
16
Comparison of the

Models of
Organisation

Chapters 14 and 15 respectively presented two models of application organisation: The
functional/modular model and the object model. These two models address, each in
its own way, the needs of application development:

• logical organisation of a program: module or class;

• separate compilation: simple module;

• abstract data types: module (abstract type) or object;

• reuse of components: functors/sharing of types with parametric polymorphism
or inheritance/subtyping with parameterized classes;

• modifiability of components: late binding (object).

The development of a modular application begins by dividing it into logical units:
modules. This is followed by the actualization of their specification by writing their
signature, and finally by implementation. During the implementation of a module, it
may be necessary to modify its signature or that of its parameters; it is then necessary
to modify their sources. This is unsatisfactory if the same module is already used by
another application. Nevertheless, this process offers a strict and reassuring framework
for the programmer.

In the object model, the analysis of a problem results in the description of the relations
between classes. If, later on, a class does not provide the required functionality, it is
always possible to extend it by subclassing. This process permits the reuse of large
hierarchies of classes without modifying their sources, and thus not modifying the
behavior of an application that uses them, either. Unfortunately, this technique leads
to code bloat, and poses difficulties of duplication with multiple inheritance.

Many problems necessitate recursive data types and operations which manipulate val-
ues of these types. It often happens that the problem evolves, sometimes in the course
of implementation, sometimes during maintenance, requiring an extension of the types
and operations. Neither of these two models permits extension in both ways. In the

484 Chapter 16 : Comparison of the Models of Organisation

functional/modular model, types are not extensible, but one can create new functions
(operations) on the types. In the object model, one can extend the objects, but not
the methods (by creating a new subclass on an abstract class which implements its
methods.) In this respect, the two models are duals.

The advantage of uniting these two models in the same language is to be able to choose
the most appropriate model for the resolution of the problem in question, and to mix
them in order to overcome the limitations of each model.

Plan of the Chapter

The first section compares the functional/modular model and the object model. This
comparison brings out the particular features of each model, in order to show how
many of them may be translated by hand into the other model. One can thus simulate
inheritance with modules and use classes to implement simple modules. The limitations
of each model are then reviewed. The second section is concerned with the problem of
extensibility for data structures and methods, and proposes a solution which mixes the
two models. The third section describes some other combinations of the two models by
the use of abstract module types for objects.

Comparison of Modules and Objects

The main difference between modular programming and object programming in Objec-
tive Caml comes from the type system. In effect, programming with modules remains
within the ML type system (i.e. parametric polymorphism code is executed for different
types of parameter), while programming with objects entails an ad hoc polymorphism
(in which the sending of a message to an object triggers the application of different
pieces of code). This is particularly clear with subtyping. This extension of the ML
type system can not be simulated in pure ML. It will always be impossible to con-
struct heterogeneous lists without breaking the type system.

Modular programming and object programming are two safe (thanks to typing) ap-
proaches to the logical organisation of a program, permitting the reusability and the
modifiability of software components. Programming with objects in Objective Caml
allows parametric polymorphism (parameterized classes) and inclusion/subtype poly-
morphism (sending of messages) thanks to late binding and subtyping, with restrictions
due to equality, facilitating incremental programming. Modular programming allows
one to restrict parametric polymorphism and use immediate binding, which can be
useful for conserving efficiency of execution.

The modular programming model permits the easy extension of functions on non-
extensible recursive data types. If one wishes to add a case in a variant type, it will be
necessary to modify a large part of the sources.
The object model of programming defines a set of recursive data types using classes.
One interprets a class as a case of the data type.

Comparison of Modules and Objects 485

Efficiency of Execution

Late binding corresponds to an indirection in the method table (see page 447). Just
as the access to an instance variable from outside the class goes through a message
dispatch, this accumulation of indirections can prove to be costly.

To show this loss of efficiency, we construct the following class hierarchy:
class virtual test () =

object

method virtual sum : unit → int

method virtual sum2 : unit → int

end; ;
class a x =

object(self)

inherit test ()
val a = x

method a = a

method sum () = a

method sum2 () = self#a

end; ;
class b x y =

object(self)

inherit a x as super

val b = y

method b = b

method sum () = b + a

method sum2 () = self#b + super#sum2 ()
end; ;

Now, we compare the execution time, on one hand of the dispatch of messages sum and
sum2 to an instance of class b, and on the other hand of a call to the following function
f.
let f a b = a + b ; ;
let iter g a n = for i = 1 to n do ignore(g a) done ; g a ; ;
let go i j = match i with

1 → iter (fun x → x#sum ()) (new b 1 2) j

| 2 → iter (fun x → x#sum2 ()) (new b 1 2) j

| 3 → iter (fun x → f 1 x) 2 j ; ;

go (int of string (Sys.argv.(1))) (int of string (Sys.argv.(2))) ; ;

For 10 million iterations, we get the following results:

bytecode native
case 1 07,5 s 0,6 s
case 2 15,0 s 2,3 s
case 3 06,0 s 0,3 s

486 Chapter 16 : Comparison of the Models of Organisation

This example has been constructed in order to show that late binding has a cost relative
to the standard static binding. This cost depends on the quantity of calculation relative
to the number of message dispatches in a function. The use of the native compiler
reduces the calculation component without changing the indirection component of the
test. We can see in case 2 that the multiple indirections at the dispatch of message
sum2 have an “incompressible” cost.

Example: Graphical Interface

The AWI graphical library (see page 377) was designed using the functional/imperative
core of the language. It is very easy to adapt it into module form. Each component
becomes an independent module, thus permitting a harmonization of function names.
To add a component, it is necessary to know the concrete type of its components. It
is up to the new module to modify the fields necessary to describe its appearance and
its behaviors.

The library can also be rewritten as an object. For this we construct the hierarchy of
classes shown in figure 16.1.

panelchoice

button

textfield

1
component

containerlabel

option

graphics

event

Figure 16.1: Class hierarchy for AWI.

It is easier to add new components, thanks to inheritance, than when using modules;
however, the absence of overloading still requires options to be encoded as method
parameters. The use of the subtyping relation makes it easy to construct a list of the
constituents of a container. Deferred linking selects the methods appropriate to the
component. The interest of the object model also comes from the possibility of extend-
ing or modifying the graphics context, and the other types that are used, again thanks
to inheritance. This is why the principal graphics libraries are organised according to
the object model.

Comparison of Modules and Objects 487

Translation of Modules into Classes

A simple module which only declares one type and does not have any type-independent
polymorphic functions can be translated into a class. According to the nature of the
type used (record type or variant type) one translates the module into a class in a
different way.

Type Declarations

Record type. A record type can be written directly in the form of a class in which
every field of the record type becomes an instance variable.

Variant type. A variant type translates into many classes, using the conceptual
model of a “composite”. An abstract class describes the operations (functions) on
this type. Every branch of the variant type thus becomes a subclass of the abstract
class, and implements the abstract methods for its branch. We no longer have pattern
matching but instead choose the method specific to the branch.

Parameterized types. Parameterized types are implemented by parameterized classes.

Abstract types. We can consider a class as an abstract type. At no time is the
internal state of the class visible outside its hierarchy. Nevertheless, nothing prevents
us from defining a subclass in order to access the variables of the instances of a class.

Mutually recursive types. The declarations of mutually recursive types are trans-
lated into declarations of mutually recursive classes.

Function Declarations

Those functions with parameters dependent on the module type, t, are translatable
into methods. Functions in which t does not appear may be declared private inasmuch
as their membership of the module is not directly linked to the type t. This has the
added advantage that there is no problem if type variables appear in the type of the
parameters. We are left with the problem of functions in which one parameter is of
type t and another is of type ’a. These functions are very rare in the modules of the
standard library. We can identify “peculiar” modules like Marshal or Printf which
have non-standard typing, and modules (that operate) on linear structures like List.
For this last, the function fold left, of type (’a -> ’b -> ’a) -> ’a -> ’b list

-> ’a is difficult to translate, especially in a method of the class [’b] list because
the type variable ’a is free and may not appear in the type of the method. Rather than
adding a type parameter to the list class, it is preferable to break these functions out
into new classes, parameterized by two type variables and having a list field.

488 Chapter 16 : Comparison of the Models of Organisation

Binary methods. Binary methods do not pose any problem, outside subtyping.

Other declarations. Declarations of non-functional values. We can accept the dec-
laration of non-functional values outside classes. This is also true for exceptions.

Example: Lists with Iterator. We are trying to translate a module with the fol-
lowing signature LIST into an object.

module type LIST = sig

type ’a list = C0 | C1 of ’a * ’a list

val add : ’a list → ’a → ’a list

val length : ’a list → int

val hd : ’a list → ’a
val tl : ’a list → ’a list

val append : ’a list → ’a list → ’a list

val fold left : (’a → ’b → ’a) → ’a → ’b list → ’a
end ; ;

First of all, we declare the abstract class ’a list corresponding to the definition of
the type.
class virtual [’a] list () =

object (self : ’b)
method virtual add : ’a → ’a list

method virtual empty : unit → bool

method virtual hd : ’a
method virtual tl : ’a list

method virtual length : unit → int

method virtual append : ’a list → ’a list

end ; ;

Then we define the two subclasses c1 list and c0 list for each constituent of the
variant type. Each of these classes should define the methods of the ancestor abstract
class
class [’a] c1 list (t, q) =

object (self)

inherit [’a] list () as super

val t = t

val q = q

method add x = new c1 list (x, (self : ’a #list :> ’a list))

method empty () = false

method length () = 1 + q#length ()
method hd = t

method tl = q

method append l = new c1 list (t,q#append l)

end ; ;
class [’a] c0 list () =

object (self)

Comparison of Modules and Objects 489

inherit [’a] list () as super

method add x = new c1 list (x, (self : ’a #list :> ’a list))

method empty () = true

method length () = 0

method hd = failwith "c0_list : hd"

method tl = failwith "c0_list : tl"

method append l = l

end ; ;
let l = new c1 list (4, new c1 list (7, new c0 list ())) ; ;
val l : int list = <obj>

The function LIST.fold left has not been incorporated into the list class to avoid
introducing a new type parameter. We prefer to define the class fold left to imple-
ment this method. For this, we use a functional instance variable (f).
class virtual [’a,’b] fold left () =

object(self)

method virtual f : ’a → ’b → ’a
method iter r (l : ’b list) =

if l#empty () then r else self#iter (self#f r (l#hd)) (l#tl)

end ; ;
class [’a,’b] gen fl f =

object

inherit [’a,’b] fold left ()
method f = f

end ; ;

Thus we construct an instance of the class gen fl for addition:
let afl = new gen fl (+) ; ;
val afl : (int, int) gen_fl = <obj>

afl#iter 0 l ; ;
- : int = 11

Simulation of Inheritance with Modules

Thanks to the relation of inheritance between classes, we can retrieve in a subclass the
collection of variable declarations and methods of the ancestor class. We can simulate
this relation by using modules. The subclass which inherits is transformed into a pa-
rameterized module, of which the parameter is the ancestor class. Multiple inheritance
increases the number of parameters of the module. We revisit the classic example of
points and colored points, described in chapter 15, to translate it into modules.

The class point becomes the module Point with the following signature POINT.
module type POINT =

sig

type point

val new point : (int * int) → point

val get x : point → int

490 Chapter 16 : Comparison of the Models of Organisation

val get y : point → int

val moveto : point → (int * int) → unit

val rmoveto : point → (int * int) → unit

val display : point → unit

val distance : point → float

end ; ;

The class colored point is transformed into a parameterized module ColoredPoint
which has the signature POINT as its parameter.
module ColoredPoint = functor (P : POINT) →

struct

type colored point = {p:P.point;c:string}
let new colored point p c = {p=P.new point p;c=c}
let get c self = self.c

(* begin *)

let get x self = let super = self.p in P.get x super

let get y self = let super = self.p in P.get y super

let moveto self = let super = self.p in P.moveto super

let rmoveto self = let super = self.p in P.rmoveto super

let display self = let super = self.p in P.display super

let distance self = let super = self.p in P.distance super

(* end *)

let display self =

let super = self.p in P.display super; print string ("has color "^ self.c)

end ; ;

The burden of “inherited” declarations can be lightened by an automatic translation
procedure, or an extension of the language. Recursive method declarations can be
written with a single let rec ... and. Multiple inheritance leads to functors with
many parameters. The cost of redefinition is not greater than that of late binding.

Late binding is not implemented in this simulation. To achieve it, it is necessary to
define a record in which each field corresponds to the type of its functions/methods.

Limitations of each Model

The functional/modular module offers a reassuring but rigid framework for the modi-
fiability of code. Objective Caml’s object model suffers from “double vision” of classes:
structuring and type, implying the absence of overloading and the impossibility of
imposing type constraints from an ancestor type on a descendant type.

Modules

The principal limitations of the functional/modular model arise from the difficulty of
extending types. Although abstract types allow us to get away from the concrete rep-
resentation of a type, their use in parameterized modules requires that type equalities
between modules be indicated by hand, complicating the writing of signatures.

Comparison of Modules and Objects 491

Recursive dependencies. The dependence graph of the modules in an application
is a directed acyclic graph (DAG). This implies on the one hand that there are no
types that are mutually recursive between two modules, and on the other prevents the
declaration of mutually recursive values.

Difficulties in writing signatures. One of the attractions of type inference is that
it is not necessary to specify the types of function parameters. The specification of
signatures sacrifices this convenience. It becomes necessary to specify the types of the
declarations of the signature “by hand.” One can use the -i option of the compiler
ocamlc to display the type of all the global declarations in a .ml file and use this
information to construct the signature of a module. In this case, we lose the “software
engineering” discipline which consists of specifying the module before implementing it.
In addition, if the signature and module undergo large changes, we will have to go back
to editing the signature. Parameterized modules need signatures for their parameters
and those should also be written by hand. Finally if we associate a functional signature
with a parameterized module, it is impossible to recove the signature resulting from the
application of the functor. This obliges us to mostly write non-functional signatures,
leaving it until later to assemble them to construct a functional signature.

Import and export of modules. The importation of the declarations of a simple
module is achieved either by dot notation (Module.name) or directory by the name
of a declaration (name) if the model has been opened (open Module). The declaration
of the interface of the imported module is not directly exportable at the level of the
module in process of being defined. It has access to these declarations, but they are not
considered as declarations of the module. In order to do this it is necessary to declare,
in the same way as the simulation of inheritance, imported values. The same is true for
parameterized modules. The declarations of the module parameters are not considered
as declarations of the current module.

Objects

The principle limitations of the Objective Caml object model arise from typing.

• no methods containing parameters of free type;

• difficulty of escaping from the type of a class in one of its methods;

• absence of type constraint from the ancestor type on its descendant;

• no overloading;

The most disconcerting point when you start with the object extension of Objective
Caml is the impossibility of constructing methods containing a parameterized type in
which the type parameter is free. The declaration of a class can be seen as the definition
of a new type, and hence arises the general rule forbidding the presence of variables
with free type in the declaration of a type. For this reason, parameterized classes are
indispensable in the Objective Caml object model because they permit the linking of
their type variables.

492 Chapter 16 : Comparison of the Models of Organisation

Absence of overloading. The Objective Caml object model does not allow method
overloading. As the type of an object corresponds to types of its methods, the fact of
possessing many methods with the same name but different types would result in
numerous ambiguities, due to parametric polymorphism, which the system could only
resolve dynamically. This would be contradictory to the vision of totally static typing.
We take a class example which has two message methods, the first having an integer
parameter, and the second a float parameter. Let e be an instance of this class and f
be the following function:
let f x a = x#message a ; ;

The calls f e 1 et f e 1.1 cannot be statically resolved because there is no information
about the class example in the code of the function f.

An immediate consequence of this absence is the uniqueness of instance constructors.
The declaration of a class indicates the parameters to supply to the creation function.
This constructor is unique.

Initialization. The initialization of instance variables declared in a class can be
problematic when it should be calculated based on the values passed to the constructor.

Equality between instances. The only equality which applies to objects is physical
equality. Structural equality always returns false when it is applied to two physically
different objects. This can be surprising inasmuch as two instances of the same class
share the same method table. One can imagine a physical test on the method table and
a structural test on the values (val) of objects. These are the implementation choices
of the linear pattern-matching style.

Class hierarchy. There is no class hierarchy in the language distribution. In fact
the collection of libraries are supplied in the form of simple or parameterized modules.
This demonstrates that the object extension of the language is still stabilizing, and
makes little case for its extensive use.

Extending Components

We call a collection of data and methods on the data a component. In the func-
tional/modular model, a component consists of the definition of a type and some func-
tions which manipulate the type. Similarly a component in the object model consists
of a hierarchy of classes, inheriting from one (single) class and therefore having all of
its behaviors. The problem of the extensibility of components consists of wanting on
the one hand to extend the behaviors and on the other to extend the data operated on,
and all this without modifying the initial program sources. For example a component
image can be either a rectangle or a circle which one can draw or move.

Extending Components 493

rectangle circle group
draw X X
move X X

grow

We might wish to extend the image component with the method grow and create
groups of images. The behavior of the two models differs depending on the direction
of the extension: data or methods. First we define, in each model, the common part of
the image component, and then we try to extend it.

In the Functional Model

We define the type image as a variant type which contains two cases. The methods
take a parameter of type image and carry out the required action.
type image = Rect of float | Circle of float ; ;
let draw = function Rect r → ... | Circle c → ... ; ;
let move = ... ; ;

Afterwards, we could encapsulate these global declarations in a simple module.

Extension of Methods

The extension of the methods depends on the representation of the type image in the
module. If this type is abstract, it is no longer possible to extend the methods. In the
case where the type remains concrete, it is easy to add a grow function which changes
the scale of an image by choosing a rectangle or a circle by pattern matching.

Extension of Data Types

The extension of data types cannot be achieved with the type image. In fact Objective
Caml types are not extensible, except in the case of the type exn which represents
exceptions. It is not possible to extend data while keeping the same type, therefore it
is necessary to define a new type n image in the following way:

type n_image = I of image | G of n_image * n_image;;

Thus we should redefine the methods for this new type, simulating a kind of inheritance.
This becomes complex when there are many extensions.

In the Object Model

We define the classes rectangle and circle, subclasses of the abstract class image
which has two abstract methods, draw and move.

494 Chapter 16 : Comparison of the Models of Organisation

class virtual image () =

object(self:’a)
method virtual draw : unit → unit

method virtual move : float * float → unit

end; ;
class rectangle x y w h =

object

inherit image ()
val mutable x = x

val mutable y = y

val mutable w = w

val mutable h = h

method draw () = Printf.printf "R: (%f,%f) [%f,%f]" x y w h

method move (dx,dy) = x <- x +. dx; y <- y +. dy

end; ;
class circle x y r =

object

val mutable x = x

val mutable y = y

val mutable r = r

method draw () = Printf.printf "C: (%f,%f) [%f]" x y r

method move (dx, dy) = x <- x +. dx; y <- y +. dy

end; ;

The following program constructs a list of images and displays it.
let r = new rectangle 1. 1. 3. 4.; ;
val r : rectangle = <obj>

let c = new circle 1. 1. 4.; ;
val c : circle = <obj>

let l = [(r :> image); (c :> image)]; ;
val l : image list = [<obj>; <obj>]

List.iter (fun x → x#draw () ; print newline ()) l; ;
R: (1.000000,1.000000) [3.000000,4.000000]

C: (1.000000,1.000000) [4.000000]

- : unit = ()

Extension of Data Types

The data are easily extended by adding a subclass of the class image in the following
way.
class group i1 i2 =

object

val i1 = (i1:#image)

val i2 = (i2:#image)

method draw () = i1#draw () ; print newline () ; i2#draw ()
method move p = i1#move p; i2#move p

end; ;

Extending Components 495

We notice now that the “type” image becomes recursive because the class group de-
pends outside inheritance on the class image.
let g = new group (r:>image) (c:>image); ;
val g : group = <obj>

g#draw () ; ;
R: (1.000000,1.000000) [3.000000,4.000000]

C: (1.000000,1.000000) [4.000000]- : unit = ()

Extension of Methods

We define an abstract subclass of image which contains a new method.
class virtual e image () =

object

inherit image ()
method virtual surface : unit → float

end; ;

We can define classes e rectangle and e circle which inherit from e image and from
rectangle and circle respectively. We can then work on extended image to use this
new method. There is a remaining difficulty with the class group. This contains two
fields of type image, so even when inheriting from the class e image it will not be
possible to send the grow message to the image fields. It is thus possible to extend the
methods, except in the case of subclasses corresponding to recursive types.

Extension of Data and Methods

To implement extension in both ways, it is necessary to define recursive types in the
for of a parameterized class. We redefine the class group.
class [’a] group i1 i2 =

object

val i1 = (i1:’a)
val i2 = (i2:’a)
method draw () = i1#draw () ; i2#draw ()
method move p = i1#move p; i2#move p

end; ;

We then carry on the same principle for the class e image.
class virtual ext image () =

object

inherit image ()
method virtual surface : unit → float

end; ;
class ext rectangle x y w h =

object

inherit ext image ()
inherit rectangle x y w h

496 Chapter 16 : Comparison of the Models of Organisation

method surface () = w *. h

end; ;
class ext circle x y r=

object

inherit ext image ()
inherit circle x y r

method surface () = 3.14 *. r *.r

end; ;

The extension of the class group thus becomes
class [’a] ext group ei1 ei2 =

object

inherit image ()
inherit [’a] group ei1 ei2

method surface () = ei1#surface () +. ei2#surface ()
end; ;

We get the following program which constructs a list le of the type ext image.
let er = new ext rectangle 1. 1. 2. 4. ; ;
val er : ext_rectangle = <obj>

let ec = new ext circle 1. 1. 8.; ;
val ec : ext_circle = <obj>

let eg = new ext group er ec; ;
val eg : ext_rectangle ext_group = <obj>

let le = [(er:>ext image); (ec :> ext image); (eg :> ext image)]; ;
val le : ext_image list = [<obj>; <obj>; <obj>]

List.map (fun x → x#surface ()) le; ;
- : float list = [8; 200.96; 208.96]

Generalization

To generalize the extension of the methods it is preferable to integrate some functions
in a method handler and to construct a parameterized class with the return type of
the method. For this we define the following class:
class virtual [’a] get image (f: ’b → unit → ’a) =

object(self:’b)
inherit image ()
method handler () = f(self) ()

end; ;

The following classes then possess an additional functional parameter for the construc-
tion of their instances.
class [’a] get rectangle f x y w h =

object(self:’b)
inherit [’a] get image f

inherit rectangle x y w h

method get = (x,y,w,h)

Mixed Organisations 497

end; ;
class [’a] get circle f x y r=

object(self:’b)
inherit [’a] get image f

inherit circle x y r

method get = (x,y,r)

end; ;

The extension of the class group thus takes two type parameters:
class [’a,’c] get group f eti1 eti2 =

object

inherit [’a] get image f

inherit [’c] group eti1 eti2

method get = (i1,i2)

end; ;

We get the program which extends the method of the instance of get image.
let etr = new get rectangle

(fun r () → let (x,y,w,h) = r#get in w *. h) 1. 1. 2. 4. ; ;
val etr : float get_rectangle = <obj>

let etc = new get circle

(fun c () → let (x,y,r) = c#get in 3.14 *. r *. r) 1. 1. 8.; ;
val etc : float get_circle = <obj>

let etg = new get group

(fun g () → let (i1,i2) = g#get in i1#handler () +. i2#handler ())
(etr :> float get image) (etc :> float get image); ;

val etg : (float, float get_image) get_group = <obj>

let gel = [(etr :> float get image) ; (etc :> float get image) ;
(etg :> float get image)]; ;

val gel : float get_image list = [<obj>; <obj>; <obj>]

List.map (fun x → x#handler ()) gel; ;
- : float list = [8; 200.96; 208.96]

The extension of data and methods is easier in the object model when it is combined
with the functional model.

Mixed Organisations

The last example of the preceding section showed the advantages that there are in
mixing the two models for the problem of the extensibility of components. We now
propose to mix parameterized modules and late binding to benefit from the power of
these two features. The application of the functor will produce new modules containing
classes which use the type and functions of the parameterized module. If, moreover,
the signature obtained is compatible with the signature of the parameterized module,
it is then possible to re-apply the parameterized module to the resulting module, thus
making it possible to construct new classes automatically.

498 Chapter 16 : Comparison of the Models of Organisation

A concrete example is given in the last part of this book which is dedicated to concur-
rent and/or distributed programs (page 651). We use a functor to generate a communi-
cation protocol starting from a data type; a second functor permits us to then deduce
from this protocol a class which implements a generic server which handles requests
expressed in the protocol. Inheritance can then be used to specialize the server into
the service that is actually required.

Exercises

Classes and Modules for Data Structures

We wish to construct class hierarchies based on the application of functors for classical
data structures.

We define the following structures

module type ELEMENT =

sig

class element :

string →
object

method to string : unit → string

method of string : string → unit

end

end ; ;

module type STRUCTURE =

sig

class [’a] structure :

object

method add : ’a → unit

method del : ’a → unit

method mem : ’a → bool

method get : unit → ’a
method all : unit → ’a list

method iter : (’a → unit) → unit

end

end ; ;

1. Write a module with 2 parameters M1 and M2 of types ELEMENT and STRUCTURE,
constructing a sub-class of [’a] structure in which ’a is constrained to M1.-

element.

2. Write a simple module Integer which respects the signature ELEMENT.

3. Write a simple moduleStack which respects the signature STRUCTURE.

4. Apply the functor to its two parameters.

Summary 499

5. Modify the functor by adding the methods to string and of string.

6. Apply the functor again , and then apply it to the result .

Abstract Types

Continuing from the previous exercise, we wish to implement a module with signature
ELEMENT of which the class element uses one instance variable of abstract type.

We define the following parameterized type:
type ’a t = {mutable x : ’a t; f : ’a t → unit}; ;

1. Write the functions apply, from string and to string. These last two functions
will use the Marshal module.

2. Write a signature S which corresponds to the signature previously inferred by
abstracting the type t.

3. Write a functor which takes a parameter with signature S and returns a module
of which the signature is compatible with ELEMENT.

4. Use the resulting module as the parameter of the module from the previous
exercise.

Summary

This chapter has compared the respective merits of the functional/modular and object
models of organisation. Each tries to address in its own way the problems of reusability
and modifiability of software. The main differences come from their type systems,
equality of types between parameters of functors and sub-typing in the object model,
and the evaluation of objects with late binding. The two models do not succeed on
their own in resolving the problem of the extensibility of components, from whence we
get the idea of a mixed organization. This organization mix also permits new ways of
structuring.

To Learn More

The modular model suffers from weak code reuse and difficulties for incremental de-
velopment. The article ”Modular Programming with overloading and delayed linking”
([AC96]) describes a simple extension of the module language, allowing the extension of
a module as well as overloading. The choice of code for an overloaded function derives
from the techniques used for generic functions in CLOS. The correction of the type
system to accommodate these extended modules has not been established.

The issues of mixing the models are well discussed in the article ”Modular Object-
Oriented Programming with Units and Mixing”([FF98]), in terms of the ease with

500 Chapter 16 : Comparison of the Models of Organisation

which code can be reused. The problem of extensibility of components is described in
detail.

This article is available in HTML at the following address:

Link: http://www.cs.rice.edu/CS/PLT/Publications/icfp98-ff/paper.shtml

We can see in these concepts that there is still some dynamic typing involved in type
constraints and/or the resolution of type conflicts. It is probably not unreasonable
to relax static typing to obtain languages that are ”primarily” statically typed in
the pursuit of increasing the reusability of the code by facilitating its incremental
development.

