

Class interfaces are generally infered by the type system, but they can also be defined
by a type declaration. Only public methods appear in this type.

Syntax :

class type name =
object

...
val namei : typei

...
method namej : typej

...
end

474 Chapter 15 : Object-Oriented Programming

Thus we can define the class point interface:
class type interf point =

object

method get x : int

method get y : int

method moveto : (int * int) → unit

method rmoveto : (int * int) → unit

method to string : unit → string

method distance : unit → float

end ; ;

This declaration is useful because the defined type can be used as a type constraint.
let seg length (p1:interf point) (p2:interf point) =

let x = float of int (p2#get x - p1#get x)

and y = float of int (p2#get y - p1#get y) in

sqrt ((x*.x) +. (y*.y)) ; ;
val seg_length : interf_point -> interf_point -> float = <fun>

Interfaces can only mask fields of instance variables and private methods. They cannot
mask abstract or public methods.

This is a restriction in their use, as shown by the following example:
let p = (new point m1 (2,3) : interf point); ;
Characters 11-29:

This expression has type

point_m1 =

< distance : unit -> float; get_x : int; get_y : int;

moveto : int * int -> unit; rmoveto : int * int -> unit;

to_string : unit -> string; undo : unit -> unit >

but is here used with type

interf_point =

< distance : unit -> float; get_x : int; get_y : int;

moveto : int * int -> unit; rmoveto : int * int -> unit;

to_string : unit -> string >

Only the first object type has a method undo

Nevertheless, interfaces may use inheritance. Interfaces are especially useful in com-
bination with modules: it is possible to build the signature of a module using object
types, while only making available the description of class interfaces.

Local Declarations in Classes

A class declaration produces a type and a constructor. In order to make this chapter
easier to read, we have been presenting constructors as functions without an environ-
ment. In fact, it is possible to define constructors which do not need initial values to
create an instance: that means that they are no longer functional. Furthermore one

Other Aspects of the Object Extension 475

can use local declarations in the class. Local variables captured by the constructor are
shared and can be treated as class variables.

Constant Constructors

A class declaration does not need to use initial values passed to the constructor. For
example, in the following class:
class example1 =

object

method print () = ()
end ; ;

class example1 : object method print : unit -> unit end

let p = new example1 ; ;
val p : example1 = <obj>

The instance constructor is constant. The allocation does not require an initial value
for the instance variables. As a rule, it is better to use an initial value such as (), in
order to preserve the functional nature of the constructor.

Local Declarations for Constructors

A local declaration can be written directly with abstraction.
class example2 =

fun a →
object

val mutable r = a

method get r = r

method plus x = r <- r + x

end; ;
class example2 :

int ->

object val mutable r : int method get_r : int method plus : int -> unit end

Here it is easier to see the functional nature of the constructor. The constructor is a
closure which may have an environment that binds free variables to an environment
of declarations. The syntax for class declarations allows local declarations in this func-
tional expression.

Class Variables

Class variables are declarations which are known at class level and therefore shared
by all instances of the class. Usually these class variables can be used outside of any
instance creation. In Objective Caml, thanks to the functional nature of a constructor
with a non-empty environment, we can make these values (particularly the modifiable
ones) shared by all instances of a class.

We illustrate this facility with the following example, which allows us to keep a register
of the number of instances of a class. To do this we define a parameterized abstract
class ’a om.

476 Chapter 15 : Object-Oriented Programming

class virtual [’a] om =

object

method finalize () = ()
method virtual destroy : unit → unit

method virtual to string : unit → string

method virtual all : ’a list

end; ;

Then we declare class ’a lo, whose constructor contains local declarations for n, which
associates a unique number with each instance, and for l, which contains the list of
pairs (number, instance) of still active instances.
class [’a] lo =

let l = ref []
and n = ref 0 in

fun s →
object(self:’b)

inherit [’a] om

val mutable num = 0

val name = s

method to string () = s

method print () = print string s

method print all () =

List.iter (function (a,b) →
Printf.printf "(%d,%s) " a (b#to string ())) !l

method destroy () = self#finalize () ;
l:= List.filter (function (a,b) → a <> num) !l; ()

method all = List.map snd !l

initializer incr n; num <- !n; l:= (num, (self :> ’a om)) :: !l ; ()
end; ;

class [’a] lo :

string ->

object

constraint ’a = ’a om

val name : string

val mutable num : int

method all : ’a list

method destroy : unit -> unit

method finalize : unit -> unit

method print : unit -> unit

method print_all : unit -> unit

method to_string : unit -> string

end

At each creation of an instance of class lo, the initializer increments the reference n
and adds the pair (number, self) to the list l. Methods print and print all display
respectively the receiving instance and all the instances containing in l.

let m1 = new lo "start"; ;
val m1 : (’a om as ’a) lo = <obj>

Exercises 477

let m2 = new lo "between"; ;
val m2 : (’a om as ’a) lo = <obj>

let m3 = new lo "end"; ;
val m3 : (’a om as ’a) lo = <obj>

m2#print all () ; ;
(3,end) (2,between) (1,start) - : unit = ()

m2#all; ;
- : (’a om as ’a) list = [<obj>; <obj>; <obj>]

Method destroy removes an instance from the list of instances, and calls method
finalize to perform a last action on this instance before it disappears from the list.
Method all returns all the instances of a class created with new.
m2#destroy () ; ;
- : unit = ()

m1#print all () ; ;
(3,end) (1,start) - : unit = ()

m3#all; ;
- : (’a om as ’a) list = [<obj>; <obj>]

We should note that instances of subclasses are also kept in this list. Nothing prevents
you from using the same technique by specializing some of these subclasses. On the
other hand, the instances obtained by a copy (Oo.copy or {< >}) are not tracked.

Exercises

Stacks as Objects

Let us reconsider the stacks example, this time in object oriented style.

1. Define a class intstack using Objective Caml’s lists, implementing methods
push, pop, top and size.

2. Create an instance containing 3 and 4 as stack elements.

3. Define a new class stack containing elements answering the method
print : unit -> unit.

4. Define a parameterized class [’a] stack, using the same methods.

5. Compare the different classes of stacks.

Delayed Binding

This exercise illustrates how delayed binding can be used in a setting other than sub-
typing.

Given the program below:

478 Chapter 15 : Object-Oriented Programming

1. Draw the relations between classes.

2. Draw the different messages.

3. Assuming you are in character mode without echo, what does the program dis-
play?

exception CrLf; ;
class chain read (m) =

object (self)

val msg = m

val mutable res = ""

method char read =

let c = input char stdin in

if (c != ’\n’) then begin

output char stdout c; flush stdout

end;
String.make 1 c

method private chain read aux =

while true do

let s = self#char read in

if s = "\n" then raise CrLf

else res <- res ^ s;
done

method private chain read aux2 =

let s = self#lire char in

if s = "\n" then raise CrLf

else begin res <- res ^ s; self#chain read aux2 end

method chain read =

try

self#chain read aux

with End of file → ()
| CrLf → ()

method input = res <- ""; print string msg; flush stdout;
self#chain read

method get = res

end; ;

class mdp read (m) =

object (self)

inherit chain read m

method char read = let c = input char stdin in

if (c != ’\n’) then begin

output char stdout ’*’; flush stdout

end;

Exercises 479

let s = " " in s.[0] <- c; s

end; ;

let login = new chain read("Login : "); ;
let passwd = new mdp read("Passwd : "); ;
login#input; ;
passwd#input; ;
print string (login#get); ;print newline () ; ;
print string (passwd#get); ;print newline () ; ;

Abstract Classes and an Expression Evaluator

This exercise illustrates code factorization with abstract classes.

All constructed arithmetic expressions are instances of a subclass of the abstract class
expr ar.

1. Define an abstract class expr ar for arithmetic expressions with two abstract
methods: eval of type float, and print of type unit, which respectively eval-
uates and displays an arithmetic expression.

2. Define a concrete class constant, a subclass of expr ar.

3. Define an abstract subclass bin op of expr ar implementing methods eval and
print using two new abstract methods oper, of type (float * float) -> float

(used by eval) and symbol of type string (used by print).

4. Define concrete classes add and mul as subclasses of bin op that implement the
methods oper and symbol.

5. Draw the inheritance tree.

6. Write a function that takes a sequence of Genlex.token, and constructs an object
of type expr ar.

7. Test this program by reading the standard input using the generic lexical analyzer
Genlex. You can enter the expressions in post-fix form.

The Game of Life and Objects.

Define the following two classes:

• cell : for the cells of the world, with the method isAlive : unit -> bool

• world : with an array of cell, and the messages:
display : unit -> unit
nextGen : unit -> unit
setCell : int * int -> cell -> unit
getCell : int * int -> cell

1. Write the class cell.

480 Chapter 15 : Object-Oriented Programming

2. Write an abstract class absWorld that implements the abstract methods display,
getCell and setCell. Leave the method nextGen abstract.

3. Write the class world, a subclass of absWorld, that implements the method
nextGen according to the growth rules.

4. Write the main program which creates an empty world, adds some cells, and
then enters an interactive loop that iterates displaying the world, waiting for an
interaction and computing the next generation.

Summary

This chapter described the object extension of the language Objective Caml. The
class organization is an alternative to modules that, thanks to inheritance and delayed
binding, allows object modeling of an application, as well as reusability and adaptability
of programs. This extension is integrated with the type system of Objective Caml and
adds the notion of subtype, which allows instances to be used as a subtype in any place
where a value of this type is expected. By combining subtyping and delayed binding,
we obtain inclusion polymorphism, which, for instance, allows us to build homogeneous
lists from the point of view of types, albeit non-homogeneous with regard to behavior.

To Learn More

There are a huge number of publications on object-oriented programming. Each lan-
guage implements a different model.

A general introduction (still topical for the first part) is “Langages à Objets ” ([MNC+91])
which explains the object-oriented approach. A more specialized book, “Langages et
modèles à objets” [DEMN98], gives the examples in this domain.

For modeling, the book “Design patterns” ([GHJV95]) gives a catalogue of design
patterns that show how reusability is possible.

The reference site for the UML notation is Rational:

Link: http://www.rational.com/uml/resources

For functional languages with an object extension, we mention the “Lisp” objects,
coming from the SMALLTALK world, and CLOS (meaning Common Lisp Object Sys-
tem), as well as a number of Scheme’s implementing generic functions similar to those
in CLOS.

Other proposals for object-oriented languages have been made for statically typed func-
tional languages, such as Haskell, a pure functional language which has parameterized
and ad hoc polymorphism for overloading.

The paper [RV98] presents the theoretical aspects of the object extension of Objective
Caml.

To Learn More 481

To learn more on the static object typing in Objective Caml, you can look at several
lectures available online.

Lectures by Maŕıa-Virginia Aponte:

Link: http://tulipe.cnam.fr/personne/aponte/ocaml.html

A short presentation of objects by Didier Rémy:

Link: http://pauillac.inria.fr/˜remy/objectdemo.html

Lectures by Didier Rémy at Magistère MMFAI:

Link: http://pauillac.inria.fr/˜remy/classes/magistere/

Lectures by Roberto Di Cosmo at Magistère MMFAI:

Link: http://www.dmi.ens.fr/users/dicosmo/CourseNotes/OO/

482 Chapter 15 : Object-Oriented Programming

