
Part IV

Concurrency and distribution

565

567

The fourth part introduces the concepts of parallel programming and presents models
for shared and distributed memory. It is not necessary to have access to a parallel super-
computer to express concurrent algorithms or to implement distributed applications.
In this preamble we define the different terms used in the following chapters.

In sequential programming, one instruction is executed after another. This is called
causal dependency. Sequential programs have the property of being deterministic. For
the same input, one program will always terminate or never terminate. In the case of
termination, always the same result will be produced. Determinism implies that the
same circumstances will always lead to the same effects. The only exceptions, which
we have already met in Objective Caml, are provided by functions taking external
information as input, such as the function Sys.time.

In parallel programming, a program is split into several active processes. Each process
is sequential, but several instructions, belonging to different processes, are executed
in parallel, “at the same time.” The sequence is transformed into concurrency. This is
called causal independence. The same circumstances may lead to different, mutually
exclusive effects (only one effect is produced). An immediate consequence is the loss
of determinism: the same program with the same input may or may not terminate. In
the case of termination different results may be produced.

In order to control the execution of a parallel program, it is necessary to introduce two
new notions:

• synchronization, which introduces a conditional wait to several processes;

• communication through the passing of messages between processes.

From the point of view of causality, synchronization assures that several independent
circumstances have to be reproduced before an effect may take place. Communications
have a temporal constraint: a message can not be received before it is sent. Communi-
cation can occur in different variants: communication directed from one process to one
other (point-to-point) or as distribution (one-to-all, or all-to-all).

The two models of parallel programming described by figure 17.13 differ in execution
control by the forms of synchronization and communication.

Each process Pi corresponds to a sequential process. The set of these processes, inter-
acting via shared memory (M) or via a medium, constitutes a parallel application.

Shared Memory Model Communication is implicit in the shared memory model.
An information is given through writing into a zone of the shared memory. It is received
when another process reads this zone. The synchronization, in contrast, has to be
explicit. Constructs of mutual exclusion and waiting conditions are used.

This model is used when shared resources are used in a concurrent way. The construc-
tion of operating systems can be cited as an example.

568

P2P1

P3

M P2P1

P3

M2M1

M3

Shared Memory Distributed Memory

medium

Figure 17.13: Models of parallelism

Distributed Memory Model In this model each sequential process Pi has a private
memory Mi, to which no other process has access. The processes have to communicate
in order to transmit information through a medium. The difficulties in this model arise
from the implementation of the medium. The programs which care for this are called
protocols.

Protocols are organized in layers. The higher-level protocols implement more elaborate
services, using the lower-level services.

There exist several types of communication. They depend on the capability of the
medium to store information and of the blocking, respectively non-blocking character
of sender and receiver. We talk about synchronous communication when the transfer of
information is not possible before a global synchronization between sender and receiver
takes place. In his case both sender and receiver may be blocked.

If the medium has the storage capabilities, it can store messages for a later transmis-
sion. Therefore the communication can be asynchronous and non-blocking. It may be
necessary to indicate the storage capacity of the medium, the order of transmission,
the delay and the reliability of transmissions.

Finally, if the transmission is non-blocking with a medium not able to store messages,
a volatile communication results: only the receiving processes which are ready will
receive the sent message, which is lost for the other processes.

In the model of distributed memory the communication is explicit, but the synchro-
nization is implicit (Synchronization is produced by communication). It is dual to the
model of shared memory.

Physical and Logical Parallelism The model of distributed memory is valid in
the case of physical and logical parallelism. Physical parallelism refers for example to a
computer network. Examples for logical parallelism are Unix processes communicating

569

via pipes, or lightweight processes communicating via channels. There are no common
global values known by all proceses like, for example, a global clock.

The model of distributed memory is closer to physical parallelism, where there is no
effectively shared memory. Nevertheless, shared memory can be simulated across a
computer nerwork.

The fourth part will show how to construct parallel applications with Objective Caml
using the two presented models. It relies on the Unix library, which interfaces Unix sys-
tem calls to Objective Caml, and on the Thread library, which implements lightweight
processes. A major part of the Unix library is ported to Windows, especially the func-
tions on file descriptors. These are used to read and to write on files, but also for
communication pipes and for sockets of computer networks.

Chapter 18 describes essential concepts of the Unix library. It concentrates on the
communication of a process with it’s exterior and with other processes. The notion of
process in this chapter is that of a “heavyweight process” as in Unix. They are created
by the fork system call which duplicates the execution context and the memory for the
data, producing a chain of processes. The interaction between processes is implemented
by signals or by communication pipes.

Chapter 19 concentrates on the notion of lightweight processes of the Thread library.
In contrast to the heavy processes mentioned before, they duplicate nothing but the
execution context of an existing process. The memory is shared between the creator and
the thread. Depending on the programming style, the light Objective Caml processes
permit to use the parallelism model of shared memory (imperative style) or the model
of separated memory (purely functional style). The Thread library contains several
modules allowing to start and stop threads, to manage locks for mutual exclusion, to
wait for a condition and to communicate between threads via channels. In this model,
there is no gain in execution time, not even for multi-processor machines. But the
formulation of parallel algorithms is made easier.

Chapter 20 is devoted to the construction of distributed Internet applications. The
Internet is presented from the point of view of low-level protocols. With the help of
communication sockets several processes running on different machines are able to
communicate with each other. The communication through sockets is an asynchronous
point-to-point communication. The role of the different processes taking part in the
communication of a distributed application is in general asymmetrical. This is the case
for client-server architectures. The server is a process accepting requests and trying to
respond. The other process, the client, sends a request to the server and waits for a
response. Many services accessible in the Internet follow this architecture.

Chapter 21 presents a library and two complete applications. The library allows to
define the communication between clients and servers starting from a given protocol.
The first application revisits the robots of chapter 17 to give a distributed version. The
second application constructs an HTTP server to manage a request form taking up
again the management of associations presented in chapter 6.

570

18
Communication and

Processes

This chapter approaches two important aspects of the interface between a programming
language and the operating system: communication and processes. The Sys module
presented in chapter 8 has already shown how to pass values to a program and how to
start a program from another one. The goal of this chapter is to discuss the notions of
processes and communication between processes.

The term “process” is used for an executing program. Processes are the main compo-
nents of a parallel application. We introduce processes in the classical way originating
from the Unix system. In this context a process is created by another process, estab-
lishing a parent-child relationship between them. This relationship allows the parent to
wait for the child to terminate, as well as to set up privileged communications between
the two. The underlying model of parallelism is that of distributed memory.

The term “communication” covers three aspects:

• input and output via file descriptors. The notion of file descriptors under Unix
has a much broader meaning than the simple reading or writing of data from or
to a storage medium. We will see this in chapter 20, where programs running on
different machines are communicating via such descriptors;

• the use of pipes between processes which allow the exchange of data using the
principle of waiting queues;

• the generation and handling of signals, which allow a simple interaction between
processes.

The functions presented in this chapter are similar to those in the Unix module which
accompanies the Objective Caml distribution. The terminology and the notions come
from the Unix world. But many of the functions of this module can also be used under
Windows. Later we will indicate the applicability of the presented functions.

572 Chapter 18 : Communication and Processes

Chapter Overview

The first section indicates how to use the Unix module. We will talk about the handling
of errors specific to that module and about the portability of system calls to Windows.

The second section presents file descriptors in the Unix sense, and their use for input
and output operations of a lower level than those provided by the preloaded module
Pervasives.

Processes are introduced in the third section. We talk about their creation, their disap-
pearance and about the way in which all processes support their descendence relation
in the Unix model.

The fourth section describes the basic means of communications between processes:
pipes and signals.

The two last sections will be continued in chapters 19 and 20 by the presentation of
lightweight processes and sockets.

The Unix Module

This module contains the interfaces to the most important Unix library functions.
Much of this module has been ported to Windows and can be used there. Whenever
necessary we will indicate the restrictions in the use of the presented functions. A table
resuming the restrictions is given by figure 18.1.

The Unix library belongs to the Objective Caml non-standard libraries which have to
be bound by the -custom compiler command (see chapter 7, page 197). Depending on
the desired form of the program, one of the following commands is used under Unix to
produce bytecode, native code or an interaction loop:

$ ocamlc -custom unix.cma fichiers.ml -cclib -lunix

$ ocamlopt unix.cma fichiers.ml -cclib -lunix

$ ocamlmktop -custom -o unixtop unix.cma -cclib -lunix

The purpose of constructing an interaction loop (of which the name will be unixtop)
is to support an incremental development style. Each function can be compiled quickly
from its type declaration. It is also possible to execute functional tests.

Depending on the version of Unix in use, the system library may not be located at the
default place. If necessary the access path of the libraries may be indicated with the
option -ccopt (see chapter 7).

Under Windows the commands to compile become:

$ ocamlc -custom unix.cma fichiers.ml %CAMLLIB%\libunix.lib wsock32.lib

$ ocamlopt unix.cma fichiers.ml %CAMLLIB%\libunix.lib wsock32.lib

$ ocamlmktop -custom -o unixtop.exe unix.cma %CAMLLIB%\libunix.lib wsock32.lib

File Descriptors 573

The name of the obtained interaction loop is unixtop.exe.

Error Handling

Errors produced by system calls throw Unix error exceptions, which can be han-
dled by the Objective Caml program. Such errors contain three arguments: a value
of type Unix.error which can be transformed into a character string by the function
error message, a string containing the name of the function producing the error and
optionally, a string containing the argument of the function when the argument is of
type string.

It is possible to define a generic calling function with error treatment:
let wrap unix funct arg =

try (funct arg) with

Unix.Unix error (e,fm,argm) →
Printf.printf "%s %s %s" (Unix.error message e) fm argm ; ;

val wrap_unix : (’a -> unit) -> ’a -> unit = <fun>

The function wrap unix takes a function and its argument, and applies one to the
other. If a Unix error occurs, an explaining message is printed. An equivalent function
is defined in the Unix module:

Unix.handle unix error ; ;
- : (’a -> ’b) -> ’a -> ’b = <fun>

Portability of System Calls

Figure 18.1 indicates which of the communication and process handling functions pre-
sented in this chapter are accessible under Windows. The main shortcoming is the lack
of the two functions fork and kill to create new processes and to send signals.

Furthermore, the function wait waiting for the end of a child process is not imple-
mented, because fork is not.

File Descriptors

In chapter 3 we have seen functions from the standard module Pervasives. These
functions allow us to access files via input / output channels. There is also a lower-
level way to access files, using their descriptors.

A file descriptor is an abstract value of type Unix.file descr, containing information
necessary to use a file: a pointer to the file, the access rights, the access modes (read
or write), the current position in the file, etc.

Three descriptors are predefined. They correspond to standard input, standard output,
and standard error.

574 Chapter 18 : Communication and Processes

Fonction Unix Windows Comment

openfile × ×
close × ×
dup × ×
dup2 × ×
read × ×
write × ×
lseek × ×
execv × ×
execve × ×
execvp × ×
execvpe × ×
fork × use create process

getpid × ×
sleep × ×
wait ×
waitpid × × only for a given

number of processes
create process × ×
create process env × ×
kill ×
pipe × ×
mkfifo ×
open process × use the interpretation of

/bin/sh commands
close process ×

Figure 18.1: Portability of the module Unix functions used in this chapter.

(Unix.stdin , Unix.stdout , Unix.stderr) ; ;
- : Unix.file_descr * Unix.file_descr * Unix.file_descr =

<abstr>, <abstr>, <abstr>

Be careful not to confuse them with the corresponding input / output channels:

(Pervasives.stdin , Pervasives.stdout , Pervasives.stderr) ; ;
- : in_channel * out_channel * out_channel = <abstr>, <abstr>, <abstr>

File Descriptors 575

The conversion functions between channels and file descriptors are described at page
577.

File Access Rights. Under Unix each file has an associated owner and group. The
rights to read, write and execute are attached to each file according to three categories
of users: the owner of a file, the members of the file’s group1 and all other users.

The access rights of a file are represented by 9 bits divided into three groups of three
bits each. The first group represents the rights of the owner, the second the rights of
the members of the owner’s group, and the last the rights of all other users. In each
group of three bits, the first bit represents the right to read, the second bit the right
to write and the third bit the right to execute. It is common to abbreviate these three
rights by the letters r, w and x. The absence of the rights is represented in each case
by a dash (-). For exampple, the right to read for all and the right to write only for
the owner is written as rw-r--r--. This corresponds to the integer 420 (which is the
binary number 0b110100100). Frequently the more comfortable octal notation 0o644
is used. These file access rights are not used under Windows.

REVIEWER’S QUESTION: IS THIS STILL TRUE UNDER WIN2K?

File Manipulation

Opening a file. Opening a file associates the file to a file descriptor. Depending
on the intended use of the file there are several modes to open a file. Each mode
corresponds to a value of type open flag described by figure 18.2.

O RDONLY read only
O WRONLY write only
O RDWR reading and writing
O NONBLOCK non-blocking opening
O APPEND appending at the end of the file
O CREAT create a new file if it does not exist
O TRUNC set the file to 0 if it exists
O EXCL chancel, if the file already exists

Figure 18.2: Values of type open flag.

These modes can be combined. In consequence, the function openfile takes as argu-
ment a list of values of type open flag.
Unix.openfile ; ;
- : string -> Unix.open_flag list -> Unix.file_perm -> Unix.file_descr =

1. Under Unix each user belongs to one or more user groups, which allows the organization of their
rights.

576 Chapter 18 : Communication and Processes

<fun>

The first argument is the name of the file. The last is an integer2 coding the rights to
attach to the file in the case of creation.

Here is an example of how to open a file for reading, or to create it with the rights
rw-r--r-- if it does not exist:
let file = Unix.openfile "test.dat" [Unix.O RDWR; Unix.O CREAT] 0o644 ; ;
val file : Unix.file_descr = <abstr>

Closing a file. The function Unix.close closes a file. It is applied to the descriptor
of the file to close.
Unix.close ; ;
- : Unix.file_descr -> unit = <fun>

Unix.close file ; ;
- : unit = ()

Redirecting file descriptors. It is possible to attach several file descriptors to one
input / output. If there is only one file descriptor available and another one is desired
we can use:
Unix.dup ; ;
- : Unix.file_descr -> Unix.file_descr = <fun>

If we have two file descriptors and we want to assign to the second the input / output
of the first, we can use the function:
Unix.dup2 ; ;
- : Unix.file_descr -> Unix.file_descr -> unit = <fun>

For example, the error output can be directed to a file in the following way:
let error output = Unix.openfile "err.log" [Unix.O WRONLY;Unix.O CREAT] 0o644 ; ;
val error_output : Unix.file_descr = <abstr>

Unix.dup2 Unix.stderr error output ; ;
- : unit = ()

Data written to the standard error output will now be directed to the file err.log.

Input / Output on Files

The functions to read and to write to a file Unix.read and Unix.write use a character
string as medium between the file and the Objective Caml program.
Unix.read ; ;
- : Unix.file_descr -> string -> int -> int -> int = <fun>

Unix.write ; ;

2. The type file perm is an alias for the type int.

File Descriptors 577

- : Unix.file_descr -> string -> int -> int -> int = <fun>

In addition to the file descriptor and the string the functions take two integers as argu-
ments. One is the index of the first character and the other the number of characters
to read or to write. The returned integer is the number of characters effectively read
or written.
let mode = [Unix.O WRONLY;Unix.O CREAT;Unix.O TRUNC] in

let fl = Unix.openfile "file" mode 0o644 in

let str = "012345678901234565789" in

let n = Unix.write fl str 4 5

in Printf.printf "We wrote %s to the file\n" (String.sub str 4 n) ;
Unix.close fl ; ;

We wrote 45678 to the file

- : unit = ()

Reading a file works the same way:
let fl = Unix.openfile "file" [Unix.O RDONLY] 0o644 in

let str = String.make 20 ’.’ in

let n = Unix.read fl str 2 10 in

Printf.printf "We read %d characters" n;
Printf.printf " and got the string %s\n" str;
Unix.close fl ; ;

We read 5 characters and got the string ..45678.............

- : unit = ()

Access to a file always takes place at the current position of its descriptor. The current
position can be modified by the function:
Unix.lseek ; ;
- : Unix.file_descr -> int -> Unix.seek_command -> int = <fun>

The first argument is the file descriptor. The second specifies the displacement as
number of characters. The third argument is of type Unix.seek command and indicates
the origin of the displacement. The third argument may take one of three posssible
values:

• SEEK SET: relative to the beginning of the file,

• SEEK CUR: relative to the current position,

• SEEK END: relative to the end of the file.

A function call with an erronous position will either raise an exception or return a
value equal to 0.

Input / output channels. The Unix module provides conversion functions between
file descriptors and the input / output channels of module Pervasives:
Unix.in channel of descr ; ;
- : Unix.file_descr -> in_channel = <fun>

578 Chapter 18 : Communication and Processes

Unix.out channel of descr ; ;
- : Unix.file_descr -> out_channel = <fun>

Unix.descr of in channel ; ;
- : in_channel -> Unix.file_descr = <fun>

Unix.descr of out channel ; ;
- : out_channel -> Unix.file_descr = <fun>

It is necessary to indicate whether the input / output channels obtained by the con-
version transfer binary data or character data.
set binary mode in ; ;
- : in_channel -> bool -> unit = <fun>

set binary mode out ; ;
- : out_channel -> bool -> unit = <fun>

In the following example we create a file by using the functions of module Unix. We
read using the opening function of module Unix and the higher-level input function
input line.
let mode = [Unix.O WRONLY;Unix.O CREAT;Unix.O TRUNC] in

let f = Unix.openfile "file" mode 0o666 in

let s = "0123456789\n0123456789\n" in

let n = Unix.write f s 0 (String.length s)

in Unix.close f ; ;
- : unit = ()

let f = Unix.openfile "file" [Unix.O RDONLY;Unix.O NONBLOCK] 0 in

let c = Unix.in channel of descr f in

let s = input line c

in print string s ;
close in c ; ;

0123456789- : unit = ()

Availability. A program may have to work with multiple inputs and outputs. Data
may not always be available on a given channel, and the program cannot afford to wait
for one channel to be available while ignoring the others. The following function lets
you determine which of a given list of inputs/outputs is available for use at a given
time:
Unix.select ; ;
- : Unix.file_descr list ->

Unix.file_descr list ->

Unix.file_descr list ->

float ->

Unix.file_descr list * Unix.file_descr list * Unix.file_descr list

= <fun>

The first three arguments represent lists of respectively inputs, of outputs and error--
outputs. The last argument indicates a delay in seconds. A negative value means the
null delay. The results are the lists of available input, output and error-output.

Warning select is not implemented under Windows

Processes 579

Processes

Unix associates a process with each execution of a program. In [CDM98] Card, Dumas
and Mével describe the difference between a program and a process: “a program itself
is not a process: a program is a passive entity (an executable file on a disc), while a
process is an active entity with a counter specifying the next instruction to execute
and a set of associated resources.”

Unix is a multi-task operating system: many processes may be executed at the same
time. It is preemptive, which means that the execution of processes is entrusted to a
particular process. A process is therefore not totally master of its resources. Especially
a process can not determine the time of its execution. A process has to be created.

Each process has his own private memory space. Processes can communicate via files
or communication channels. Thus the distributed memory model of parallelism is sim-
ulated on a single machine.

The system gives each process a unique identifier: the PID (Process IDentifier). Under
Unix each process, except the initial process, is created by another process, which is
called its parent.

The set of all active processes can be listed by the Unix command ps3:

$ ps -f
PID PPID CMD
1767 1763 csh
2797 1767 ps -f

The use of the option -f adds for each active process its identifier (PID), that of its
parent (PPID) and the name of the started program (CMD). Here we have two processes,
the command line interpreter csh and the command ps itself. It can be seen that ps
has been started from the command line interpreter csh. The parent of its process is
the process associated with the execution of csh.

Executing a Program

Execution Context

Three values are associated with an executing program, which is started from the
command line:

1. The command line used to start it. It is contained in the value Sys.argv.

2. The environment variables of the command line interpreter. These can be ac-
cessed by the command Sys.getenv.

3. The options and the behavior of this command are not standardized. The given example may not
be reproducible.

580 Chapter 18 : Communication and Processes

3. An execution status until the program is terminated.

Command line. The command line allows you to read arguments or options of a
program call. The behavior of the program may depend from these values. Here is a
small example. We write the following program into the file argv ex.ml:

if Array.length Sys.argv = 1 then

Printf.printf "Hello world\n"

else if Array.length Sys.argv = 2 then

Printf.printf "Hello %s\n" Sys.argv.(1)

else Printf.printf "%s : too many arguments\n" Sys.argv.(0)

We compile it:

$ ocamlc -o argv_ex argv_ex.ml

And we execute it:

$ argv_ex
Hello world
$ argv_ex reader
Hello reader
$ argv_ex dear reader
./argv_ex : too many arguments

Environment variables. Environment variables may contain values necessary for
execution. The number and the names of these variables depend on the operating
system and on the user configuration. The values of these variables can be accessed
by the function getenv, which takes as argument the name of a variable in form of a
character string:
Sys.getenv "HOSTNAME"; ;
- : string = "zinc.pps.jussieu.fr"

Execution Status

The return value of a program is generally a fixed integer, indicating if the program
did terminate with an error or not. The exact values may differ from one operating
system to another. The programer can always explicitly stop his program and return
the execution status value with the function call:
Pervasives.exit ; ;
- : int -> ’a = <fun>

Processes 581

Process Creation

A program is started by another process, which is called the current process. The
executed program becomes a new process. There are three different relations between
the two processes:

• The two processes are independent from each other and can be executed concur-
rently.

• The parent process is waiting for the child process to terminate.

• The created process replaces the parent process, which terminates.

It is also possible to duplicate the current process to obtain two instances. The two
instances of the process do not differ but in their PID. This is the famous fork which
we will describe later.

Independent Processes

The Unix module offers a portable function to create a process.
Unix.create process ; ;
- : string ->

string array ->

Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int

= <fun>

The first argument is the name of the program (it may be a path). The second is the
array of arguments for the program. The last three arguments are the descriptors indi-
cating the standard input, standard output and standard error output of the process.
The return value is the PID of the created process.

There also exists a variant of this function which allows you to indicate the values of
environment variables:
Unix.create process env ; ;
- : string ->

string array ->

string array ->

Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int

= <fun>

These two functions can be used under Unix and Windows.

GGH

Process Stacks

It is not always useful for a created process to be of concurrent nature. The parent
process may have to wait for the created process to terminate. The two following
functions take as argument the name of a command and execute it.
Sys.command; ;
- : string -> int = <fun>

Unix.system; ;
- : string -> Unix.process_status = <fun>

582 Chapter 18 : Communication and Processes

They differ in the type of the return code. The type process status is explained in
more detail on page 586. During the execution of the command the parent process is
blocked.

Replacement of Current Processes

The replacement of current processes by freshly created processes allows you to limit
the number of concurrently executed processes. The four following functions allow this:

Unix.execv ; ;
- : string -> string array -> unit = <fun>

Unix.execve ; ;
- : string -> string array -> string array -> unit = <fun>

Unix.execvp ; ;
- : string -> string array -> unit = <fun>

Unix.execvpe ; ;
- : string -> string array -> string array -> unit = <fun>

Their first argument is the name of the program. Using execvp or execvpe, this name
may indicate a path in the file system. The second argument contains the program
arguments. The last argument of the functions execve and execvpe additionally allows
you to indicate the values of system variables.

Creation of Processes by Duplication

The original system call to create processes under Unix is:
Unix.fork ; ;
- : unit -> int = <fun>

The function fork starts a new process, not a new program. Its effect is to duplicate
the calling process. The code of the new process is the same as that of its parent. Under
Unix the same code can be shared by several processes, each process possessing its own
execution context. Therefore we speak about reentrant code.

Let’s look at the following small program (we use the function getpid which returns
the PID of the process associated with the execution):
Printf.printf "before fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;
Unix.fork () ; ;
Printf.printf "after fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;

We obtain the following output:
before fork : 10529

after fork : 10529

after fork : 10530

After the execution of fork, two processes execute the code. This leads to the output
of two PID’s “after” the fork. We note that one process has kept the PID of the

Processes 583

beginning (the parent). The other one has a new PID (the child), which corresponds
to the return value of the fork call. For the parent process the return value of fork is
the PID of the child, while for the child, it is 0.

It is this difference in the return value of fork which allows in one program source to
decide which code shall be executed by the child and which by the parent:
Printf.printf "before fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;
let pid = Unix.fork () ; ;
if pid=0 then (* -- Code of the child *)

Printf.printf "I am the child: %d\n" (Unix.getpid ())
else (* -- Code of the father *)

Printf.printf "I am the father: %d of child: %d\n" (Unix.getpid ()) pid ; ;
flush stdout ; ;

Here is the trace of the execution of this program:
before fork : 10539

I am the father: 10539 of child: 10540

I am the child: 10540

It is also possible to use the return value for matching:
match Unix.fork () with

0 → Printf.printf "I am the child: %d\n" (Unix.getpid ())
| pid → Printf.printf "I am the father: %d of child: %d\n"

(Unix.getpid ()) pid ; ;

The fertility of a process may be very big. Therefore the number of descendents of a
process is limited by the configuration of the operating system. The following example
creates two generations of processes with grandparent, parents, uncles and cousins.
let pid0 = Unix.getpid () ; ;
let print generation1 pid ppid =

Printf.printf "I am %d, son of %d\n" pid ppid;
flush stdout ; ;

let print generation2 pid ppid pppid =

Printf.printf "I am %d, son of %d, grandson of %d\n"

pid ppid pppid;
flush stdout ; ;

match Unix.fork () with

0 → let pid01 = Unix.getpid ()
in (match Unix.fork () with

0 → print generation2 (Unix.getpid ()) pid01 pid0

| _ → print generation1 pid01 pid0)

| _ → match Unix.fork () with

0 → (let pid02 = Unix.getpid ()
in match Unix.fork () with

0 → print generation2 (Unix.getpid ()) pid02 pid0

| _ → print generation1 pid02 pid0)

| _ → Printf.printf "I am %d, father and grandfather\n" pid0 ; ;

584 Chapter 18 : Communication and Processes

We obtain:
I am 10644, father and grandfather

I am 10645, son of 10644

I am 10648, son of 10645, grandson of 10644

I am 10646, son of 10644

I am 10651, son of 10646, grandson of 10644

Order and Moment of Execution

A sequence of process creations without synchronization may lead to surprising effects.
This is illustrated by the following poem writing program à la M. Jourdain4:
match Unix.fork () with

0 → Printf.printf "fair Marquise " ; flush stdout

| _ → match Unix.fork () with

0 → Printf.printf "your beautiful eyes " ; flush stdout

| _ → match Unix.fork () with

0 → Printf.printf "make me die " ; flush stdout

| _ → Printf.printf "of love\n" ; flush stdout ; ;

It may produce the following result:
of love

fair Marquise your beautiful eyes make me die

We usually want our program to be able to assure the order of execution of its processes.
More generally speaking, an application which makes use of several processes may have
to synchronize them. Depending on the model of parallelism in use, the synchronization
is realized by communication between the processes or by waiting conditions. This
subject is presented more profoundly by the two following chapters. For the moment,
we can improve our poem writing program in two ways:

• Give the child the time to write its phrase before writing the own.

• Wait for the termination of the child, which will then have written its phrase,
before writing our own phrase.

Delays. A process can suspend its activity by calling the function:
Unix.sleep ; ;
- : int -> unit = <fun>

The argument provides the number of seconds during which the process wants to
suspend its activities.

Using this function, we write:

4. Molière, Le Bourgeois Gentilhome, Acte II, scène 4.

Link: http://www.site-moliere.com/pieces/bourgeoi.htm

Processes 585

match Unix.fork () with

0 → Printf.printf "fair Marquise " ; flush stdout

| _ → Unix.sleep 1 ;
match Unix.fork () with

0 → Printf.printf"your beautiful eyes "; flush stdout

| _ → Unix.sleep 1 ;
match Unix.fork () with

0 → Printf.printf"make me die "; flush stdout

| _ → Unix.sleep 1 ; Printf.printf "of love\n" ; flush stdout ; ;

And we can obtain:
fair Marquise your beautiful eyes make me die of love

Nevertheless, this method is not sure. In theory, it would be possible that the system
gives enough time to one of the processes to sleep and to write its output at the same
turn. Therefore we prefer the following method for assuring the execution order of our
processes.

GGH

Waiting for the termination of the child. A parent process may wait for his
child to terminate through a call to the function:
Unix.wait ; ;
- : unit -> int * Unix.process_status = <fun>

The execution of the parent is suspended until one of its children terminates. If wait
is called by a process not having any children, a Unix error is thrown. We will discuss
later the return value of wait. For the moment, we will just use the command to
pronounce our poem:
match Unix.fork () with

0 → Printf.printf "fair Marquise " ; flush stdout

| _ → ignore (Unix.wait ()) ;
match Unix.fork () with

0 → Printf.printf "your beautiful eyes " ; flush stdout

| _ → ignore (Unix.wait ()) ;
match Unix.fork () with

0 → Printf.printf "make me die " ; flush stdout

| _ → ignore (Unix.wait ()) ;
Printf.printf "of love\n" ;
flush stdout

Indeed, we obtain:
fair Marquise your beautiful eyes make me die of love

Warning fork is proprietary to the Unix system

586 Chapter 18 : Communication and Processes

Descendence, Death and Funerals of Processes

The function wait is useful not only to wait for the termination of a child. It also has
the responsibility to complete the death of the child process.

Whenever a process is created, the system adds an entry in a table. The table serves to
keep track of all processes. When a process terminates, the entry does not disappear
automatically in the table. It is the responsibility of the parent to assure the deletion
by the call of wait. If this is not done, the child process keeps an entry in the table.
This is called a zombie process.

When the system is started, a first process called init is started. After the initialization
of some parameters, the essential role of this “forefather” is to take care of orphan
processes and to call the wait which deletes them from the process table after their
termination.

Waiting for the Termination of a Given Process

There is a variation of the function wait, named waitpid. This command is supported
on Unix and Windows:
Unix.waitpid ; ;
- : Unix.wait_flag list -> int -> int * Unix.process_status = <fun>

The first argument specifies the waiting modalities. The second indicates which process
or which group of processes are treated.

After the termination of a process, two pieces of information can be accessed by its
parent as a result of the function calls wait or waitpid: the number of the ter-
minated process and its exit status. The status is represented by a value of type
Unix.process status. This type has three constructors. Each of them takes an integer
as argument.

• WEXITED n: the process has terminated normally with the return code n.

• WSIGNALED n: the process has been killed by the signal n.

• WSTOPPED n: the process has been stopped by the signal n.

The last value only makes sense for the function waitpid which can listen for such
signals as indicated by its first argument. We will discuss signals and their treatment
at page 590.

Managing of Waiting by Ancestors

In order to avoid having to care for the termination of child processes oneself, it is
possible to delegate this responsibility to an ancestor process. “Double fork” allows a
process not to take care of the funerals of all its child processes, but to delegate this
responsibility to the init process. Here is the principle: a process P0 creates a process
P1, which in turn creates a third process P2. Then P1 terminates. So P2 is orphan and
will be adopted by init, which waits for its termination. The initial process P0 can

Communication Between Processes 587

execute a wait for P1 which will be of short duration. The idea is to delegate to the
grandchild the work which otherwise would have been for the child.

The schema is the following:
match Unix.fork () with (* P0 creates P1 *)

0 → if Unix.fork () = 0 then exit 0 ; (* P1 creates P2 and terminates *)

Printf.printf "P2 did its work\n" ;
exit 0

| pid → ignore (Unix.waitpid [] pid) ; (* P0 waits for P1 to terminate *)

Printf.printf "P0 can do other things without waiting\n" ; ;
P2 did its work

P0 can do other things without waiting

- : unit = ()

We will apply this principle to handle requests sent to a server in chapter 20.

Communication Between Processes

The use of processes in application development allows you to delegate work. Never-
theless, these jobs may not be independent and it may be necessary for the processes
to communicate with each other.

We introduce two methods of communication between processes: communication pipes
and signals. This chapter does not discuss all possibilities of process communication.
It is only a first approach to the applications developed in chapters 19 and 20.

Communication Pipes

It is possible for processes to communicate directly between each other in a file oriented
style.

Pipes are something like virtual files from which it is possible to read and to write with
the input / output functions read and write. They are of limited size, the exact limit
depending from the system. They behave like queues: the first input is also the first
output. Whenever data is read from a pipe, it is also removed from it.

This queue behavior is realized by the association of two descriptors with a pipe: one
corresponding to the end of the pipe where new entries are written and one for the end
where they are read. A pipe is created by the function:
Unix.pipe ; ;
- : unit -> Unix.file_descr * Unix.file_descr = <fun>

The first component of the resulting pair is the exit of the pipe used for reading. The
second is the entry of the pipe used for writing. All processes knowing them can close
the descriptors.

Reading from a pipe is blocking, unless all processes knowing its input descriptor (and
therefore able to write to it) have closed it; in the latter case, the function read returns
0. If a process tries to write to a full pipe, it is suspended until another process has done
a read operation. If a process tries to write to a pipe while no other process is available

588 Chapter 18 : Communication and Processes

to read from it (all having closed their output descriptors), the process trying to write
receives the signal sigpipe, which, if not indicated otherwise, leads to its termination.

The following example shows a use of pipes in which grandchildren tell their process
number to their grandparents.
let output, input = Unix.pipe () ; ;

let write pid input =

try

let m = "(" ^ (string of int (Unix.getpid ())) ^ ")"

in ignore (Unix.write input m 0 (String.length m)) ;
Unix.close input

with

Unix.Unix error(n,f,arg) →
Printf.printf "%s(%s) : %s\n" f arg (Unix.error message n) ; ;

match Unix.fork () with

0 → for i=0 to 5 do

match Unix.fork () with

0 → write pid input ; exit 0

| _ → ()
done ;
Unix.close input

| _ → Unix.close input;
let s = ref "" and buff = String.create 5

in while true do

match Unix.read output buff 0 5 with

0 → Printf.printf "My grandchildren are %s\n" !s ; exit 0

| n → s := !s ^ (String.sub buff 0 n) ^ "."

done ; ;

We obtain the trace:
My grandchildren are (1067.3).(1067.4).(1067.8).(1067.7).(1067.6).(1067.5).

We have introduced points between each part of the sequence read. This way it is pos-
sible to read from the trace the succession of contents of the pipe. Note how the reading
is desynchronized: whenever an entry is made, even a partial one, it is consumed.

Named pipes. Some Unix systems support named pipes, which look as if they were
normal files. It is possible then to communicate between two processes without a de-
scendence relation using the name of the pipe. The following function allows you to
create such a pipe.
Unix.mkfifo ; ;
- : string -> Unix.file_perm -> unit = <fun>

The file descriptors necessary to use the pipe are obtained by openfile, as for usual
files, but their behavior is that of pipes. In particular, the command lseek can not be
used, since we have waiting lines.

Communication Between Processes 589

Warning mkfifo is not implemented for Windows.

Communication Channels

The Unix module provides a high level function allowing you to start a program asso-
ciating with it input or output channels of the calling program:
Unix.open process ; ;
- : string -> in_channel * out_channel = <fun>

The argument is the name of the program, or more precisely the calling path of the
program, as we would write it to a command line interpreter. The string may contain
arguments for the program to execute. The two output values are file descriptors as-
sociated with the standard input / output of the started program. It will be executed
in parallel with the calling program.

Warning

The program started by open process is executed via
a call to the Unix command line interpreter /bin/sh.
The use of that function is therefore only possible for
systems that have this interpreter.

We can end the execution of a program started by open process by using:
Unix.close process ; ;
- : in_channel * out_channel -> Unix.process_status = <fun>

The argument is the pair of channels associated with a process we want to close. The
return value is the execution status of the process whose termination we wait.

There are variants of that functions, opening and closing only one input or output
channel:
Unix.open process in ; ;
- : string -> in_channel = <fun>

Unix.close process in ; ;
- : in_channel -> Unix.process_status = <fun>

Unix.open process out ; ;
- : string -> out_channel = <fun>

Unix.close process out ; ;
- : out_channel -> Unix.process_status = <fun>

Here is a nice small example for the use of open process: we start ocaml from ocaml!

let n print string s = print string s ; print string "(* <-- *)" ; ;
val n_print_string : string -> unit = <fun>

let p () =

let oc in, oc out = Unix.open process "/usr/local/bin/ocaml"

in n print string (input line oc in) ; print newline () ;
n print string (input line oc in) ; print newline () ;
print char (input char oc in) ;
print char (input char oc in) ;
flush stdout ;
let s = input line stdin

in output string oc out s ;

590 Chapter 18 : Communication and Processes

output string oc out "#quit\n" ;
flush oc out ;
let r = String.create 250 in

let n = input oc in r 0 250

in n print string (String.sub r 0 n) ;
print string "Thank you for your visit\n" ;
flush stdout ;
Unix.close process (oc in, oc out) ; ;

val p : unit -> Unix.process_status = <fun>

The call of the function p starts a toplevel of Objective Caml. We note that it is version
2.03 which is in directory /usr/local/bin. The first four read operations allow us to
get the header, which is shown by toplevel. The line let x = 1.2 +. 5.6;; is read
from the keybard, then sent to oc out (the output channel bound to the standard
input of the new process). This one evaluates the passed Objective Caml expression
and writes the result to the standard output which is bound to the input channel
oc in. This result is read and written to the output by the function input. Also the
string "Thank you for your visit" is written to the output. We send the command
#quit; ; to exit the new process.

p();;
Objective Caml version 2.03

let x = 1.2 +. 5.6;;
val x : float = 6.8
Thank you for your visit
- : Unix.process_status = Unix.WSIGNALED 13
#

Signals under Unix

One possibility to communicate with a process is to send it a signal. A signal may
be received at any moment during the execution of a program. Reception of a signal
causes a logical interruption. The execution of a program is interrupted to treat the
received signal. Then the execution continues at the point of interruption. The number
of signals is quite restricted (32 under Linux). The information carried by a signal is
quite rudimentary: it is only the identity (the number) of the signal. The processes
have a predefined reaction to each signal. However, the reactions can be redefined for
most of the signals.

The data and functions to handle signals are distributed between the modules Sys and
Unix. The module Sys contains signals conforming to the POSIX norm (described
in [Ste92]) as well as some functions to handle signals. The module Unix defines the
function kill to send a signal. The use of signals under Windows is restricted to
sigint.

A signal may have several sources: the keyboard, an illegal attempt to access memory,
etc. A process may send a signal to another by calling the function
Unix.kill ; ;

Communication Between Processes 591

- : int -> int -> unit = <fun>

Its first parameter is the PID of the receiver. The second is the signal which we want
to send.

Handling Signals

There are three categories of reactions associated with a signal. For each category there
is a constructor of type signal behavior:

• Signal default: the default behavior defined by the system. In most of the
cases this is the termination of the process, with or without the creation of a file
describing the process state (core file).

• Signal ignore: the signal is ignored.

• Signal handle: the behavior is redefined by an Objective Caml function of type
int -> unit which is passed as an argument to the constructor. For the modified
handling of the signal, the number of the signal is passed to the handling function.

On reception of a signal, the execution of the receiving process is diverted to the func-
tion handling the signal. The function allowing you to redefine the behavior associated
with a signal is provided by the module Sys:
Sys.set signal; ;
- : int -> Sys.signal_behavior -> unit = <fun>

The first argument is the signal to redefine. The second is the associated behavior.

The module Sys provides another modification function to handle signals:
Sys.signal ; ;
- : int -> Sys.signal_behavior -> Sys.signal_behavior = <fun>

It behaves like set signal, except that it returns in addition the value associated with
the signal before the modification. So we can write a function returning the behavioral
value associated with a signal. This can be done even without changing this value:
let signal behavior s =

let b = Sys.signal s Sys.Signal default

in Sys.set signal s b ; b ; ;
val signal_behavior : int -> Sys.signal_behavior = <fun>

signal behavior Sys.sigint; ;
- : Sys.signal_behavior = Sys.Signal_handle <fun>

However, the behavior associated with some signals can not be changed. Therefore our
function can not be used for all signals:
signal behavior Sys.sigkill ; ;
Uncaught exception: Sys_error("Invalid argument")

Some Signals

We illustrate the use of some essential signals.

592 Chapter 18 : Communication and Processes

sigint. This signal is generally associated with the key combination CTRL-C. In the
following small example we modify the reaction to this signal so that the receiving
process is not interrupted until the third occurence of the signal.

We create the following file ctrlc.ml:
let sigint handle =

let n = ref 0

in function _ → incr n ;
match !n with

1 → print string "You just pushed CTRL-C\n"

| 2 → print string "You pushed CTRL-C a second time\n"

| 3 → print string "If you insist ...\n" ; exit 1

| _ → () ; ;
Sys.set signal Sys.sigint (Sys.Signal handle sigint handle) ; ;
match Unix.fork () with

0 → while true do () done

| pid → Unix.sleep 1 ; Unix.kill pid Sys.sigint ;
Unix.sleep 1 ; Unix.kill pid Sys.sigint ;
Unix.sleep 1 ; Unix.kill pid Sys.sigint ; ;

This program simulates the push of the key combination CTRL-C by sending the signal
sigint. We obtain the following execution trace:

$ ocamlc -i -o ctrlc ctrlc.ml
val sigint_handle : int -> unit
$ ctrlc
You just pushed CTRL-C
You pushed CTRL-C a second time
If you insist ...

sigalrm. Another frequently used signal is sigalrm, which is associated with the
system clock. It can be sent by the function
Unix.alarm ; ;
- : int -> int = <fun>

The argument specifies the number of seconds to wait before the sending of the sig-
nal sigalrm. The return value indicates the number of remaining seconds before the
sending of a second signal, or if there is no alarm set.

We use this function and the associated signal to define the function timeout, which
starts the execution of another function and interrupts it if neccessary, when the in-
dicated time is elapsed. More precisely, the function timeout takes as arguments a
function f, the argument arg expected by f, the duration (time) of the “timeout” and
the value (default value) to be returned when the duration time has elapsed.

A timeout is handled as follows:

1. We modify the behavior associated with the signal sigalrm so that a Timeout
exception is thrown.

Communication Between Processes 593

2. We take care to remember the behavior associated originally with sigalrm, so
that it can be restored.

3. We start the clock.

4. We distinguish two cases:
(a) If everything goes well, we restore the original state of sigalrm and return

the value of the calculation.
(b) If not, we restore sigalrm, and if the duration has elapsed, we return the

default value.

Here are the corresponding definitions and a small example:
exception Timeout ; ;
exception Timeout

let sigalrm handler = Sys.Signal handle (fun _ → raise Timeout) ; ;
val sigalrm_handler : Sys.signal_behavior = Sys.Signal_handle <fun>

let timeout f arg time default value =

let old behavior = Sys.signal Sys.sigalrm sigalrm handler in

let reset sigalrm () = Sys.set signal Sys.sigalrm old behavior

in ignore (Unix.alarm time) ;
try let res = f arg in reset sigalrm () ; res

with exc → reset sigalrm () ;
if exc=Timeout then default value else raise exc ; ;

val timeout : (’a -> ’b) -> ’a -> int -> ’b -> ’b = <fun>

let iterate n = for i = 1 to n do () done ; n ; ;
val iterate : int -> int = <fun>

Printf.printf "1st execution : %d\n" (timeout iterate 10 1 (-1));
Printf.printf "2nd execution : %d\n" (timeout iterate 100000000 1 (-1)) ; ;

1st execution : 10
2nd execution : -1
- : unit = ()

sigusr1 and sigusr2. These two signals are provided only for the programer. They
are not used by the operating system.

In this example, reception of the signal sigusr1 by the child triggers the output of the
content of variable i.
let i = ref 0 ; ;
let write i s = Printf.printf "signal received (%d) -- i=%d\n" s !i ;

flush stdout ; ;
Sys.set signal Sys.sigusr1 (Sys.Signal handle write i) ; ;

match Unix.fork () with

0 → while true do incr i done

| pid → Unix.sleep 0 ; Unix.kill pid Sys.sigusr1 ;
Unix.sleep 3 ; Unix.kill pid Sys.sigusr1 ;
Unix.sleep 1 ; Unix.kill pid Sys.sigkill

594 Chapter 18 : Communication and Processes

Here is the trace of a program execution:
signal received (10) -- i=0

signal received (10) -- i=167722808

When we examine the trace, we can see that after having executed the code associated
with signal sigusr1 the first time, the child process continues to execute the loop and
to increment i.

sigchld. This signal is sent to a parent on termination of a process. We will use it to
make a parent more attentive to the evolution of its children. Here’s how:

1. We define a function handling the signal sigchld. It handles all terminated
children on reception of this signal5 and terminates the parent when he does not
have any more children (exception Unix error). In order not to block the parent
if not all his children are dead, we use waitpid instead of wait.

2. The main program, after having redefined the reaction associated with sigchld,
loops to create five children. After this, the parent does something else (loop
while true) until his children have terminated.

let rec sigchld handle s =

try let pid, _ = Unix.waitpid [Unix.WNOHANG] 0

in if pid <> 0

then (Printf.printf "%d is dead and buried at signal %d\n" pid s ;
flush stdout ;
sigchld handle s)

with Unix.Unix error(_, "waitpid", _) → exit 0 ; ;

let i = ref 0

in Sys.set signal Sys.sigchld (Sys.Signal handle sigchld handle) ;
while true do

match Unix.fork () with

0 → let pid = Unix.getpid ()
in Printf.printf "Creation of %d\n" pid ; flush stdout ;

Unix.sleep (Random.int (5+ !i)) ;
Printf.printf "Termination of %d\n" pid ; flush stdout ;
exit 0

| _ → incr i ; if !i = 5 then while true do () done

done ; ;

We obtain the trace:
Creation of 10658

Creation of 10659

Creation of 10662

Creation of 10661

5. We recall that the signals are handled in an asynchronous way. So, if two children die one after the
other, it is possible that the signal of the first has not been handled.

Exercises 595

Creation of 10660

Termination of 10662

10662 is dead and buried at signal 17

Termination of 10658

10658 is dead and buried at signal 17

Termination of 10660

Termination of 10659

10660 is dead and buried at signal 17

10659 is dead and buried at signal 17

Termination of 10661

10661 is dead and buried at signal 17

Exercises

The three proposed exercises manipulate file descriptors, processes, respectively pipes
and signals. The first two exercises stem from Unix system programming. The Objective
Caml code can be compared with the C code in the Unix or Linux distributions.

Counting Words: the wc Command

We want to (re)program the Unix wc command, which counts the number of lines,
words or characters contained in a text file. Words are separated by a space character,
a tab, or a carriage return. We do not count the separators.

1. Write a first version (wc1) of the command, which only handles a single file. The
name of the file is passed as an argument on the command line.

2. Write a more elaborated version (wc2), which can handle the three options -l,
-c, -w as well as several file names. The options indicate if we want to count the
number of lines, characters or words. The output of each result shall be preceded
by the name of the file.

Pipes for Spell Checking

This exercise uses pipes to concatenate a suite of actions. Each action takes the result of
the preceding action as argument. The communication is realized by pipes, connecting
the output of one process to the input of the following, in the style of the Unix command
line symbol | .

1. Write a function pipe two progs of type string * string list -> string *

string list -> unit such that pipe two progs (p1,[a1; ...; an]) (p2,[b1;
...; bp]) starts the programs p1 a1 ... an and p2 b1 ... bp, redirecting the
standard output of p1 to the standard input of p2. ai and bi are the command
line arguments of each program.

2. We revisit the spell checker function from the exercise on page 115 to write a
first program. Modify it so that the list of faulty words is sent without treatment
in the form of one line per word to the standard output.

596 Chapter 18 : Communication and Processes

3. The second program takes a sequence of character strings from its standard input
and sorts it in lexicographical order. The function Sort.list can be used, which
sorts a list in an order defined by a given predicate. The sorted list is written to
the standard output.

4. Test the function pipe two progs with the two programs.

5. Write a function pipe n progs to connect a list of programs.

6. Write a program to suppress multiple occurrences of elements in a list.

7. Test the function pipe n progs with these three programs.

Interactive Trace

In a complex calculation it may be useful to interact with the program to verify the
progression. For this purpose we revisit the exercise on page 244 on the computation
of prime numbers contained in an interval.

1. Modify the program so that a global variable result always contains the last
prime number found.

2. Write a function sigint handle which handles the signal sigint and writes the
content of result to the output.

3. Modify the default signal handling of sigint by associating with it the preceding
function sigint handle.

4. Compile the program, then start the executable with an upper bound for the com-
putation time. During the computation, send the signal sigint to the process,
by the Unix kill command as well as by the key combination CTRL-C.

Summary

This chapter presented the main system interface functions provided by the Unix mod-
ule. Despite of its name, the module offers a large number of functions which can be
used under Windows as well (see figure 18.1).
In the area of process creation, we did concentrate on the possibilities of communica-
tion between several Objective Caml programs running at the same time on the same
machine. Operations handling lower level file access, signals and communication pipes
have been discussed in detail.

To Learn More

The Unix module provides functions of the Unix system library. Most of the underlying
programming paradigms are not described in Objective Caml. The reader may refer to
standard books about system programming. We cite [Ste92], or [CDM98], more specific
to Linux.

To Learn More 597

Further, the excellent lecture notes from Xavier Leroy [Ler92] have for subject system
programming in Caml-Light. They can be accessed under the following address:

Link: http://pauillac.inria.fr/˜xleroy/publi/unix-in-caml.ps.gz

The implementation of the Unix module is a good example for the cooperation between
C and Objective Caml. A large number of functions are just calls to C system functions,
with the additional type transcription of the data. The implementation sources are
good examples of how to interface an Objective Caml program with a C library. The
programs can be found in the directories otherlibs/unix and otherlibs/win32unix
of the Objective Caml distribution.

The chapter did present several functionalities of the Unix module. Some more points
will be approached in chapter 20 about communication sockets and Internet addresses.
Other notions, like that of terminals, of file systems, etc. are not discussed in this book.
They can be explored in one of the books mentioned above.

598 Chapter 18 : Communication and Processes

