
17
Applications

This chapter illustrates program structure via two examples: the first uses a modular
model; the second, an object model.

The first application provides a set of parametric modules for two player games. A
functor implements the minimax-αβ algorithm for the evaluation of a search tree. A
second functor allows modifying the human/machine interface for the game. These
parametric modules are then applied to two games: a vertical tic-tac-toe game, and
another involving the construction of mystic ley-lines.

The second application constructs a world where robots evolve. The world and robots
are structured as classes. The different behaviors of robots are obtained by inheritance
from a common abstract class. It is then easy to define new behaviors. There, too, the
human/machine interface may be modified.

Each of the applications, in its structure, contains reusable components. It is easy to
construct a new two player game with different rules that uses the same base classes.
Similarly, the general mechanism for the motion of robots in a world may be applied
to new types of robots.

Two Player Games

The application presented in this section pursues two objectives. On the one hand, it
seeks to resolve problems related to the complexity in searching state spaces, as well
as showing that Objective Caml provides useful tools for dealing with symbolic appli-
cations. On the other hand, it also explores the benefits of using parametric modules
to define a generic scheme for constructing two player games, providing the ability to
factor out one part of the search, and making it easy to customize components such as
functions for evaluating or displaying a game position.

502 Chapter 17 : Applications

We first present the problem of games involving two players, then describe the minimax-
αβ algorithm which provides an efficient search of the tree of possible moves. We
present a parametric model for two player games. Then, we apply these functors to
implement two games: “Connect Four” (a vertical tic-tac-toe), and Stonehenge (a game
that involves constructing ley-lines).

The Problem of Two Player Games

Games involving two players represent one of the classic applications of symbolic pro-
gramming and provide a good example of problem solving for at least two reasons:

• The large number of solutions to be analyzed to obtain the best possible move
necessitates using methods other than brute force.
For instance, in the game of chess, the number of possible moves typically is
around 30, and a game often involves around 40 moves per player. This would
require a search tree of around 3080 positions just to explore the complete tree
for one player.

• The quality of a solution is easily verifiable. In particular, it is possible to test
the quality of a proposed solution from one program by comparing it to that of
another.

First, assume that we are able to explore the total list of all possible moves, given, as a
starting point, a specific legal game position. Such a program will require a function to
generate legal moves based on a starting position, as well as a function to evaluate some
“score” for each resulting position. The evaluation function must give a maximum score
to a winning position, and a minimal score to a losing position. After picking an initial
position, one may then construct a tree of all possible variations, where each node
corresponds to a position, the adjacent siblings are obtained by having played a move
and with leaves having positions indicating winning, losing, or null results. Once the
tree is constructed, its exploration permits determining if there exists a route leading
to victory, or a null position, failing that. The shortest path may then be chosen to
attain the desired goal.

As the overall size of such a tree is generally too large for it to be fully represented, it is
typically necessary to limit what portions of the tree are constructed. A first strategy
is to limit the “depth” of the search, that is, the number of moves and responses that
are to be evaluated. One thus reduces the breadth of the tree as well as its height. In
such cases, leaf nodes will seldom be found until nearly the end of the game.

On the other hand, we may try to limit the number of moves selected for additional
evaluation. For this, we try to avoid evaluating any but the most favorable moves, and
start by examining the moves that appear to be the very best. This immediately elim-
inates entire branches of the tree. This leads to the minimax αβ algorithm presented
in the next subsection.

Two Player Games 503

Minimax αβ

We present the minimax search and describe a variant optimized using αβ cuts. The
implementation of this algorithm uses a parametric module, FAlphabeta along with
a representation of the game and its evaluation function. We distinguish between the
two players by naming them A and B.

Minimax

The minimax algorithm is a depth-first search algorithm with a limit on the depth to
which search is done. It requires:

• a function to generate legal moves based on a position, and

• a function to evaluate a game position.

Starting with some initial game position, the algorithm explores the tree of all legal
moves down to the requested depth. Scores associated with leaves of the tree are cal-
culated using an evaluation function. A positive score indicates a good position for
player A, while a negative score indicates a poor position for player A, and thus a
good position for player B. For each player, the transition from one position to another
is either maximized (for player A) or minimized (for player B). Each player tries to
select his moves in a manner that will be most profitable for him. In searching for the
best play for player A, a search of depth 1 tries to determine the immediate move that
maximizes the score of the new position.

O

P2 P3 P4P1

C2C1 C4C3

(5) (8) (-6) (1)

(8)

maximizing step

Figure 17.1: Maximizing search at a given location.

In figure 17.1, player A starts at position O, finds four legal moves, constructs these
new configurations, and evaluates them. Based on these scores, the best position is
P2, with a score of 8. This value is propagated to position O, indicating that this
position provides a move to a new position, giving a score of 8 when the player moves
to C2. The search of depth 1 is, as a general rule, insufficient, as it does not consider
the possible response of an adversary. Such a shallow search results in programs that
search greedily for immediate material gains (such as the prize of a queen, in chess)
without perceiving that the pieces are protected or that the position is otherwise a
losing one (such as a gambit of trading one’s queen for a mate). A deeper exploration
to depth 2 permits perceiving at least the simplest such countermoves.

504 Chapter 17 : Applications

Figure 17.2 displays a supplementary analysis of the tree that takes into consideration
the possible responses of player B. This search considers B’s best moves. For this, the
minimax algorithm minimizes scores of depth 2.

O

P2 P3 P4P1

(0)(0) (1) (-10) (-4) (-1) (3)(-1)

Q1 Q2 Q4 Q6 Q7 Q8 Q9Q3

mimimizing step(-10) (-4)

(-1)

(-1)

(-3)

D2 D3D1 D5D4 D6 D8 D9D7

Q5

(-3)

C2C1 C3 C4

maximizing step

Figure 17.2: Maximizing and minimizing in depth-2 search.

Move P2, which provided an immediate position score of 8, leads to a position with
a score of -3. In effect, if B plays D5, then the score of Q5 will be -3. Based on this
deeper examination, the move C1 limits the losses with a score of -1, and is thus the
preferred move.

In most games, it is possible to try to confuse the adversary, making him play forced
moves, trying to muddle the situation in the hope that he will make a mistake. A
shallow search of depth 2 would be completely inadequate for this sort of tactic. These
sorts of strategies are rarely able to be well exploited by a program because it has no
particular vision as to the likely evolution of the positions towards the end of the game.

The difficulty of increased depth of search comes in the form of a combinatorial “explo-
sion.” For example, with chess, the exploration of two additional levels adds a factor
of around a thousand times more combinations (30 × 30). Thus, if one searches to a
depth of 10, one obtains around 514 positions, which represents too much to search.
For this reason, you must try to somehow trim the search tree.

One may note in figure 17.2 that it may be useless to search the branch P3 insofar as
the score of this position at depth 1 is poorer than that found in branch P1. In addition
the branch P4 does not need to be completely explored. Based on the calculation of Q7,
one obtains a score inferior to that of P1, which has already been completely explored.
The calculations for Q8 and Q9 cannot improve this situation even if their scores are
better than Q7. In a minimizing mode, the poorest score is dropped. The player knows
then that these branches provide no useful new options. The minimax variant αβ uses
this approach to decrease the number of branches that must be explored.

Two Player Games 505

Minimax-αβ

We call the α cut the lower limit of a maximizing node, and cut β the upper limit of a
minimizing node. Figure 17.3 shows the cuts carried out in branches P3 and P4 based
on knowing the lower limit -1 of P1.

O

P2 P3 P4P1

(0)(0) (1) (-4)(-1)

Q1 Q2 Q4 Q7Q3

mimimizing step

(-1)

D2 D3D1 D5D4 D7

Q5

(-3)

C2C1 C3 C4

maximizing step

(-6) (-4)

(-1)

(-3)

Figure 17.3: Limit α to one level max-min.

As soon as the tree gets broader or deeper the number of cuts increases, thus indicating
large subtrees.

A Parametric Module for αβ Minimax

We want to produce a parametric module, FAlphabeta, implementing this algorithm,
which will be generically reusable for all sorts of two player games. The parameters
correspond, on the one hand, to all the information about the proceedings of moves in
the game, and on the other hand, to the evaluation function.

Interfaces. We declare two signatures: REPRESENTATION to represent plays; and EVAL
to evaluate a position.

module type REPRESENTATION =

sig

type game

type move

val game start : unit → game

val legal moves: bool → game → move list

val play: bool → move → game → game

end ; ;
module type REPRESENTATION =

sig

type game

and move

val game_start : unit -> game

506 Chapter 17 : Applications

val legal_moves : bool -> game -> move list

val play : bool -> move -> game -> game

end

module type EVAL =

sig

type game

val evaluate: bool → game → int

val moreI : int

val lessI: int

val is leaf: bool → game → bool

val is stable: bool → game → bool

type state = G | P | N | C

val state of : bool → game → state

end ; ;
module type EVAL =

sig

type game

val evaluate : bool -> game -> int

val moreI : int

val lessI : int

val is_leaf : bool -> game -> bool

val is_stable : bool -> game -> bool

type state = | G | P | N | C

val state_of : bool -> game -> state

end

Types game and move represent abstract types. A player is represented by a boolean
value. The function legal moves takes a player and position, and returns the list of
possible moves. The function play takes a player, a move, and a position, and returns
a new position. The values moreI and lessI are the limits of the values returned by
function evaluate. The predicate is leaf verifies if a player in a given position can
play. The predicate is stable indicates whether the position for the player represents
a stable position. The results of these functions influence the pursuit of the exploration
of moves when one attains the specified depth.

The signature ALPHABETA corresponds to the signature resulting from the complete
application of the parametric module that one wishes to use. These hide the different
auxiliary functions that we use to implement the algorithm.

module type ALPHABETA = sig

type game

type move

val alphabeta : int → bool → game → move

end ; ;
module type ALPHABETA =

sig type game and move val alphabeta : int -> bool -> game -> move end

Two Player Games 507

The function alphabeta takes as parameters the depth of the search, the player, and
the game position, returning the next move.

We then define the functional signature FALPHABETA which must correspond to that of
the implementation of the functor.

module type FALPHABETA = functor (Rep : REPRESENTATION)

→ functor (Eval : EVAL with type game = Rep.game)

→ ALPHABETA with type game = Rep.game

and type move = Rep.move ; ;
module type FALPHABETA =

functor(Rep : REPRESENTATION) ->

functor

(Eval : sig

type game = Rep.game

val evaluate : bool -> game -> int

val moreI : int

val lessI : int

val is_leaf : bool -> game -> bool

val is_stable : bool -> game -> bool

type state = | G | P | N | C

val state_of : bool -> game -> state

end) ->

sig

type game = Rep.game

and move = Rep.move

val alphabeta : int -> bool -> game -> move

end

Implementation. The parametric module FAlphabetaO makes explicit the partition
of the type game between the two parameters Rep and Eval. This module has six
functions and two exceptions. The player true searches to maximize the score while
the player false seeks to minimize the score. The function maxmin iter calculates the
maximum of the best score for the branches based on a move of player true and the
pruning parameter α.

The function maxmin takes four parameters: depth, which indicates the actual calcula-
tion depth, node, a game position, and α and β, the pruning parameters. If the node
is a leaf of the tree or if the maximum depth is reached, the function will return its
evaluation of the position. If this is not the case, the function applies maxmin iter to
all of the legal moves of player true, passing it the search function, diminishing the
depth remaining (minmax). The latter searches to minimize the score resulting from
the response of player false.

The movements are implemented using exceptions. If the move β is found in the itera-
tion across the legal moves from the function maxmin, then it is returned immediately,
the value being propagated using an exception. The functions minmax iter and minmax
provide the equivalents for the other player. The function search determines the move
to play based on the best score found in the lists of scores and moves.

508 Chapter 17 : Applications

The principal function alphabeta of this module calculates the legal moves from a
given position for the requested player, searches down to the requested depth, and
returns the best move.

module FAlphabetaO

(Rep : REPRESENTATION) (Eval : EVAL with type game = Rep.game) =

struct

type game = Rep.game

type move = Rep.move

exception AlphaMovement of int

exception BetaMovement of int

let maxmin iter node minmax cur beta alpha cp =

let alpha resu =

max alpha (minmax cur (Rep.play true cp node) beta alpha)

in if alpha resu >= beta then raise (BetaMovement alpha resu)

else alpha resu

let minmax iter node maxmin cur alpha beta cp =

let beta resu =

min beta (maxmin cur (Rep.play false cp node) alpha beta)

in if beta resu <= alpha then raise (AlphaMovement beta resu)

else beta resu

let rec maxmin depth node alpha beta =

if (depth < 1 & Eval.is stable true node)

or Eval.is leaf true node

then Eval.evaluate true node

else

try let prev = maxmin iter node (minmax (depth - 1)) beta

in List.fold left prev alpha (Rep.legal moves true node)

with BetaMovement a → a

and minmax depth node beta alpha =

if (depth < 1 & Eval.is stable false node)

or Eval.is leaf false node

then Eval.evaluate false node

else

try let prev = minmax iter node (maxmin (depth - 1)) alpha

in List.fold left prev beta (Rep.legal moves false node)

with AlphaMovement b → b

let rec search a l1 l2 = match (l1,l2) with

(h1 :: q1, h2 :: q2) → if a = h1 then h2 else search a q1 q2

| ([], []) → failwith ("AB: "^(string of int a)^" not found")

| (_ , _) → failwith "AB: length differs"

(* val alphabeta : int -> bool -> Rep.game -> Rep.move *)

let alphabeta depth player level =

let alpha = ref Eval.lessI and beta = ref Eval.moreI in

let l = ref [] in

let cpl = Rep.legal moves player level in

Two Player Games 509

let eval =

try

for i = 0 to (List.length cpl) - 1 do

if player then

let b = Rep.play player (List.nth cpl i) level in

let a = minmax (depth-1) b !beta !alpha

in l := a :: !l ;
alpha := max !alpha a ;
(if !alpha >= !beta then raise (BetaMovement !alpha))

else

let a = Rep.play player (List.nth cpl i) level in

let b = maxmin (depth-1) a !alpha !beta

in l := b :: !l ;
beta := min !beta b ;
(if !beta <= !alpha then raise (AlphaMovement !beta))

done ;
if player then !alpha else !beta

with

BetaMovement a → a

| AlphaMovement b → b

in

l := List.rev !l ;
search eval !l cpl

end ; ;
module FAlphabetaO :

functor(Rep : REPRESENTATION) ->

functor

(Eval : sig

type game = Rep.game

val evaluate : bool -> game -> int

val moreI : int

val lessI : int

val is_leaf : bool -> game -> bool

val is_stable : bool -> game -> bool

type state = | G | P | N | C

val state_of : bool -> game -> state

end) ->

sig

type game = Rep.game

and move = Rep.move

exception AlphaMovement of int

exception BetaMovement of int

val maxmin_iter :

Rep.game ->

(Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int

val minmax_iter :

Rep.game ->

(Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int

val maxmin : int -> Eval.game -> int -> int -> int

val minmax : int -> Eval.game -> int -> int -> int

val search : int -> int list -> ’a list -> ’a

val alphabeta : int -> bool -> Rep.game -> Rep.move

510 Chapter 17 : Applications

end

We may close module FAlphabetaO by associating with it the following signature:

module FAlphabeta = (FAlphabetaO : FALPHABETA) ; ;
module FAlphabeta : FALPHABETA

This latter module may be used with many different game representations and functions
to play different games.

Organization of a Game Program

The organization of a program for a two player game may be separated into a portion
specific to the game in question as well as a portion applicable to all sorts of games. For
this, we propose using several parametric modules parameterized by specific modules,
permitting us to avoid the need to rewrite the common portions each time. Figure 17.4
shows the chosen organization.

J_Main

FMain

J_Alphabeta

FAlphabeta

J_Eval

J_Repr

J_Aff

FSkeleton

Skeleton

Figure 17.4: Organization of a game application.

The modules with no highlighting correspond to the common parts of the application.
These are the parametric modules. We see again the functor FAlphabeta. The modules
with gray highlighting are the modules designed specifically for a given game. The
three principal modules are the representation of the game (J Repr), display of the
game (J Disp), and the evaluation function (J Eval). The modules with rounded gray
borders are obtained by applying the parametric modules to the simple modules specific
to the game.

Two Player Games 511

The module FAlphabeta has already been described. The two other common modules
are FMain, containing the main loop, and FSkeleton, that manages the players.

Module FMain

Module FMain contains the main loop for execution of a game program. It is parame-
terized using the signature module SKELETON, describing the interaction with a player
using the following definition:

module type SKELETON = sig

val home: unit → unit

val init: unit → ((unit → unit) * (unit → unit))

val again: unit → bool

val exit: unit → unit

val won: unit → unit

val lost: unit → unit

val nil: unit → unit

exception Won

exception Lost

exception Nil

end ; ;
module type SKELETON =

sig

val home : unit -> unit

val init : unit -> (unit -> unit) * (unit -> unit)

val again : unit -> bool

val exit : unit -> unit

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

exception Won

exception Lost

exception Nil

end

The function init constructs a pair of action functions for each player. The other
functions control the interactions. Module FMain contains two functions: play game
which alternates between the players, and main which controls the main loop.

module FMain (P : SKELETON) =

struct

let play game movements = while true do (fst movements) () ;
(snd movements) () done

let main () = let finished = ref false

in P.home () ;
while not !finished do

(try play game (P.init ())
with P.Won → P.won ()

512 Chapter 17 : Applications

| P.Lost → P.lost ()
| P.Nil → P.nil ());
finished := not (P.again ())

done ;
P.exit ()

end ; ;
module FMain :

functor(P : SKELETON) ->

sig

val play_game : (unit -> ’a) * (unit -> ’b) -> unit

val main : unit -> unit

end

Module FSkeleton

Parametric module FSkeleton controls the moves of each player according to the rules
provided at the start of the section based on the nature of the players (automated or
not) and the order of the players. It needs various parameters to represent the game,
game states, the evaluation function, and the αβ search as described in figure 17.4.

We start with the signature needed for game display.

module type DISPLAY = sig

type game

type move

val home: unit → unit

val exit: unit → unit

val won: unit → unit

val lost: unit → unit

val nil: unit → unit

val init: unit → unit

val position : bool → move → game → game → unit

val choice : bool → game → move

val q player : unit → bool

val q begin : unit → bool

val q continue : unit → bool

end ; ;
module type DISPLAY =

sig

type game

and move

val home : unit -> unit

val exit : unit -> unit

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val init : unit -> unit

val position : bool -> move -> game -> game -> unit

val choice : bool -> game -> move

val q_player : unit -> bool

Two Player Games 513

val q_begin : unit -> bool

val q_continue : unit -> bool

end

It is worth noting that the representation of the game and of the moves must be shared
by all the parametric modules, which constrain the types. The two principal functions
are playH and playM, respectively controlling the move of a human player (using the
function Disp.choice) and that of an automated player. The function init determines
the nature of the players and the sorts of responses for Disp.q player.

module FSkeleton

(Rep : REPRESENTATION)

(Disp : DISPLAY with type game = Rep.game and type move = Rep.move)

(Eval : EVAL with type game = Rep.game)

(Alpha : ALPHABETA with type game = Rep.game and type move = Rep.move) =

struct

let depth = ref 4

exception Won

exception Lost

exception Nil

let won = Disp.won

let lost = Disp.lost

let nil = Disp.nil

let again = Disp.q continue

let play game = ref (Rep.game start ())
let exit = Disp.exit

let home = Disp.home

let playH player () =

let choice = Disp.choice player !play game in

let old game = !play game

in play game := Rep.play player choice !play game ;
Disp.position player choice old game !play game ;
match Eval.state of player !play game with

Eval.P → raise Lost

| Eval.G → raise Won

| Eval.N → raise Nil

| _ → ()

let playM player () =

let choice = Alpha.alphabeta !depth player !play game in

let old game = !play game

in play game := Rep.play player choice !play game ;
Disp.position player choice old game !play game ;
match Eval.state of player !play game with

Eval.G → raise Won

| Eval.P → raise Lost

| Eval.N → raise Nil

| _ → ()

514 Chapter 17 : Applications

let init () =

let a = Disp.q player () in

let b = Disp.q player ()
in play game := Rep.game start () ;
Disp.init () ;
match (a,b) with

true,true → playM true, playM false

| true,false → playM true, playH false

| false,true → playH true, playM false

| false,false → playH true, playH false

end ; ;
module FSkeleton :

functor(Rep : REPRESENTATION) ->

functor

(Disp : sig

type game = Rep.game

and move = Rep.move

val home : unit -> unit

val exit : unit -> unit

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val init : unit -> unit

val position : bool -> move -> game -> game -> unit

val choice : bool -> game -> move

val q_player : unit -> bool

val q_begin : unit -> bool

val q_continue : unit -> bool

end) ->

functor

(Eval : sig

type game = Rep.game

val evaluate : bool -> game -> int

val moreI : int

val lessI : int

val is_leaf : bool -> game -> bool

val is_stable : bool -> game -> bool

type state = | G | P | N | C

val state_of : bool -> game -> state

end) ->

functor

(Alpha : sig

type game = Rep.game

and move = Rep.move

val alphabeta : int -> bool -> game -> move

end) ->

sig

val depth : int ref

exception Won

exception Lost

exception Nil

val won : unit -> unit

Two Player Games 515

val lost : unit -> unit

val nil : unit -> unit

val again : unit -> bool

val play_game : Disp.game ref

val exit : unit -> unit

val home : unit -> unit

val playH : bool -> unit -> unit

val playM : bool -> unit -> unit

val init : unit -> (unit -> unit) * (unit -> unit)

end

The independent parts of the game are thus implemented. One may then begin pro-
gramming different sorts of games. This modular organization facilitates making mod-
ifications to the movement scheme or to the evaluation function for a game as we shall
soon see.

Connect Four

We will next examine a simple game, a vertical tic-tac-toe, known as Connect Four.
The game is represented by seven columns each consisting of six lines. In turn, a player
places on a column a piece of his color, where it then falls down to the lowest free
location in this column. If a column is completely filled, neither player is permitted to
play there. The game ends when one of the players has built a line of four pieces in a
row (horizontal, vertical, or diagonal), at which point this player has won, or when all
the columns are filled with pieces, in which the outcome is a draw. Figure 17.5 shows
a completed game.

Figure 17.5: An example of Connect Four.

Note the “winning” line of four gray pieces in a diagonal, going down and to the right.

516 Chapter 17 : Applications

Game Representation: module C4 rep. We choose for this game a matrix-based
representation. Each element of the matrix is either empty, or contains a player’s piece.
A move is numbered by the column. The legal moves are the columns in which the
final (top) row is not filled.

module C4 rep = struct

type cell = A | B | Empty

type game = cell array array

type move = int

let col = 7 and row = 6

let game start () = Array.create matrix row col Empty

let legal moves b m =

let l = ref [] in

for c = 0 to col-1 do if m.(row-1).(c) = Empty then l := (c+1) :: !l done;
!l

let augment mat c =

let l = ref row

in while !l > 0 & mat.(!l-1).(c-1) = Empty do decr l done ; !l + 1

let player gen cp m e =

let mj = Array.map Array.copy m

in mj.((augment mj cp)-1).(cp-1) <- e ; mj

let play b cp m = if b then player gen cp m A else player gen cp m B

end ; ;
module C4_rep :

sig

type cell = | A | B | Empty

and game = cell array array

and move = int

val col : int

val row : int

val game_start : unit -> cell array array

val legal_moves : ’a -> cell array array -> int list

val augment : cell array array -> int -> int

val player_gen : int -> cell array array -> cell -> cell array array

val play : bool -> int -> cell array array -> cell array array

end

We may easily verify if this module accepts the constraints of the signature REPRESEN-
TATION.

module C4 rep T = (C4 rep : REPRESENTATION) ; ;
module C4_rep_T : REPRESENTATION

Two Player Games 517

Game Display: Module C4 text. Module C4 text describes a text-based interface
for the game Connect Four that is compatible with the signature DISPLAY. It it is not
particularly sophisticated, but, nonetheless, demonstrates how modules are assembled
together.

module C4 text = struct

open C4 rep

type game = C4 rep.game

type move = C4 rep.move

let print game mat =

for l = row - 1 downto 0 do

for c = 0 to col - 1 do

match mat.(l).(c) with

A → print string "X "

| B → print string "O "

| Empty → print string ". "

done;
print newline ()

done ;
print newline ()

let home () = print string "C4 ...\n"

let exit () = print string "Bye for now ... \n"

let question s =

print string s;
print string " y/n ? " ;
read line () = "y"

let q begin () = question "Would you like to begin?"

let q continue () = question "Play again?"

let q player () = question "Is there to be a machine player ?"

let won ()= print string "The first player won" ; print newline ()
let lost () = print string "The first player lost" ; print newline ()
let nil () = print string "Stalemate" ; print newline ()

let init () =

print string "X: 1st player O: 2nd player";
print newline () ; print newline () ;
print game (game start ()) ; print newline ()

let position b c aj j = print game j

let is move = function ’1’..’7’ → true | _ → false

exception Move of int

let rec choice player game =

print string ("Choose player" ^ (if player then "1" else "2") ^ " : ") ;
let l = legal moves player game

in try while true do

let i = read line ()

518 Chapter 17 : Applications

in (if (String.length i > 0) && (is move i.[0])

then let c = (int of char i.[0]) - (int of char ’0’)

in if List.mem c l then raise (Move c));
print string "Invalid move - try again"

done ;
List.hd l

with Move i → i

| _ → List.hd l

end ; ;
module C4_text :

sig

type game = C4_rep.game

and move = C4_rep.move

val print_game : C4_rep.cell array array -> unit

val home : unit -> unit

val exit : unit -> unit

val question : string -> bool

val q_begin : unit -> bool

val q_continue : unit -> bool

val q_player : unit -> bool

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val init : unit -> unit

val position : ’a -> ’b -> ’c -> C4_rep.cell array array -> unit

val is_move : char -> bool

exception Move of int

val choice : bool -> C4_rep.cell array array -> int

end

We may immediately verify that this conforms to the constraints of the signature
DISPLAY

module C4 text T = (C4 text : DISPLAY) ; ;
module C4_text_T : DISPLAY

Evaluation Function: module C4 eval. The quality of a game player depends
primarily on the position evaluation function. Module C4 eval defines evaluate, which
evaluates the value of a position for the specified player. This function calls eval bloc
for the four compass directions as well as the diagonals. eval bloc then calls eval four
to calculate the number of pieces in the requested line. Table value provides the value
of a block containing 0, 1, 2, or 3 pieces of the same color. The exception Four is raised
when 4 pieces are aligned.

module C4 eval = struct open C4 rep type game = C4 rep.game

let value =

Array.of list [0; 2; 10; 50]

exception Four of int

Two Player Games 519

exception Nil Value

exception Arg invalid

let lessI = -10000

let moreI = 10000

let eval four m l dep c dep delta l delta c =

let n = ref 0 and e = ref Empty

and x = ref c dep and y = ref l dep

in try

for i = 1 to 4 do

if !y<0 or !y>=row or !x<0 or !x>=col then raise Arg invalid ;
(match m.(!y).(!x) with

A → if !e = B then raise Nil Value ;
incr n ;
if !n = 4 then raise (Four moreI) ;
e := A

| B → if !e = A then raise Nil Value ;
incr n ;
if !n = 4 then raise (Four lessI);
e := B;

| Empty → ()) ;
x := !x + delta c ;

y := !y + delta l

done ;
value.(!n) * (if !e=A then 1 else -1)

with

Nil Value | Arg invalid → 0

let eval bloc m e cmin cmax lmin lmax dx dy =

for c=cmin to cmax do for l=lmin to lmax do

e := !e + eval four m l c dx dy

done done

let evaluate b m =

try let evaluation = ref 0

in (* evaluation of rows *)

eval bloc m evaluation 0 (row-1) 0 (col-4) 0 1 ;
(* evaluation of columns *)

eval bloc m evaluation 0 (col-1) 0 (row-4) 1 0 ;
(* diagonals coming from the first line (to the right) *)

eval bloc m evaluation 0 (col-4) 0 (row-4) 1 1 ;
(* diagonals coming from the first line (to the left) *)

eval bloc m evaluation 1 (row-4) 0 (col-4) 1 1 ;
(* diagonals coming from the last line (to the right) *)

eval bloc m evaluation 3 (col-1) 0 (row-4) 1 (-1) ;
(* diagonals coming from the last line (to the left) *)

eval bloc m evaluation 1 (row-4) 3 (col-1) 1 (-1) ;
!evaluation

with Four v → v

let is leaf b m = let v = evaluate b m

in v=moreI or v=lessI or legal moves b m = []

520 Chapter 17 : Applications

let is stable b j = true

type state = G | P | N | C

let state of player m =

let v = evaluate player m

in if v = moreI then if player then G else P

else if v = lessI then if player then P else G

else if legal moves player m = [] then N else C

end ; ;
module C4_eval :

sig

type game = C4_rep.game

val value : int array

exception Four of int

exception Nil_Value

exception Arg_invalid

val lessI : int

val moreI : int

val eval_four :

C4_rep.cell array array -> int -> int -> int -> int -> int

val eval_bloc :

C4_rep.cell array array ->

int ref -> int -> int -> int -> int -> int -> int -> unit

val evaluate : ’a -> C4_rep.cell array array -> int

val is_leaf : ’a -> C4_rep.cell array array -> bool

val is_stable : ’a -> ’b -> bool

type state = | G | P | N | C

val state_of : bool -> C4_rep.cell array array -> state

end

Module C4 eval is compatible with the constraints of signature EVAL.

module C4 eval T = (C4 eval : EVAL) ; ;
module C4_eval_T : EVAL

To play two evaluation functions against one another, it is necessary to modify evaluate
to apply the proper evaluation function for each player.

Assembly of the modules All the components needed to realize the game of Con-
nect Four are now implemented. We only need assemble them together based on the
schema of diagram 17.4. First, we construct C4 skeleton, which is the application of
parameter module FSkeleton to modules C4 rep, C4 text, C4 eval and the result of
the application of parametric module FAlphaBeta to C4 rep and C4 eval.

module C4 skeleton =

Two Player Games 521

FSkeleton (C4 rep) (C4 text) (C4 eval) (FAlphabeta (C4 rep) (C4 eval)) ; ;
module C4_skeleton :

sig

val depth : int ref

exception Won

exception Lost

exception Nil

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val again : unit -> bool

val play_game : C4_text.game ref

val exit : unit -> unit

val home : unit -> unit

val playH : bool -> unit -> unit

val playM : bool -> unit -> unit

val init : unit -> (unit -> unit) * (unit -> unit)

end

We then obtain the principal module C4 main by applying parametric module FMain
on the result of the preceding application C4 skeleton

module C4 main = FMain(C4 skeleton) ; ;
module C4_main :

sig

val play_game : (unit -> ’a) * (unit -> ’b) -> unit

val main : unit -> unit

end

The game is initiated by the application of function C4 main.main on ().

Testing the Game. Once the general game skeleton has been written, games may
be played in various ways. Two human players may play against each other, with
the program merely verifying the validity of the moves; a person may play against a
programmed player; or programs may play against each other. While this last mode
might not be interesting for the human, it does make it easy to run tests without having
to wait for a person’s responses. The following game demonstrates this scenario.

C4_main.main () ;;
C4 ...
Is there to be a machine player ? y/n ? y
Is there to be a machine player ? y/n ? y
X: 1st player O: 2nd player

.

.

.

522 Chapter 17 : Applications

.

.

.

Once the initial position is played, player 1 (controlled by the program) calculates its
move which is then applied.

.

.

.

.

.

. X .

Player 2 (always controlled by the program) calculates its response and the game
proceeds, until a game-ending move is found. In this example, player 1 wins the game
based on the following final position:

. O O O . O .

. X X X . X .
X O O X . O .
X X X O . X .
X O O X X O .
X O O O X X O
Player 1 wins
Play again(y/n) ? n
Good-bye ...
- : unit = ()

Graphical Interface. To improve the enjoyment of the game, we define a graphical
interface for the program, by defining a new module, C4 graph, compatible with the
signature DISPLAY, which opens a graphical window, controlled by mouse clicks. The
text of this module may be found in the subdirectory Applications on the CD-ROM
(see page 1).

module C4 graph = struct

open C4 rep

type game = C4 rep.game

type move = C4 rep.move

let r = 20 (* color of piece *)

let ec = 10 (* distance between pieces *)

let dec = 30 (* center of first piece *)

let cote = 2*r + ec (* height of a piece looked at like a checker *)

let htexte = 25 (* where to place text *)

let width = col * cote + ec (* width of the window *)

let height = row * cote + ec + htexte (* height of the window *)

Two Player Games 523

let height of game = row * cote + ec (* height of game space *)

let hec = height of game + 7 (* line for messages *)

let lec = 3 (* columns for messages *)

let margin = 4 (* margin for buttons *)

let xb1 = width / 2 (* position x of button1 *)

let xb2 = xb1 + 30 (* position x of button2 *)

let yb = hec - margin (* position y of the buttons *)

let wb = 25 (* width of the buttons *)

let hb = 16 (* height of the buttons *)

(* val t2e : int -> int *)

(* Convert a matrix coordinate into a graphical coordinate *)

let t2e i = dec + (i-1)*cote

(* The Colors *)

let cN = Graphics.black (* trace *)

let cA = Graphics.red (* Human player *)

let cB = Graphics.yellow (* Machine player *)

let cF = Graphics.blue (* Game Background color *)

(* val draw_table : unit -> unit : Trace an empty table *)

let draw table () =

Graphics.clear graph () ;
Graphics.set color cF;
Graphics.fill rect 0 0 width height of game;
Graphics.set color cN;
Graphics.moveto 0 height of game;
Graphics.lineto width height of game;
for l = 1 to row do

for c = 1 to col do

Graphics.draw circle (t2e c) (t2e l) r

done

done

(* val draw_piece : int -> int -> Graphics.color -> unit *)

(* ’draw_piece l c co’ draws a piece of color co at coordinates l c *)

let draw piece l c col =

Graphics.set color col;
Graphics.fill circle (t2e c) (t2e l) (r+1)

(* val augment : Rep.item array array -> int -> Rep.move *)

(* ’augment m c’ redoes the line or drops the piece for c in m *)

let augment mat c =

let l = ref row in

while !l > 0 & mat.(!l-1).(c-1) = Empty do

decr l

done;
!l

(* val conv : Graphics.status -> int *)

(* convert the region where player has clicked in controlling the game *)

let conv st =

524 Chapter 17 : Applications

(st.Graphics.mouse x - 5) / 50 + 1

(* val wait_click : unit -> Graphics.status *)

(* wait for a mouse click *)

let wait click () = Graphics.wait next event [Graphics.Button down]

(* val choiceH : Rep.game -> Rep.move *)

(* give opportunity to the human player to choose a move *)

(* the function offers possible moves *)

let rec choice player game =

let c = ref 0 in

while not (List.mem !c (legal moves player game)) do

c := conv (wait click ())

done;
!c

(* val home : unit -> unit : home screen *)

let home () =

Graphics.open graph

(" " ^ (string of int width) ^ "x" ^ (string of int height) ^ "+50+50");
Graphics.moveto (height/2) (width/2);
Graphics.set color cF;
Graphics.draw string "C4";
Graphics.set color cN;
Graphics.moveto 2 2;
Graphics.draw string "by Romuald COEFFIER & Mathieu DESPIERRE";
ignore (wait click ());
Graphics.clear graph ()

(* val end : unit -> unit , the end of the game *)

let exit () = Graphics.close graph ()

(* val draw_button : int -> int -> int -> int -> string -> unit *)

(* ’draw_button x y w h s’ draws a rectangular button at coordinates *)

(* x,y with width w and height h and appearance s *)

let draw button x y w h s =

Graphics.set color cN;
Graphics.moveto x y;
Graphics.lineto x (y+h);
Graphics.lineto (x+w) (y+h);
Graphics.lineto (x+w) y;
Graphics.lineto x y;
Graphics.moveto (x+margin) (hec);
Graphics.draw string s

(* val draw_message : string -> unit * position message s *)

let draw message s =

Graphics.set color cN;
Graphics.moveto lec hec;
Graphics.draw string s

(* val erase_message : unit -> unit erase the starting position *)

Two Player Games 525

let erase message () =

Graphics.set color Graphics.white;
Graphics.fill rect 0 (height of game+1) width htexte

(* val question : string -> bool *)

(* ’question s’ poses the question s, the response being obtained by *)

(* selecting one of two buttons, ’yes’ (=true) and ’no’ (=false) *)

let question s =

let rec attente () =

let e = wait click () in

if (e.Graphics.mouse y < (yb+hb)) & (e.Graphics.mouse y > yb) then

if (e.Graphics.mouse x > xb1) & (e.Graphics.mouse x < (xb1+wb)) then

true

else

if (e.Graphics.mouse x > xb2) & (e.Graphics.mouse x < (xb2+wb)) then

false

else

attente ()
else

attente () in

draw message s;
draw button xb1 yb wb hb "yes";
draw button xb2 yb wb hb "no";
attente ()

(* val q_begin : unit -> bool *)

(* Ask, using function ’question’, if the player wishes to start *)

(* (yes=true) *)

let q begin () =

let b = question "Would you like to begin ?" in

erase message () ;
b

(* val q_continue : unit -> bool *)

(* Ask, using function ’question’, if the player wishes to play again *)

(* (yes=true) *)

let q continue () =

let b = question "Play again ?" in

erase message () ;
b

let q player () =

let b = question "Is there to be a machine player?" in

erase message () ;
b

(* val won : unit -> unit *)

(* val lost : unit -> unit *)

(* val nil : unit -> unit *)

(* Three functions for these three cases *)

let won () =

draw message "I won :-)" ; ignore (wait click ()) ; erase message ()

526 Chapter 17 : Applications

let lost () =

draw message "You won :-("; ignore (wait click ()) ; erase message ()
let nil () =

draw message "Stalemate" ; ignore (wait click ()) ; erase message ()

(* val init : unit -> unit *)

(* This is called at every start of the game for the position *)

let init = draw table

let position b c aj nj =

if b then

draw piece (augment nj c) c cA

else

draw piece (augment nj c) c cB

(* val drawH : int -> Rep.item array array -> unit *)

(* Position when the human player chooses move cp in situation j *)

let drawH cp j = draw piece (augment j cp) cp cA

(* val drawM : int -> cell array array -> unit*)

(* Position when the machine player chooses move cp in situation j *)

let drawM cp j = draw piece (augment j cp) cp cB

end ; ;
module C4_graph :

sig

type game = C4_rep.game

and move = C4_rep.move

val r : int

val ec : int

val dec : int

val cote : int

val htexte : int

val width : int

val height : int

val height_of_game : int

val hec : int

val lec : int

val margin : int

val xb1 : int

val xb2 : int

val yb : int

val wb : int

val hb : int

val t2e : int -> int

val cN : Graphics.color

val cA : Graphics.color

val cB : Graphics.color

val cF : Graphics.color

val draw_table : unit -> unit

val draw_piece : int -> int -> Graphics.color -> unit

val augment : C4_rep.cell array array -> int -> int

val conv : Graphics.status -> int

Two Player Games 527

val wait_click : unit -> Graphics.status

val choice : ’a -> C4_rep.cell array array -> int

val home : unit -> unit

val exit : unit -> unit

val draw_button : int -> int -> int -> int -> string -> unit

val draw_message : string -> unit

val erase_message : unit -> unit

val question : string -> bool

val q_begin : unit -> bool

val q_continue : unit -> bool

val q_player : unit -> bool

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val init : unit -> unit

val position : bool -> int -> ’a -> C4_rep.cell array array -> unit

val drawH : int -> C4_rep.cell array array -> unit

val drawM : int -> C4_rep.cell array array -> unit

end

We may also create a new skeleton (C4 skeletonG) which results from the application
of parametric module FSkeleton.

module C4 skeletonG =

FSkeleton (C4 rep) (C4 graph) (C4 eval) (FAlphabeta (C4 rep) (C4 eval)) ; ;

Only the display parameter differs from the text version application of FSkeleton.
We may thereby create a principal module for Connect Four with a graphical user
interface.

module C4 mainG = FMain(C4 skeletonG) ; ;
module C4_mainG :

sig

val play_game : (unit -> ’a) * (unit -> ’b) -> unit

val main : unit -> unit

end

The evaluation of the expression C4 mainG.main() opens a graphical window as in
figure 17.5 and controls the interaction with the user.

Stonehenge

Stonehenge, created by Reiner Knizia, is a game involving construction of “ley-lines.”
The rules are simple to understand but our interest in the game lies in its high number
of possible moves. The rules may be found at:

528 Chapter 17 : Applications

Link: http://www.cix.co.uk/˜convivium/files/stonehen.htm

The initial game position is represented in figure 17.6.

Game Presentation

The purpose of the game is to win at least 8 “ley-lines” (clear lines) out of the 15
available. One gains a line by positioning pieces (or megaliths) on gray positions along
a ley-line.

Figure 17.6: Initial position of Stonehenge.

In turn, each player places one of his 9 pieces, numbered from 1 to 6, on one of the
18 gray internal positions. They may not place a piece on a position that is already
occupied. Each time a piece is placed, one or several ley-lines may be won or lost.

A ley-line is won by a player if the total of the values of his pieces on the line is greater
than the total of the pieces for the other player. There may be empty spaces left if the
opponent has no pieces left that would allow winning the line.

For example in figure 17.7, the black player starts by placing the piece of value 3, the
red player his “2” piece, then the black player plays the “6” piece, winning a line.

Red then plays the “4” piece, also winning a ley-line. This line has not been completely
filled, but red has won because there is no way for black to overcome red’s score.

Two Player Games 529

Note that the red player might just as well have played “3” rather than “4,” and still
won the line. In effect, there is only one free case for this ley-line where the strongest
black piece has a value of 5, and so black cannot beat red for this particular line.

Figure 17.7: Position after 4 moves.

In the case where the scores are equal across a full line, whoever placed the last piece
without having beaten his adversary’s score, loses the line. Figure 17.8 demonstrates
such a situation.

The last red move is piece “4”. On the full line where the “4” is placed, the scores
are equal. Since red was the last player to have placed a piece, but did not beat his
adversary, red loses the line, as indicated by a black block.

We may observe that the function play fills the role of arbitrating and accounting for
these subtleties in the placement of lines.

There can never be a tie in this game. There are 15 lines, each of which will be accounted
for at some point in the game, at which point one of the players will have won at least
8 lines.

Search Complexity

Before completely implementing a new game, it is important to estimate the number
of legal moves between two moves in a game, as well as the number of possible moves

530 Chapter 17 : Applications

Figure 17.8: Position after 6 moves.

for each side. These values may be used to estimate a reasonable maximum depth for
the minimax-αβ algorithm.

In the game Stonehenge, the number of moves for each side is initially based on the
number of pieces for the two players, that is, 18. The number of possible moves dimin-
ishes as the game progresses. At the first move, the player has 6 different pieces and
18 positions free. At the second move, the second player has 6 different pieces, and 17
positions in which they may be placed (102 legal moves). Moving from a depth of 2 to
4 for the initial moves of the game results in the number of choices going from about
104 to about 108.

On the other hand, near the end of the game, in the final 8 moves, the complexity is
greatly reduced. If we take a pessimistic calculation (where all pieces are different), we
obtain about 23 million possibilities:

4 ∗ 8 ∗ 4 ∗ 7 ∗ 3 ∗ 6 ∗ 3 ∗ 5 ∗ 2 ∗ 4 ∗ 2 ∗ 3 ∗ 1 ∗ 2 ∗ 1 ∗ 1 = 23224320

It might seem appropriate to calculate with a depth of around 2 for the initial set of
moves. This may depend on the evaluation function, and on its ability to evaluate the
positions at the start of the game, when there are few pieces in place. On the other

Two Player Games 531

hand, near the end of the game, the depth may readily be increased to around 4 or 6,
but this would probably be too late a point to recover from a weak position.

Implementation

We jump straight into describing the game representation and arbitration so that we
may concentrate on the evaluation function.

The implementation of this game follows the architecture used for Connect Four, de-
scribed in figure 17.4. The two principal difficulties will be to follow the game rules for
the placement of pieces, and the evaluation function, which must be able to evaluate
positions as quickly as possible while remaining useful.

Game Representation. There are four notable data structures in this game:

• the pieces of the players (type piece),

• the positions (type placement),

• the 15 ley-lines,

• the 18 locations where pieces may be placed.

We provide a unique number for each location:

1---2
/ \ / \
3---4---5

/ \ / \ / \
6---7---8---9

/ \ / \ / \ / \
10--11--12--13--14
\ / \ / \ / \ /
15--16--17--18

Each location participates in 3 ley-lines. We also number each ley-line. This description
may be found in the declaration of the list lines, which is converted to a vector
(vector l). A location is either empty, or contains a piece that has been placed, and
the piece’s possessor. We also store, for each location, the number of the lines that pass
through it. This table is calculated by lines per case and is named num line per -
case.

The game is represented by the vector of 18 cases, the vector of 15 ley-lines either won
or not, and the lists of pieces left for the two players. The function game start creates
these four elements.

The calculation of a player’s legal moves resolves into a Cartesian product of the pieces
available against the free positions. Various utility functions allow counting the score
of a player on a line, calculating the number of empty locations on a line, and verifying

532 Chapter 17 : Applications

if a line has already been won. We only need to implement play which plays a move
and decides which pieces to place. We write this function at the end of the listing of
module Stone rep.

module Stone rep = struct

type player = bool

type piece = P of int

let int of piece = function P x → x

type placement = None | M of player

type case = Empty | Occup of player*piece

let value on case = function

Empty → 0

| Occup (j, x) → int of piece x

type game = J of case array * placement array * piece list * piece list

type move = int * piece

let lines = [

[0;1]; [2;3;4]; [5; 6; 7; 8;]; [9; 10; 11; 12; 13]; [14; 15; 16; 17];
[0; 2; 5; 9]; [1; 3; 6; 10; 14]; [4; 7; 11; 15]; [8; 12; 16]; [13; 17];
[9; 14]; [5; 10; 15]; [2; 6; 11; 16]; [0; 3; 7; 12; 17]; [1; 4; 8; 13]]

let vector l = Array.of list lines

let lines per case v =

let t = Array.length v in

let r = Array.create 18 [||] in

for i = 0 to 17 do

let w = Array.create 3 0

and p = ref 0 in

for j=0 to t-1 do if List.mem i v.(j) then (w.(!p) <- j; incr p)

done;
r.(i) <- w

done;
r

let num line per case = lines per case vector l

let rec lines of i i l = List.filter (fun t → List.mem i t) l

let lines of cases l =

let a = Array.create 18 l in

for i=0 to 17 do

a.(i) <- (lines of i i l)

done; a

let ldc = lines of cases lines

let game start ()= let lp = [6; 5; 4; 3; 3; 2; 2; 1; 1] in

J (Array.create 18 Empty, Array.create 15 None,

List.map (fun x → P x) lp, List.map (fun x → P x) lp)

let rec unicity l = match l with

Two Player Games 533

[] → []
| h :: t → if List.mem h t then unicity t else h :: (unicity t)

let legal moves player (J (ca, m, r1, r2)) =

let r = if player then r1 else r2 in

if r = [] then []
else

let l = ref [] in

for i = 0 to 17 do

if value on case ca.(i) = 0 then l:= i :: !l

done;
let l2 = List.map (fun x→

List.map (fun y→ x,y) (List.rev(unicity r))) !l in

List.flatten l2

let copy board p = Array.copy p

let carn copy m = Array.copy m

let rec play piece stone l = match l with

[] → []
| x :: q → if x=stone then q

else x :: (play piece stone q)

let count case player case = match case with

Empty → 0

| Occup (j,p) → if j = player then (int of piece p) else 0

let count line player line pos =

List.fold left (fun x y → x + count case player pos.(y)) 0 line

let rec count max n = function

[] → 0

| t :: q →
if (n>0) then

(int of piece t) + count max (n-1) q

else

0

let rec nbr cases free ca l = match l with

[] → 0

| t :: q → let c = ca.(t) in

match c with

Empty → 1 + nbr cases free ca q

| _ → nbr cases free ca q

let a placement i ma =

match ma.(i) with

None → false

| _ → true

let which placement i ma =

match ma.(i) with

534 Chapter 17 : Applications

None → failwith "which_placement"

| M j → j

let is filled l ca = nbr cases free ca l = 0

(* function play : arbitrates the game *)

let play player move game =

let (c, i) = move in

let J (p, m, r1, r2) = game in

let nr1,nr2 = if player then play piece i r1,r2

else r1, play piece i r2 in

let np = copy board p in

let nm = carn copy m in

np.(c)<-Occup(player,i); (* on play le move *)

let lines of the case = num line per case.(c) in

(* calculation of the placements of the three lines *)

for k=0 to 2 do

let l = lines of the case.(k) in

if not (a placement l nm) then (

if is filled vector l.(l) np then (

let c1 = count line player vector l.(l) np

and c2 = count line (not player) vector l.(l) np in

if (c1 > c2) then nm.(l) <- M player

else (if c2 > c1 then nm.(l) <- M (not player)

else nm.(l) <- M (not player))))

done;

(* calculation of other placements *)

for k=0 to 14 do

if not (a placement k nm) then

if is filled vector l.(k) np then failwith "player"

else

let c1 = count line player vector l.(k) np

and c2 = count line (not player) vector l.(k) np in

let cases free = nbr cases free np vector l.(k) in

let max1 = count max cases free

(if player then nr1 else nr2)

and max2 = count max cases free

(if player then nr2 else nr1) in

if c1 >= c2 + max2 then nm.(k) <- M player

else if c2 >= c1 + max1 then nm.(k) <- M (not player)

done;
J(np,nm,nr1,nr2)

end ; ;
module Stone_rep :

sig

type player = bool

and piece = | P of int

val int_of_piece : piece -> int

type placement = | None | M of player

and case = | Empty | Occup of player * piece

Two Player Games 535

val value_on_case : case -> int

type game = | J of case array * placement array * piece list * piece list

and move = int * piece

val lines : int list list

val vector_l : int list array

val lines_per_case : int list array -> int array array

val num_line_per_case : int array array

val lines_of_i : ’a -> ’a list list -> ’a list list

val lines_of_cases : int list list -> int list list array

val ldc : int list list array

val game_start : unit -> game

val unicity : ’a list -> ’a list

val legal_moves : bool -> game -> (int * piece) list

val copy_board : ’a array -> ’a array

val carn_copy : ’a array -> ’a array

val play_piece : ’a -> ’a list -> ’a list

val count_case : player -> case -> int

val count_line : player -> int list -> case array -> int

val count_max : int -> piece list -> int

val nbr_cases_free : case array -> int list -> int

val a_placement : int -> placement array -> bool

val which_placement : int -> placement array -> player

val is_filled : int list -> case array -> bool

val play : player -> int * piece -> game -> game

end

The function play decomposes into three stages:

1. Copying the game position and placing a move onto this position;

2. Determination of the placement of a piece on one of the three lines of the case
played;

3. Treatment of the other ley-lines.

The second stage verifies that, of the three lines passing through the position of the
move, none has already been won, and then checks if they are able to be won. In
the latter case, it counts scores for each player and determines which strictly has the
greatest score, and attributes the line to the appropriate player. In case of equality, the
line goes to the most recent player’s adversary. In effect, there are no lines with just
one case. A filled line has at least two pieces. Thus if the player which just played has
just matched the score of his adversary, he cannot expect to win the line which then
goes to his adversary. If the line is not filled, it will be analyzed by “stage 3.”

The third stage verifies for each line not yet attributed that it is not filled, and then
checks if a player cannot be beaten by his opponent. In this case, the line is immediately
given to the opponent. To perform this test, it is necessary to calculate the maximum
total potential score of a player on the line (that is, by using his best pieces). If the
line is still under dispute, nothing more is done.

536 Chapter 17 : Applications

Evaluation. The evaluation function must remain simple due to the large number
of cases to deal with near the beginning of the game. The idea is not to excessively
simplify the game by immediately playing the strongest pieces which would then leave
the remainder of the game open for the adversary to play his strong pieces.

We will use two criteria: the number of lines won and an estimate of the potential of
future moves by calculating the value of the remaining pieces. We may use the following
formula for player 1:

score = 50 ∗ (c1 − c2) + 10 ∗ (pr1 − pr2)

where ci is the number of lines won, and pri is the sum of the pieces remaining for
player i.

The formula returns a positive result if the differences between won lines (c1− c2) and
the potentials (pr1 − pr2) turn to the advantage of player 1. We may see thus that a
placement of piece 6 is not appropriate unless it provides a win of at least 2 lines. The
gain of one line provides 50, while using the “6” piece costs 10× 6 points, so we would
thus prefer to play “1” which results in the same score, namely a loss of 10 points.

module Stone eval = struct

open Stone rep

type game = Stone rep.game

exception Done of bool

let moreI = 1000 and lessI = -1000

let nbr lines won (J(ca, m,r1,r2)) =

let c1,c2 = ref 0,ref 0 in

for i=0 to 14 do

if a placement i m then if which placement i m then incr c1 else incr c2

done;
!c1,!c2

let rec nbr points remaining lig = match lig with

[] → 0

| t :: q → (int of piece t) + nbr points remaining q

let evaluate player game =

let (J (ca,ma,r1,r2)) = game in

let c1,c2 = nbr lines won game in

let pr1,pr2 = nbr points remaining r1, nbr points remaining r2 in

match player with

true → if c1 > 7 then moreI else 50 * (c1 - c2) + 10 * (pr1 - pr2)

| false → if c2 > 7 then lessI else 50 * (c1 - c2) + 10 * (pr1 - pr2)

let is leaf player game =

let v = evaluate player game in

v = moreI or v = lessI or legal moves player game = []

Two Player Games 537

let is stable player game = true

type state = G | P | N | C

let state of player m =

let v = evaluate player m in

if v = moreI then if player then G else P

else

if v = lessI

then if player then P else G

else

if legal moves player m = [] then N else C

end; ;
module Stone_eval :

sig

type game = Stone_rep.game

exception Done of bool

val moreI : int

val lessI : int

val nbr_lines_won : Stone_rep.game -> int * int

val nbr_points_remaining : Stone_rep.piece list -> int

val evaluate : bool -> Stone_rep.game -> int

val is_leaf : bool -> Stone_rep.game -> bool

val is_stable : ’a -> ’b -> bool

type state = | G | P | N | C

val state_of : bool -> Stone_rep.game -> state

end

module Stone graph = struct

open Stone rep

type piece = Stone rep.piece

type placement = Stone rep.placement

type case = Stone rep.case

type game = Stone rep.game

type move = Stone rep.move

(* brightness for a piece *)

let brightness = 20

(* the colors *)

let cBlack = Graphics.black

let cRed = Graphics.rgb 165 43 24

let cYellow = Graphics.yellow

let cGreen = Graphics.rgb 31 155 33 (*Graphics.green*)

let cWhite = Graphics.white

let cGray = Graphics.rgb 128 128 128

let cBlue = Graphics.rgb 196 139 25 (*Graphics.blue*)

(* width and height *)

let width = 600

let height = 500

(* the border at the top of the screen from which drawing begins *)

let top offset = 30

538 Chapter 17 : Applications

(* height of foundaries *)

let bounds = 5

(* the size of the border on the left side of the virtual table *)

let virtual table xoffset = 145

(* left shift for the black pieces *)

let choice black offset = 40

(* left shift for the red pieces *)

let choice red offset = 560

(* height of a case for the virtual table *)

let virtual case size = 60

(* corresp : int*int -> int*int *)

(* establishes a correspondence between a location in the matrix *)

(* and a position on the virtual table servant for drawing *)

let corresp cp =

match cp with

0 → (4,1)

| 1 → (6,1)

| 2 → (3,2)

| 3 → (5,2)

| 4 → (7,2)

| 5 → (2,3)

| 6 → (4,3)

| 7 → (6,3)

| 8 → (8,3)

| 9 → (1,4)

| 10 → (3,4)

| 11 → (5,4)

| 12 → (7,4)

| 13 → (9,4)

| 14 → (2,5)

| 15 → (4,5)

| 16 → (6,5)

| 17 → (8,5)

| _ → (0,0)

let corresp2 ((x,y) as cp) =

match cp with

(0,0) → 0

| (0,1) → 1

| (1,0) → 2

| (1,1) → 3

| (1,2) → 4

| (2,0) → 5

| (2,1) → 6

| (2,2) → 7

Two Player Games 539

| (2,3) → 8

| (3,0) → 9

| (3,1) → 10

| (3,2) → 11

| (3,3) → 12

| (3,4) → 13

| (4,0) → 14

| (4,1) → 15

| (4,2) → 16

| (4,3) → 17

| (x,y) → print string "Err ";
print int x;print string " ";
print int y; print newline () ; 0

let col = 5

let lig = 5

(* draw_background : unit -> unit *)

(* draw the screen background *)

let draw background () =

Graphics.clear graph () ;
Graphics.set color cBlue ;
Graphics.fill rect bounds bounds width (height-top offset)

(* draw_places : unit -> unit *)

(* draw the pieces at the start of the game *)

let draw places () =

for l = 0 to 17 do

let cp = corresp l in

if cp <> (0,0) then

begin

Graphics.set color cBlack ;
Graphics.draw circle

((fst cp)*30 + virtual table xoffset)

(height - ((snd cp)*55 + 25)-50) (brightness+1) ;
Graphics.set color cGray ;
Graphics.fill circle

((fst cp)*30 + virtual table xoffset)

(height - ((snd cp)*55 + 25)-50) brightness

end

done

(* draw_force_lines : unit -> unit *)

(* draws ley-lines *)

let draw force lines () =

Graphics.set color cYellow ;
let lst = [((2,1),(6,1)); ((1,2),(7,2)); ((0,3),(8,3));

((-1,4),(9,4)); ((0,5),(8,5)); ((5,0),(1,4));
((7,0),(2,5)); ((8,1),(4,5)); ((9,2),(6,5));
((10,3),(8, 5)); ((3,6),(1,4)); ((5,6),(2,3));

540 Chapter 17 : Applications

((7,6),(3,2)); ((9,6),(4,1)); ((10,5),(6,1))] in

let rec lines l =

match l with

[] → ()
| h :: t → let deb = fst h and complete = snd h in

Graphics.moveto

((fst deb) * 30 + virtual table xoffset)

(height - ((snd deb) * 55 + 25) -50) ;
Graphics.lineto

((fst complete) * 30 + virtual table xoffset)

(height - ((snd complete) * 55 + 25) -50) ;
lines t

in lines lst

(* draw_final_places : unit -> unit *)

(* draws final cases for each ley-line *)

(* coordinates represent in the virtual array

used for positioning *)

let draw final places () =

let lst = [(2,1); (1,2); (0,3); (-1,4); (0,5); (3,6); (5,6);
(7,6); (9,6); (10,5); (10,3); (9,2); (8,1); (7,0);
(5,0)] in

let rec final l =

match l with

[] → ()
| h :: t → Graphics.set color cBlack ;

Graphics.draw circle

((fst h)*30 + virtual table xoffset)

(height - ((snd h)*55 + 25)-50) (brightness+1) ;
Graphics.set color cGreen ;
Graphics.fill circle

((fst h)*30 + virtual table xoffset)

(height - ((snd h)*55 + 25)-50) brightness ;
final t

in final lst

(* draw_table : unit -> unit *)

(* draws the whole game *)

let draw table () =

Graphics.set color cYellow ;
draw background () ;
Graphics.set line width 5 ;
draw force lines () ;
Graphics.set line width 2 ;
draw places () ;
draw final places () ;
Graphics.set line width 1

(* move -> couleur -> unit *)

Two Player Games 541

let draw piece player (n case,P cp) = (* (n_caOccup(c,v),cp) col =*)

Graphics.set color (if player then cBlack else cRed); (*col;*)

let co = corresp n case in

let x = ((fst co)*30 + 145) and y = (height - ((snd co)*55 + 25)-50) in

Graphics.fill circle x y brightness ;
Graphics.set color cWhite ;
Graphics.moveto (x - 3) (y - 3) ;
let dummy = 5 in

Graphics.draw string (string of int cp) (*;*)

(* print_string "---";print_int n_case; print_string " "; print_int cp ;print_newline() *)

(* conv : Graphics.status -> int *)

(* convert a mouse click into a position on a virtual table permitting *)

(* its drawing *)

let conv st =

let xx = st.Graphics.mouse x and yy = st.Graphics.mouse y in

let y = (yy+10)/virtual case size - 6 in

let dec =

if y = ((y/2)*2) then 60 else 40 in

let offset = match (-1*y) with

0 → -2

| 1 → -1

| 2 → -1

| 3 → 0

| 4 → -1

| _ → 12 in

let x = (xx+dec)/virtual case size - 3 + offset in

(-1*y, x)

(* line_number_to_aff : int -> int*int *)

(* convert a line number into a polition on the virtual table serving *)

(* for drawing *)

(* the coordinate returned corresponds to the final case for the line *)

let line number to aff n =

match n with

0 → (2,1)

| 1 → (1,2)

| 2 → (0,3)

| 3 → (-1,4)

| 4 → (0,5)

| 5 → (5,0)

| 6 → (7,0)

| 7 → (8,1)

| 8 → (9,2)

| 9 → (10,3)

| 10 → (3,6)

| 11 → (5,6)

| 12 → (7,6)

| 13 → (9,6)

| 14 → (10,5)

| _ → failwith "line" (*raise Rep.Out_of_bounds*)

542 Chapter 17 : Applications

(* draw_lines_won : game -> unit *)

(* position a marker indicating the player which has taken the line *)

(* this is done for all lines *)

let drawb l i =

match l with

None → failwith "draw"

| M j → let pos = line number to aff i in

(* print_string "’’’’";

print_int i;

print_string "---";

Printf.printf "%d,%d\n" (fst pos) (snd pos);

*) Graphics.set color (if j then cBlack else cRed);
Graphics.fill rect ((fst pos)*30 + virtual table xoffset-bounds)

(height - ((snd pos)*55 + 25)-60) 20 40

let draw lines won om nm =

for i=0 to 14 do

if om.(i) <> nm.(i) then drawb nm.(i) i

done

(*********************

let black_lines = Rep.lines_won_by_player mat Rep.Noir and

red_lines = Rep.lines_won_by_player mat Rep.Rouge

in

print_string "black : "; print_int (Rep.list_size black_lines);

print_newline () ;

print_string "red : "; print_int (Rep.list_size red_lines);

print_newline() ;

let rec draw l col =

match l with

[] -> ()

| h::t -> let pos = line_number_to_aff h in

Graphics.set_color col ;

Graphics.fill_rect ((fst pos)*30 + virtual_table_xoffset-bounds)

(height - ((snd pos)*55 + 25)-60) 20 40 ;

draw t col

in draw black_lines cBlack ;

draw red_lines cRed

***)

(* draw_poss : item list -> int -> unit *)

(* draw the pieces available for a player based on a list *)

(* the parameter "off" indicates the position at which to place the list *)

let draw poss player lst off =

let c = ref (1) in

let rec draw l =

match l with

[] → ()
| v :: t → if player then Graphics.set color cBlack

else Graphics.set color cRed;
let x = off and

Two Player Games 543

y = 0+(!c)*50 in

Graphics.fill circle x y brightness ;
Graphics.set color cWhite ;
Graphics.moveto (x - 3) (y - 3) ;
Graphics.draw string (string of int v) ;
c := !c + 1 ;
draw t

in draw (List.map (function P x → x) lst)

(* draw_choice : game -> unit *)

(* draw the list of pieces still available for each player *)

let draw choice (J (ca,ma,r1,r2)) =

Graphics.set color cBlue ;
Graphics.fill rect (choice black offset-30) 10 60

(height - (top offset + bounds)) ;
Graphics.fill rect (choice red offset-30) 10 60

(height - (top offset + bounds)) ;
draw poss true r1 choice black offset ;
draw poss false r2 choice red offset

(* wait_click : unit -> unit *)

(* wait for a mouse click *)

let wait click () = Graphics.wait next event [Graphics.Button down]

(* item list -> item *)

(* return, for play, the piece chosen by the user *)

let select pion player lst =

let ok = ref false and

choice = ref 99 and

pion = ref (P(-1))

in

while not !ok do

let st = wait click () in

let size = List.length lst in

let x = st.Graphics.mouse x and y = st.Graphics.mouse y in

choice := (y+25)/50 - 1 ;
if !choice <= size && ((player && x < 65)

|| ((not player) && (x > 535))) then ok := true

else ok := false ;
if !ok then

try

pion := (List.nth lst !choice) ;
Graphics.set color cGreen ;
Graphics.set line width 2 ;
Graphics.draw circle

(if player then choice black offset else choice red offset)

((!choice+1)*50) (brightness + 1)

with _ → ok := false ;
done ;

544 Chapter 17 : Applications

!pion

(* choiceH : game -> move *)

(* return a move for the human player.

return the choice of the number, the case, and the piece *)

let rec choice player game = match game with (J(ca,ma,r1,r2)) →
let choice = ref (P(-1))

and c = ref (-1, P(-1)) in

let lcl = legal moves player game in

while not (List.mem !c lcl) do

print newline () ;print string "CHOICE";
List.iter (fun (c,P p) → print string "["; print int c;print string " ";

print int p;print string "]")

(legal moves player game);
draw choice game;
choice := select pion player (if player then r1 else r2) ;

(* print_string "choice "; print_piece !choice;*)

c := (corresp2 (conv (wait click ())), !choice)

(* let (x,y) = !c in

(print_string "...";print_int x; print_string " "; print_piece y;

print_string " -> ";

print_string "END_CHOICE";print_newline())

*) done ;
!c (* case, piece *)

(* home : unit -> unit *)

(* place a message about the game *)

let home () =

Graphics.open graph

(" " ^ (string of int (width + 10)) ^ "x" ^ (string of int (height + 10))

^ "+50+50") ;
Graphics.moveto (height / 2) (width / 2) ;
Graphics.set color cBlue ;
Graphics.draw string "Stonehenge" ;
Graphics.set color cBlack ;
Graphics.moveto 2 2 ;
Graphics.draw string "Mixte Projets Maı̂trise & DESS GLA" ;
wait click () ;
Graphics.clear graph ()

(* exit : unit -> unit *)

(* close everything ! *)

let exit () =

Graphics.close graph ()

(* draw_button : int -> int -> int -> int -> string -> unit *)

(* draw a button with a message *)

let draw button x y w h s =

Graphics.set line width 1 ;
Graphics.set color cBlack ;
Graphics.moveto x y ;

Two Player Games 545

Graphics.lineto x (y+h) ;
Graphics.lineto (x+w) (y+h) ;
Graphics.lineto (x+w) y ;
Graphics.lineto x y ;
Graphics.moveto (x+bounds) (height - (top offset/2)) ;
Graphics.draw string s

(* draw_message : string -> unit *)

(* position a message *)

let draw message s =

Graphics.set color cBlack;
Graphics.moveto 3 (height - (top offset/2)) ;
Graphics.draw string s

(* erase_message : unit -> unit *)

(* as the name indicates *)

let erase message () =

Graphics.set color Graphics.white;
Graphics.fill rect 0 (height-top offset+bounds) width top offset

(* question : string -> bool *)

(* pose the user a question, and wait for a yes/no response *)

let question s =

let xb1 = (width/2) and xb2 = (width/2 + 30) and wb = 25 and hb = 16

and yb = height - 20 in

let rec attente () =

let e = wait click () in

if (e.Graphics.mouse y < (yb+hb)) & (e.Graphics.mouse y > yb) then

if (e.Graphics.mouse x > xb1) & (e.Graphics.mouse x < (xb1+wb)) then

true

else

if (e.Graphics.mouse x > xb2) & (e.Graphics.mouse x < (xb2+wb)) then

false

else

attente ()
else

attente () in

draw message s;
draw button xb1 yb wb hb "yes";
draw button xb2 yb wb hb "no";
attente ()

(* q_begin : unit -> bool *)

(* Ask if the player wishes to be the first player or not *)

let q begin () =

let b = question "Would you like to play first ?" in

erase message () ;
b

(* q_continue : unit -> bool *)

(* Ask if the user wishes to play the game again *)

546 Chapter 17 : Applications

let q continue () =

let b = question "Play again ?" in

erase message () ;
b

(* won : unit -> unit *)

(* a message indicating the machine has won *)

let won () = draw message "I won :-)"; wait click () ; erase message ()

(* lost : unit -> unit *)

(* a message indicating the machine has lost *)

let lost () = draw message "You won :-("; wait click () ; erase message ()

(* nil : unit -> unit *)

(* a message indicating stalemate *)

let nil () = draw message "Stalemate"; wait click () ; erase message ()

(* init : unit -> unit *)

(* draw the initial game board *)

let init () = let game = game start () in

draw table () ;
draw choice game

(* drawH : move -> game -> unit *)

(* draw a piece for the human player *)

(* let drawH cp j = draw_piece cp cBlack ;

draw_lines_won j

*)

(* drawM : move -> game -> unit *)

(* draw a piece for the machine player *)

(* let drawM cp j = draw_piece cp cRed ;

draw_lines_won j

*)

let print placement m = match m with

None → print string "None "

| M j → print string ("Pl "^(if j then "1 " else "2 "))

let position player move

(J(ca1,m1,r11,r12))

(J(ca2,m2,r21,r22) as new game) =

draw piece player move;
draw choice new game;

(* print_string "_______OLD___________________\n";

Array.iter print_placement m1; print_newline();

List.iter print_piece r11; print_newline();

List.iter print_piece r12; print_newline();

print_string "_______NEW___________________\n";

Array.iter print_placement m2; print_newline();

List.iter print_piece r21; print_newline();

List.iter print_piece r22; print_newline();

*) draw lines won m1 m2

(*

Two Player Games 547

if player then draw_piece move cBlack

else draw_piece move cRed

*)

let q player () =

let b = question "Is there a machine playing?" in

erase message () ;
b

end; ;
Characters 11114-11127:

Warning: this expression should have type unit.

Characters 13197-13209:

Warning: this expression should have type unit.

Characters 13345-13357:

Warning: this expression should have type unit.

Characters 13478-13490:

Warning: this expression should have type unit.

module Stone_graph :

sig

type piece = Stone_rep.piece

and placement = Stone_rep.placement

and case = Stone_rep.case

and game = Stone_rep.game

and move = Stone_rep.move

val brightness : int

val cBlack : Graphics.color

val cRed : Graphics.color

val cYellow : Graphics.color

val cGreen : Graphics.color

val cWhite : Graphics.color

val cGray : Graphics.color

val cBlue : Graphics.color

val width : int

val height : int

val top_offset : int

val bounds : int

val virtual_table_xoffset : int

val choice_black_offset : int

val choice_red_offset : int

val virtual_case_size : int

val corresp : int -> int * int

val corresp2 : int * int -> int

val col : int

val lig : int

val draw_background : unit -> unit

val draw_places : unit -> unit

val draw_force_lines : unit -> unit

val draw_final_places : unit -> unit

val draw_table : unit -> unit

val draw_piece : bool -> int * Stone_rep.piece -> unit

val conv : Graphics.status -> int * int

val line_number_to_aff : int -> int * int

val drawb : Stone_rep.placement -> int -> unit

548 Chapter 17 : Applications

val draw_lines_won :

Stone_rep.placement array -> Stone_rep.placement array -> unit

val draw_poss : bool -> Stone_rep.piece list -> int -> unit

val draw_choice : Stone_rep.game -> unit

val wait_click : unit -> Graphics.status

val select_pion : bool -> Stone_rep.piece list -> Stone_rep.piece

val choice : bool -> Stone_rep.game -> int * Stone_rep.piece

val home : unit -> unit

val exit : unit -> unit

val draw_button : int -> int -> int -> int -> string -> unit

val draw_message : string -> unit

val erase_message : unit -> unit

val question : string -> bool

val q_begin : unit -> bool

val q_continue : unit -> bool

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val init : unit -> unit

val print_placement : Stone_rep.placement -> unit

val position :

bool ->

int * Stone_rep.piece -> Stone_rep.game -> Stone_rep.game -> unit

val q_player : unit -> bool

end

Assembly. We thus write module Stone graph which describes a graphical inter-
face compatible with signature DISPLAY. We construct Stone skeletonG similar to
C4 skeletonG, passing in the arguments appropriate for the Stonehenge game, apply-
ing the parametric module FSkeleton.

module Stone skeletonG = FSkeleton (Stone rep)

(Stone graph)

(Stone eval)

(FAlphabeta (Stone rep) (Stone eval)) ; ;
module Stone_skeletonG :

sig

val depth : int ref

exception Won

exception Lost

exception Nil

val won : unit -> unit

val lost : unit -> unit

val nil : unit -> unit

val again : unit -> bool

val play_game : Stone_graph.game ref

val exit : unit -> unit

val home : unit -> unit

val playH : bool -> unit -> unit

Two Player Games 549

val playM : bool -> unit -> unit

val init : unit -> (unit -> unit) * (unit -> unit)

end

We may thus construct the principal module Stone mainG.
module Stone mainG = FMain(Stone skeletonG) ; ;
module Stone_mainG :

sig

val play_game : (unit -> ’a) * (unit -> ’b) -> unit

val main : unit -> unit

end

Launching Stone mainG.main () opens the window shown in figure 17.6. After dis-
playing a dialogue to show who is playing, the game begins. A human player will select
a piece and place it.

To Learn More

This organization of these applications involves using several parametric modules that
permit direct reuse of FAlphabeta and FSkeleton for the two games we have written.
With Stonehenge, some of the functions from Stone rep, needed for play, which do
not appear in REPRESENTATION, are used by the evaluation function. That is why the
module Stone rep was not closed immediately by REPRESENTATION. This partitioning
of modules for the specific aspects of games allows incremental development without
making the game schema dependencies (presented in figure 17.4) fragile.

A first enhancement involves games where given a position and a move, it is easy to
determine the preceding position. In such cases, it may be more efficient to not bother
making a copy of the game for function play, but rather to conserve a history of moves
played to allow backtracking. This is the case for Connect 4, but not for Stonehenge.

A second improvement is to capitalize on a player’s response time by evaluating future
positions while the other player is selecting his next move. For this, one may use threads
(see chapter 19), which allow concurrent calculation. If the player’s response is one that
has already been explored, the gain in time will be immediate, if not we must start
again from the new position.

A third enhancement is to build and exploit dictionaries of opening moves. We have
been able to do so with Stonehenge, but it is also useful for many other games where
the set of legal moves to explore is particularly large and complex at the start of the
game. There is much to be gained from estimating and precalculating some “best”
moves from the starting positions and retaining them in some sort of database. One
may add a bit of “spice” (and perhaps unpredictability) to the games by introducing
an element of chance, by picking randomly from a set of moves with similar or identical
values.

550 Chapter 17 : Applications

A fourth view is to not limit the search depth to a fixed depth value, but rather to
limit the search by a calculation time period that is not to be exceeded. In this manner,
the program will be able to efficiently search to deeper depths when the number of
remaining moves becomes limited. This modification requires slight modification to
minmax in order to be able to re-examine a tree to increase its depth.

A game-dependent heuristic, parameterized by minmax, may be to choose which branches
in the search should be pursued and which may be quickly abandoned.

There are also many other games that require little more than to be implemented or
reimplemented. We might cite many classic games: Checkers, Othello, Abalone, . . . ,
but also many lesser-known games that are, nevertheless, readily playable by computer.
You may find on the web various student projects including Checkers or the game Nuba.

Link: http://www.gamecabinet.com/rules/Nuba.html

Games with stochastic qualities, such as card games and dice games, necessitate a
modification of the minimax-αβ algorithm in order to take account of the probabilities
of the selections.

We will return to the interfaces of games in chapter 21 in constructing web-based in-
terfaces, providing without further cost the ability to return to the last move. This also
allows further benefits from the modular organization that allows modifying no more
than just an element, here the game state and interactions, to extend the functionality
to support two player games.

Fancy Robots

The example in this section illustrates the use of objects from the graphics library.
We will revisit the concepts of simple inheritance, overriding methods and dynamic
dispatch. We also see how parametric classes may be profitably used.

The application recognizes two principal categories of objects: a world and robots. The
world represents a state space within which the robots evolve. We will have various
classes of robots, each possessing its own strategy to move around in the world.

The principle of interaction between robots and the world here is extremely simple.
The world is completely in control of the game: it asks, turn by turn, each of the robots
if they know their next position. Each robot determines its next position fairly blindly.
They do not know the geometry of the world, nor what other robots may be present.
If the position requested by a robot is legal and open, the world will place the robot
at that position.

The world displays the evolution of the robots via an interface. The (relative) com-
plexity of the conception and development of this example is in the always-necessary
separation between a behavior (here the evolution of the robots) and its interface (here
the tracking of this evolution).

Fancy Robots 551

General Description The application is developed in two stages.

1. A group of definitions providing pure calculation classes for the world and for
the diverse set of envisaged robots.

2. A group of definitions using the preceding set, adding whatever is necessary to
add in an interface.
We provide two examples of such interfaces: a rudimentary text-based interface,
and a more elaborate one using a graphical library.

In the first section, we provide the abstract definitions for the robots. Then (page 553),
we provide the pure abstract definition for the world. In the next section (page 554),
we introduce the text interface for the robots, and in the fourth section (page 556), the
interface for the world. On page 559 we introduce a graphical interface for the robots
and finally (page 562) we define a world for the graphical interface.

“Abstract” Robots

The first thing to do is to examine robots abstractly, independent of any consideration
of the environment in which they will move, that is to say, the interface that displays
them.

class virtual robot (i0:int) (j0:int) =

object

val mutable i = i0

val mutable j = j0

method get pos = (i,j)

method set pos (i’, j’) = i <- i’; j <- j’

method virtual next pos : unit → (int * int)

end ; ;

A robot is an entity which knows, or believes it knows, its position (i and j), is
capable of communicating that position to a requester (get pos), is able to modify
this knowledge if it knows precisely where it should be (set pos) and may decide to
move towards a new position (next pos).

To improve the readability of the program, we define relative movements based on
absolute directions:

type dir = North | East | South | West | Nothing ; ;

let walk (x,y) = function

North → (x,y+1) | South → (x,y-1)

| West → (x-1,y) | East → (x+1,y)

| Nothing → (x,y) ; ;
val walk : int * int -> dir -> int * int = <fun>

let turn right = function

552 Chapter 17 : Applications

crazy_robot obstinate_robot
wanted_pos, dir

set_wanted
change_dir

interactive_robot

get_move

robot
i, j

get_pos
set_pos
next_pos

fix_robot

Figure 17.9: Hierarchy of pure robot classes

North → East | East → South | South → West | West → North | x → x ; ;
val turn_right : dir -> dir = <fun>

The schema is shown by the virtual class robots from which we define four distinct
species of robots (see figure 17.9) to more precisely see their manner of motion:

• Fixed robots which never move:
class fix robot i0 j0 =

object

inherit robot i0 j0

method next pos () = (i,j)

end ; ;

• Crazy robots which move at random:
class crazy robot i0 j0 =

object

inherit robot i0 j0

method next pos () = (i+(Random.int 3)-1 , j+(Random.int 3)-1)

end ; ;

• Obstinate robots which keep trying to advance in one direction whenever they
are able to do so,

class obstinate robot i0 j0 =

object(self)

inherit robot i0 j0

val mutable wanted pos = (i0,j0)

val mutable dir = West

method private set wanted pos d = wanted pos <- walk (i,j) d

method private change dir = dir <- turn right dir

Fancy Robots 553

method next pos () = if (i,j) = wanted pos

then let np = walk (i,j) dir in (wanted pos <- np ; np)

else (self#change dir ; wanted pos <- (i,j) ; (i,j))

end ; ;

• Interactive robots which obey the commands of an exterior operator:

class virtual interactive robot i0 j0 =

object(self)

inherit robot i0 j0

method virtual private get move : unit → dir

method next pos () = walk (i,j) (self#get move ())
end ; ;

The case of the interactive robot is different from the others in that its behavior is
controlled by an interface that permits communicating orders to it. To deal with this,
we provide a virtual method to communicate this order. As a consequence, the class
interactive robot remains abstract.

Note that not only do the four specialized robot classes inherit from class robot, but
also any others that have the same type. In effect, the only methods that we have
added are the private methods that therefore do not appear in the type signatures of
the instances of these classes (see page 449). This property is indispensable if we wish
to consider all the robots to be objects of the same type.

Pure World

A pure world is a world that is independent of an interface. It is understood as the state
space of positions which a robot may occupy. It takes the form of a grid of size l × h,
with a method is legal to assure that a coordinate is a valid position in the world,
and a method is free indicates whether or not a robot occupies a given position.

In practice, a world manages the list of robots present on its surface while a method,
add, allows new robots to enter the world.

Finally, a world is made visible by the method run, allowing the world to come to life.

class virtual [’robot type] world (l0:int) (h0:int) =

object(self)

val l = l0

val h = h0

val mutable robots = ([] : ’robot type list)

method add r = robots <- r :: robots
method is free p = List.for all (fun r → r#get pos <> p) robots

method virtual is legal : (int * int) → bool

method private run robot r =

let p = r#next pos ()

554 Chapter 17 : Applications

in if (self#is legal p) & (self#is free p) then r#set pos p

method run () =

while true do List.iter (function r → self#run robot r) robots done

end ; ;
class virtual [’a] world :

int ->

int ->

object

constraint ’a =

< get_pos : int * int; next_pos : unit -> int * int;

set_pos : int * int -> unit; .. >

val h : int

val l : int

val mutable robots : ’a list

method add : ’a -> unit

method is_free : int * int -> bool

method virtual is_legal : int * int -> bool

method run : unit -> unit

method private run_robot : ’a -> unit

end

The Objective Caml type system does not permit leaving the types of robots undeter-
mined (see page 460). To resolve this problem, we might consider restraining the type
to those of the class robot. But that would forbid populating a world with objects
other than those having exactly the same type as robot. As a result, we have instead
decided to parameterize world with the type of the robots that populate it. We may
thereby instantiate this type parameter with textual robots or graphical robots.

Textual Robots

Text Objects To obtain robots controllable via a textual interface, we define a class
of text objects (txt object).

class txt object (s0:string) =

object

val name = s0

method get name = name

end ; ;

An Interface Class: Abstract Textual Robots By double inheritance from robots
and txt object, we obtain the abstract class txt robot of textual robots.

class virtual txt robot i0 j0 =

object

Fancy Robots 555

inherit robot i0 j0

inherit txt object "Anonymous"

end ; ;
class virtual txt_robot :

int ->

int ->

object

val mutable i : int

val mutable j : int

val name : string

method get_name : string

method get_pos : int * int

method virtual next_pos : unit -> int * int

method set_pos : int * int -> unit

end

This class defines a world with a textual interface (see page 556). The inhabitants of
this world will not be objects of txt robot (since this class is abstract) nor inheritors of
this class. The class txt robot is, in a way, an interface classe permitting the compiler
to identify the method types (calculations and interfaces) of the inhabitants of the text
interface world. The use of such a specification class provides the separation we wish
to maintain between calculations and interface.

Concrete Text Robots These are simply obtained via double inheritance; figure
17.10 shows the hierarchy of classes.

class fix txt robot i0 j0 =

object

inherit fix robot i0 j0

inherit txt object "Fix robot"

end ; ;

class crazy txt robot i0 j0 =

object

inherit crazy robot i0 j0

inherit txt object "Crazy robot"

end ; ;

class obstinate txt robot i0 j0 =

object

inherit obstinate robot i0 j0

inherit txt object "Obstinate robot"

end ; ;

The interactive robots require, for a workable implementation, defining their method
of interacting with the user.

556 Chapter 17 : Applications

txt_object
name

get_name

robot
...

...

txt_robot

fix_robot fix_txt_robot

crazy_robot crazy_txt_robot

obstinate_robot
...

...

obstinate_txt_robot

interactive_robot

...

interactive_txt_robot

Figure 17.10: Hierarchy of classes for text mode robots

class interactive txt robot i0 j0 =

object

inherit interactive robot i0 j0

inherit txt object "Interactive robot"

method private get move () =

print string "Which dir : (n)orth (e)ast (s)outh (w)est ? ";
match read line () with

"n" → North | "s" → South

| "e" → East | "w" → West

| _ → Nothing

end ; ;

Textual World

The text interface world is derived from the pure world by:

1. Inheritance from the generic class world by instantiating its type parameter with
the class specified by txt robot, and

2. Redefinition of the method run to include the different textual methods.

Fancy Robots 557

class virtual txt world (l0:int) (h0:int) =

object(self)

inherit [txt robot] world l0 h0 as super

method private display robot pos r =

let (i,j) = r#get pos in Printf.printf "(%d,%d)" i j

method private run robot r =

let p = r#next pos ()
in if (self#is legal p) & (self#is free p)

then

begin

Printf.printf "%s is moving from " r#get name ;
self#display robot pos r ;
print string " to " ;
r#set pos p;
self#display robot pos r ;

end

else

begin

Printf.printf "%s is staying at " r#get name ;
self#display robot pos r

end ;
print newline () ;
print string"next - ";
ignore (read line ())

method run () =

let print robot r =

Printf.printf "%s is at " r#get name ;
self#display robot pos r ;
print newline ()

in

print string "Initial state :\n";
List.iter print robot robots;
print string "Running :\n";
super#run () (* 1 *)

end ; ;

We direct the reader’s attention to the call to run of the ancestor class (this method
call is marked (* 1 *) in the code) in the redefinition of the same method. There we
have an illustration of the two possible types of method dispatch: static or dynamic
(see page 446). The call to super#run is static. This is why we name the superclass: to
be able to call the methods when they are redefined. On the other hand, in super#run

we find a call to self#run robot. This is a dynamic dispatch; the method defined in
class txt world is executed, not that of world. Were the method from world executed,
nothing would be displayed, and the method in txt world would remain useless.

558 Chapter 17 : Applications

The planar rectangular text world is obtained by implementing the final method
that still remains abstract: is legal.

class closed txt world l0 h0 =

object(self)

inherit txt world l0 h0

method is legal (i,j) = (0<=i) & (i<l) & (0<=j) & (j<h)

end ; ;

l, h, robots

add
is_free
is_legal

run_robot
run

display_robot_pos

[’a] world

txt_world

closed_txt_world

txt_robot

Figure 17.11: Hierarchy of classes in the textual planar rectangular world

We may proceed with a small essay in typing:
let w = new closed txt world 5 5

and r1 = new fix txt robot 3 3

and r2 = new crazy txt robot 2 2

and r3 = new obstinate txt robot 1 1

and r4 = new interactive txt robot 0 0

in w#add r1; w#add r2; w#add r3; w#add r4; w#run () ; ;

We may skip, for the moment, the implementation of a graphical interface for our world
of robots. In due course, we will obtain an application having an appearance like figure
17.12.

Fancy Robots 559

Figure 17.12: The graphical world of robots

Graphical Robots

We may implement robots in a graphical mode by following the same approach as with
the text mode:

1. define a generic graphical object,

2. define an abstract class of graphical robots by double inheritance from robots
and graphical objects (analogous to the interface class of page 554),

3. define, through double inheritance, the particular behavior of robots.

Generic Graphical Objects

A simple graphical object is an object possessing a display method which takes, as
arguments, the coordinates of a pixel and displays it.

class virtual graph object =

object

method virtual display : int → int → unit

end ; ;

From this specification, it would be possible to implement graphical objects with ex-
tremely complex behavior. We will content ourselves for now with a class graph item,
displaying a bitmap that serves to represent the object.

class graph item x y im =

object (self)

560 Chapter 17 : Applications

val size box x = x

val size box y = y

val bitmap = im

val mutable last = None

method private erase = match last with

Some (x,y,img) → Graphics.draw image img x y

| None → ()

method private draw i j = Graphics.draw image bitmap i j

method private keep i j =

last <- Some (i,j,Graphics.get image i j size box x size box y) ;

method display i j = match last with

Some (x,y,img) → if x<>i || y<>j

then (self#erase ; self#keep i j ; self#draw i j)

| None → (self#keep i j ; self#draw i j)

end ; ;

An object of graph item stores the portion of the image upon which it is drawn in
order to restore it in subsequent redraws. In addition, if the image has not been moved,
it will not be redrawn.

let foo bitmap = [|[| Graphics.black |]|] ; ;
class square item x col =

object

inherit graph item x x (Graphics.make image foo bitmap)

method private draw i j =

Graphics.set color col ;
Graphics.fill rect (i+1) (j+1) (x-2) (x-2)

end ; ;

class disk item r col =

object

inherit graph item (2*r) (2*r) (Graphics.make image foo bitmap)

method private draw i j =

Graphics.set color col ;
Graphics.fill circle (i+r) (j+r) (r-2)

end ; ;

class file bitmap item name =

let ch = open in name

in let x = Marshal.from channel ch

in let y = Marshal.from channel ch

in let im = Marshal.from channel ch

in let () = close in ch

in object

inherit graph item x y (Graphics.make image im)

end ; ;

Fancy Robots 561

We specialize the graph item with instances of crosses, disks, and other bitmaps, read
from a file.

The abstract graphical robot is both a robot and a graphical object.

class virtual graph robot i0 j0 =

object

inherit robot i0 j0

inherit graph object

end ; ;

Graphical robots that are fixed, crazy, and obstinate are specialized graphical
objects.

class fix graph robot i0 j0 =

object

inherit fix robot i0 j0

inherit disk item 7 Graphics.green

end ; ;

class crazy graph robot i0 j0 =

object

inherit crazy robot i0 j0

inherit file bitmap item "crazy_bitmap"

end ; ;

class obstinate graph robot i0 j0 =

object

inherit obstinate robot i0 j0

inherit square item 15 Graphics.black

end ; ;

The interactive graphical robot uses the primitives key pressed and read key
of module Graphics to determine its next move. We again see the key presses 8, 6, 2
and 4 on the numeric keypad (NumLock button active). In this manner, the user is not
obliged to provide direction at each step in the simulation.

class interactive graph robot i0 j0 =

object

inherit interactive robot i0 j0

inherit file bitmap item "interactive_bitmap"

method private get move () =

if not (Graphics.key pressed ()) then Nothing

else match Graphics.read key () with

562 Chapter 17 : Applications

’8’ → North | ’2’ → South | ’4’ → West | ’6’ → East | _ → Nothing

end ; ;

Graphical World

We obtain a world with a graphical interface by inheriting from the pure world, instan-
tiating the parameter ’a_robot with the graphical robot abstract class graph robot.
As with the text mode world, the graphical world provides its own method, run robot,
to implement the robot’s behavior as well as the general activation method run.

let delay x = let t = Sys.time () in while (Sys.time ()) -. t < x do () done ; ;

class virtual graph world l0 h0 =

object(self)

inherit [graph robot] world l0 h0 as super

initializer

let gl = (l+2)*15 and gh = (h+2)*15 and lw=7 and cw=7

in Graphics.open graph (" "^(string of int gl)^"x"^(string of int gh)) ;
Graphics.set color (Graphics.rgb 170 170 170) ;
Graphics.fill rect 0 lw gl lw ;
Graphics.fill rect (gl-2*lw) 0 lw gh ;
Graphics.fill rect 0 (gh-2*cw) gl cw ;
Graphics.fill rect lw 0 lw gh

method run robot r = let p = r#next pos ()
in delay 0.001 ;

if (self#is legal p) & (self#is free p)

then (r#set pos p ; self#display robot r)

method display robot r = let (i,j) = r#get pos

in r#display (i*15+15) (j*15+15)

method run () = List.iter self#display robot robots ;
super#run ()

end ; ;

Note that the graphical window is created at the time that an object of this class is
initialized.

The rectangular planar graphical world is obtained in much the same manner
as with the rectangular planar textual world.

class closed graph world l0 h0 =

object(self)

inherit graph world l0 h0

Fancy Robots 563

method is legal (i,j) = (0<=i) & (i<l) & (0<=j) & (j<h)

end ; ;
class closed_graph_world :

int ->

int ->

object

val h : int

val l : int

val mutable robots : graph_robot list

method add : graph_robot -> unit

method display_robot : graph_robot -> unit

method is_free : int * int -> bool

method is_legal : int * int -> bool

method run : unit -> unit

method run_robot : graph_robot -> unit

end

We may then test the graphical application by typing in:

let w = new closed graph world 10 10 ; ;
w#add (new fix graph robot 3 3) ; ;
w#add (new crazy graph robot 2 2) ; ;
w#add (new obstinate graph robot 1 1) ; ;
w#add (new interactive graph robot 5 5) ; ;
w#run () ; ;

To Learn More

The implementation of the method run robot in different worlds suggests that the
robots are potentially able to move to any point on the world the moment it is empty
and legal. Unfortunately, nothing prevents a robot from modifying its position arbitrar-
ily; the world cannot prevent it. One remedy would consist of having robot positions
being controlled by the world; when a robot attempts to move, the world verifies not
only that the new position is legal, but also that it constitutes an authorized move.
In that case, the robot must be capable of asking the world its actual position, with
the result that the robot class must become dependent on the world’s class. The robot
class would take, as a type parameter, the world class.

This modification permits defining robots capable of querying the world in which they
run, thus behaving as dependents of the world. We may then implement robots which
follow or avoid other robots, try to block them, and so forth.

Another extension would be to permit robots to communicate with one another, ex-
changing information, perhaps constituting themselves into teams of robots.

The chapters of the next section allow making execution of robots independent from
one another: by making use of Threads (see page 599), each may execute as a distinct

564 Chapter 17 : Applications

process. They may profit from the possibilities of distributed computing (see 623)
where the robots become clients executing on remote machines that announce their
movements or request other information from a world that behaves as a server. This
problem is dealt with on page 656.

