
19
Concurrent

Programming

Concurrency is the word used to describe causal independence between a number of
actions, such as the execution of a number of instructions “at the same time”. This is
also the definition which we give of the term “parallel” in the introduction of this fourth
part. The processes of the Unix library presented in the preceding chapter could be
considered as concurrent to the extent that the Unix system provides the appearance
of their simultaneous execution on a uniprocessor machine. But the notion of process
and concurrency does not apply only to those obtained by the fork system call.

The Objective Caml language possesses a library for lightweight processes (threads.)
The principle difference between a thread and a process is in the sharing or non-sharing
of memory between the different child processes of the same program. Only the context
of execution differs between two threads: the code and memory sections of the data are
shared. Threads do not improve the execution time of an application. Their principal
attraction is to make it possible to express the programming of concurrent algorithms
within a language.

The nature of the chosen language, imperative or functional, affects the model of con-
currency. For an imperative program, as every thread can modify the communal/shared
memory, we are in a shared memory model. Communication between processes can be
achieved by values written and read in this memory. For a purely functional program,
that is to say, without side effects, even though the memory is shared, the calculations
which each process executes do not act on this shared memory. In this case, the model
used is that of separate memory and interaction between processes must be achieved
by communication of values though channels.

The Objective Caml language implements both models in its thread library. The
Thread module makes it possible to start new processes corresponding to a function
call with its argument. Modules Mutex and Condition provide the synchronization
tools for mutual exclusion and waiting on a condition. The Event model implements a
means of communication of language values by events. These values can themselves be

600 Chapter 19 : Concurrent Programming

functional, thus making it possible to exchange calculations to be carried out between
threads. As always in Objective Caml it is possible to mix the two models.

This library is portable to the different systems where OCAML runs. Unlike the Unix
module, the Thread library facilitates the use of processes on machines that are not
running Unix.

Plan of the Chapter

The first section details the possible interactions between threads, and proceeds with
describing module Thread, and showing how to execute many processes in the same
application.

The second part deals with the synchronization between threads by mutual exclusion
(Mutex module), and with waiting for conditions (Condition module). Two complete
examples show the difficulties inherent to this module.

The third section explains the mode of communication by events provided by the Event
module and the new possibilities which is provides.

The fourth section concludes the chapter with the implementation of a shared queue
for the different counters at a post office.

Concurrent Processes

With an application composed of many concurrent processes, we lose the convenience
offered by the determinism of sequential programs. For processes sharing the same zone
of memory, the result of the following program cannot be deduced from reading it.

main program
let x = ref 1; ;

process P process Q

x := !x + 1; ; x := !x * 2; ;

At the end of the execution of P and Q, the reference x can point to 2, 3 or 4, depending
on the order of execution of each process.

This indeterminism applies also to terminations. When the memory state depends on
the execution of each parallel process, an application can fail to terminate on a partic-
ular execution, and terminate on another. To provide some control over the execution,
the processes must be synchronized.

For processes using distinct memory areas, but communicating between each other,
their interaction depends on the type of communication. We introduce for the follow-
ing example two communication primitives: send which sends a value, showing the

Concurrent Processes 601

destination, and receive which receives a value from a process. Let P and Q be two
communicating processes:

process P process Q

let x = ref 1; ; let y = ref 1; ;
send(Q,!x); y := !y + 3;
x := !x * 2; y := !y + receive(P);
send(Q,!x); send(P,!y);
x := !x + receive(Q); y := !y + receive(P);

In the case of a transient communication, process Q can miss the messages of P . We
fall back into the non-determinism of the preceding model.

For an asynchronous communication, the medium of the communication channel stores
the different values that have been transmitted. Only reception is blocking. Process P
can be waiting for Q, even if the latter has not yet read the two messages from P .
However, this does not prevent it from transmitting.

We can classify concurrent applications into five categories according to the program
units that compose them:

1. unrelated;

2. related, but without synchronization;

3. related, with mutual exclusion;

4. related, with mutual exclusion and communication;

5. related, without mutual exclusion, and with synchronous communication.

The difficulty of implementation comes principally from these last categories. Now we
will see how to resolve these difficulties by using the Objective Caml libraries.

Compilation with Threads

The Objective Caml thread library is divided into five modules, of which the first four
each define an abstract type:

• module Thread: creation and execution of threads. (type Thread.t);

• module Mutex: creation, locking and release of mutexes. (type Mutex.t);

• module Condition: creation of conditions (signals), waiting and waking up on a
condition (type Condition.t);

• module Event: creation of communication channels (type ’a Event.channel),
the values which they carry (type ’a Event.event), and communication func-
tions.

• module ThreadUnix: redefinitions of I/O functions of module Unix so that they
are not blocking.

602 Chapter 19 : Concurrent Programming

This library is not part of the execution library of Objective Caml. Its use requires the
option -custom both for compiling programs and for constructing a new toplevel by
using the commands:

$ ocamlc -thread -custom threads.cma files.ml -cclib -lthreads
$ ocamlmktop -tread -custom -o threadtop thread.cma -cclib -lthreads

The Threads library is not usable with the native compiler unless the platform im-
plements threads conforming to the POSIX 10031. Thus we compile executables by
adding the libraries unix.a and pthread.a:

$ ocamlc -thread -custom threads.cma files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread

$ ocamltop -thread -custom threads.cma files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread

$ ocamlcopt -thread threads.cmxa files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread

Module Thread

The Objective Caml Thread module contains the primitives for creation and man-
agement of threads. We will not make an exhaustive presentation, for instance the
operations of file I/O have been described in the preceding chapter.

A thread is created through a call to:
Thread.create ; ;
- : (’a -> ’b) -> ’a -> Thread.t = <fun>

The first argument, of type ’a -> ’b, corresponds to the function executed by the cre-
ated process; the second argument, of type ’a, is the argument required by the executed
function; the result of the call is the descriptor associated with the process. The process
thus created is automatically destroyed when the associated function terminates.

Knowing its descriptor, we can ask for the execution of a process and wait for it to
finish by using the function join. Here is a usage example:
let f proc1 () = for i=0 to 10 do Printf.printf "(%d)" i; flush stdout done;

print newline () ; ;
val f_proc1 : unit -> unit = <fun>

let t1 = Thread.create f proc1 () ; ;
val t1 : Thread.t = <abstr>

Thread.join t1 ; ;
(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)

- : unit = <unknown constructor>

1. In this case, the Objective Caml compilers should have been constructed to indicate that they used
the library furnished by the platform, and not the one provided by the distribution.

Concurrent Processes 603

Warning
The result of the execution of a process is not recovered
by the parent process, but lost when the child process
terminates.

We can also brutally interrupt the execution of a process of which we know the de-
scriptor with the function kill. For instance, we create a process which is immediately
interrupted:
let n = ref 0 ; ;
val n : int ref = {contents=0}

let f proc1 () = while true do incr n done ; ;
val f_proc1 : unit -> unit = <fun>

let go () = n := 0 ;
let t1 = Thread.create f proc1 ()
in Thread.kill t1 ;

Printf.printf "n = %d\n" !n ; ;
val go : unit -> unit = <fun>

go () ; ;
n = 0

- : unit = ()

A process can put an end to its own activity by the function:
Thread.exit ; ;
- : unit -> unit = <fun>

It can suspend its activity for a given time by a call to:
Thread.delay ; ;
- : float -> unit = <fun>

The argument stands for the number of seconds to wait.

Let us consider the previous example, and add timing. We create a first process t1 of
which the associated function f proc2 creates in its turn a process t2 which executes
f proc1, then f proc2 delays for d seconds, and then terminates t2. On termination
of t1, we print the contents of n.
let f proc2 d =

n := 0 ;
let t2 = Thread.create f proc1 ()
in Thread.delay d ;

Thread.kill t2 ; ;
val f_proc2 : float -> unit = <fun>

let t1 = Thread.create f proc2 0.25

in Thread.join t1 ; Printf.printf "n = %d\n" !n ; ;
n = 132862

- : unit = ()

604 Chapter 19 : Concurrent Programming

Synchronization of Processes

In the setting of processes sharing a common zone of memory, the word “concurrency”
carries its full meaning: the various processes involved are compete for access to the
unique resource of the memory2. To the problem of division of resources, is added that
of the lack of control of the alternation and of the execution times of the concurrent
processes.

The system which manages the collection of processes can at any moment interrupt
a calculation in progress. Thus when two processes cooperate, they must be able to
guarantee the integrity of the manipulations of certain shared data. For this, a process
should be able to remain owner of these data as long as it has not completed a calcu-
lation or any other operation (for example, an acquisition of data from a peripheral).
To guarantee the exclusivity of access to the data to a single process, we set up a
mechanism called mutual exclusion.

Critical Section and Mutual Exclusion

The mechanisms of mutual exclusion are implemented with the help of particular data
structures called mutexes. The operations on mutexes are limited to their creation,
their setting, and their disposal. A mutex is the smallest item of data shared by a
collection of concurrent processes. Its manipulation is always exclusive. To the notion
of exclusivity of manipulation of a mutex is added that of exclusivity of possession:
only the process which has taken a mutex can free it; if other processes wish to use the
mutex, then they must wait for it to be released by the process that is holding it.

Mutex Module

Module Mutex is used to create mutexes between processes related by mutual exclusion
on an area of memory. We will illustrate their use with two small classic examples of
concurrency.

The functions of creation, locking, and unlocking of mutexes are:
Mutex.create ; ;
- : unit -> Mutex.t = <fun>

Mutex.lock ; ;
- : Mutex.t -> unit = <fun>

Mutex.unlock ; ;
- : Mutex.t -> unit = <fun>

There exists a variant of mutex locking that is non-blocking:
Mutex.try lock; ;
- : Mutex.t -> bool = <fun>

2. In a more general sense, we can be in contention for other resources such as I/O peripherals

Synchronization of Processes 605

If the mutex is already locked, the function returns false. Otherwise, the function
locks the mutex and returns true.

The Dining Philosophers

This little story, due to Dijkstra, illustrates a pure problem of resource allocation. It
goes as follows:

“Five oriental philosophers divide their time between study and coming to the refectory
to eat a bowl of rice. The room devoted to feeding the philosophers contains nothing
but a single round table on which there is a large dish of rice (always full), five bowls,
and five chopsticks.”

Figure 19.1: The Table of the Dining Philosophers

As we can see in the figure 19.1, a philosopher who takes his two chopsticks beside
his bowl stops his neighbours from doing the same. When he puts down one of his
chopsticks, his neighbour, famished, can grab it. If needs be, this latter should wait until
the other chopstick is available. Here the chopsticks are the resources to be allocated.

To simplify things, we suppose that each philosopher habitually comes to the same
place at the table. We model the five chopsticks as five mutexes stored in a vector b.
let b =

let b0 = Array.create 5 (Mutex.create ()) in

for i=1 to 4 do b0.(i) <- Mutex.create () done;
b0 ; ;

val b : Mutex.t array = [|<abstr>; <abstr>; <abstr>; <abstr>; <abstr>|]

Eating and meditation are simulated by a suspension of processes.
let meditation = Thread.delay

and eating = Thread.delay ; ;
val meditation : float -> unit = <fun>

val eating : float -> unit = <fun>

606 Chapter 19 : Concurrent Programming

We model a philosopher by a function which executes an infinite sequence of actions
from Dijsktra’s story. Taking a chopstick is simulated by the acquisition of a mutex,
thus a single philosopher can hold a given chopstick at a time. We introduce a little
time of reflection between taking and dropping of each of the two chopsticks while a
number of output commands track the activity of the philosopher.

let philosopher i =

let ii = (i+1) mod 5

in while true do

meditation 3. ;
Mutex.lock b.(i);
Printf.printf "Philosopher (%d) takes his left-hand chopstick" i ;
Printf.printf " and meditates a little while more\n";
meditation 0.2;
Mutex.lock b.(ii);
Printf.printf "Philosopher (%d) takes his right-hand chopstick\n" i;
eating 0.5;
Mutex.unlock b.(i);
Printf.printf "Philosopher (%d) puts down his left-hand chopstick" i;
Printf.printf " and goes back to meditating\n";
meditation 0.15;
Mutex.unlock b.(ii);
Printf.printf "Philosopher (%d) puts down his right-hand chopstick\n" i

done ; ;
val philosopher : int -> unit = <fun>

We can test this little program by executing:
for i=0 to 4 do ignore (Thread.create philosopher i) done ;
while true do Thread.delay 5. done ; ;

We suspend, in the infinite loop while, the main process in order to increase the
chances of the philosopher processes to run. We use randomly chosen delays in the
activity loop with the aim of creating some disparity in the parallel execution of the
processes.

Problems of the näıve solution. A terrible thing can happen to our philosophers:
they all arrive at the same time and seize the chopstick on their left. In this case we
are in a situation of dead-lock. None of the philosophers can eat! We are in a situation
of starvation.

To avoid this, the philosophers can put down a chopstick if they do not manage to take
the second one. This is highly courteous, but still allows two philosophers to gang up
against a third to stop him from eating, by not letting go of their chopsticks, except
the ones that their other neighbour has given them. There exist numerous solutions to
this problem. One of them is the object of the exercise on page 619.

Synchronization of Processes 607

Producers and Consumers I

The pair of producers-consumers is a classic example of concurrent programming. A
group of processes, designated the producers, are in charge of storing data in a queue:
a second group, the consumers, is in charge of removing it. Each intervening party
excludes the others.

We implement this scheme using a queue shared between the producers and the con-
sumers. To guarantee the proper operation of the system, the queue is manipulated in
mutual exclusion in order to guarantee the integrity of the operations of addition and
removal.

f is the shared queue, and m is the mutex.
let f = Queue.create () and m = Mutex.create () ; ;
val f : ’_a Queue.t = <abstr>

val m : Mutex.t = <abstr>

We divide the activity of a producer into two parts: creating a product (function
produce) and storing a product (fonction store). Only the operation of storage needs
the mutex.
let produce i p d =

incr p ;
Thread.delay d ;
Printf.printf "Producer (%d) has produced %d\n" i !p ;
flush stdout ; ;

val produce : int -> int ref -> float -> unit = <fun>

let store i p =

Mutex.lock m ;
Queue.add (i,!p) f ;
Printf.printf "Producer (%d) has added its %dth product\n" i !p ;
flush stdout ;
Mutex.unlock m ; ;

val store : int -> int ref -> unit = <fun>

The code of the producer is an endless loop of creation and storage. We introduce a
random delay at the end of each iteration in order to desynchronize the execution.
let producer i =

let p = ref 0 and d = Random.float 2.

in while true do

produce i p d ;
store i p ;
Thread.delay (Random.float 2.5)

done ; ;
val producer : int -> unit = <fun>

The only operation of the consumer is the retrieval of an element of the queue, taking
care that the product is actually there.
let consumer i =

608 Chapter 19 : Concurrent Programming

while true do

Mutex.lock m ;
(try

let ip, p = Queue.take f

in Printf.printf "The consumer(%d) " i ;
Printf.printf "has taken product (%d,%d)\n" ip p ;
flush stdout ;

with

Queue.Empty →
Printf.printf "The consumer(%d) " i ;
print string "has returned empty-handed\n") ;

Mutex.unlock m ;
Thread.delay (Random.float 2.5)

done ; ;
val consumer : int -> unit = <fun>

The following test program creates four producers and four consumers.
for i = 0 to 3 do

ignore (Thread.create producer i);
ignore (Thread.create consumer i)

done ;
while true do Thread.delay 5. done ; ;

Waiting and Synchronization

The relation of mutual exclusion is not “fine” enough to describe synchronization be-
tween processes. It is not rare that the work of a process depends on the completion
of an action by another process, thus modifying a certain condition. It is therefore
desirable that the processes should be able to communicate the fact that this condition
might have changed, indicating to the waiting processes to test it again. The different
processes are thus in a relation of mutual exclusion with communication.

In the preceding example, a consumer, rather than returning empty-handed, could
wait until a producer came to resupply the stock. This last could signal to the waiting
consumer that there is something to take. The model of waiting on a condition to take
a mutex is known as semaphore.

Semaphores. A semaphore is an integral variable s which can only take non negative
values. Once s is initialised, the only operations allowed are: wait(s) and signal(s),
written P (s) and V (s), respectively. They are defined thus, s corresponding to the
number of resources of a given type.

• wait(s): if s > 0 then s := s− 1, otherwise the process, having called wait(s), is
suspended.

• signal(s): if a process has been suspended after a prior invocation of wait(s),
then wake it up, otherwise s := s + 1.

Synchronization of Processes 609

A semaphore which only takes the values 0 or 1 is called a binary semaphore.

Condition Module

The functions of the module Condition implement the primitives of putting to sleep
and waking up processes on a signal. A signal, in this case, is a variable shared by a
collection of processes. Its type is abstract and the manipulation functions are:

create : unit -> Condition.t which creates a new signal.

signal : Condition.t -> unit which wakes up one of the processes waiting on a
signal.

broadcast : Condition.t -> unit which wakes up all of the processes waiting on a
signal.

wait : Condition.t -> Mutex.t -> unit which suspends the calling process on the
signal passed as the first argument. The second argument is a mutex used to
protect the manipulation of the signal. It is released, and then reset at each
execution of the function.

Producers and Consumers (2)

We revisit the example of producers and consumeres by using the mechanism of con-
dition variables to put to sleep a consumer arriving when the storehouse is empty.

To implement synchronization between waiting consumers and production, we declare:

let c = Condition.create () ; ;
val c : Condition.t = <abstr>

We modify the storage function of the producer by adding to it the sending of a signal:

let store2 i p =

Mutex.lock m ;
Queue.add (i,!p) f ;
Printf.printf "Producer (%d) has added its %dth product\n" i !p ;
flush stdout ;
Condition.signal c ;
Mutex.unlock m ; ;

val store2 : int -> int ref -> unit = <fun>

let producer2 i =

let p = ref 0 in

let d = Random.float 2.

in while true do

produce i p d;
store2 i p;

610 Chapter 19 : Concurrent Programming

Thread.delay (Random.float 2.5)

done ; ;
val producer2 : int -> unit = <fun>

The activity of the consumer takes place in two phases: waiting until a product is
available, then taking the product. The mutex is taken when the wait is finished and
it is released when the consumer has taken its product. The wait takes place on the
variable c.
let wait2 i =

Mutex.lock m ;
while Queue.length f = 0 do

Printf.printf "Consumer (%d) is waiting\n" i ;
Condition.wait c m

done ; ;
val wait2 : int -> unit = <fun>

let take2 i =

let ip, p = Queue.take f in

Printf.printf "Consumer (%d) " i ;
Printf.printf "takes product (%d, %d)\n" ip p ;
flush stdout ;
Mutex.unlock m ; ;

val take2 : int -> unit = <fun>

let consumer2 i =

while true do

wait2 i;
take2 i;
Thread.delay (Random.float 2.5)

done ; ;
val consumer2 : int -> unit = <fun>

We note that it is no longer necessary, once a consumer has begun to wait in the queue,
to check for the existence of a product. Since the end of its wait corresponds to the
locking of the mutex, it does not run the risk of having the new product stolen before
it takes it.

Readers and Writers

Here is another classic example of concurrent processes in which the agents do not have
the same behaviour with respect to the shared data.

A writer and some readers operate on some shared data. The action of the first may
cause the data to be momentarily inconsistent, while the second group only have a
passive action. The difficulty arises from the fact that we do not wish to prohibit
multiple readers from examining the data simultaneously. One solution to this problem
is to keep a counter of the number of readers in the processes of accessing the data.
Writing is not allowed except if the number of readers is 0.

The data is symbolized by the integer data which takes the value 0 or 1. The value 0
indicates that the data is ready for reading:

Synchronization of Processes 611

let data = ref 0 ; ;
val data : int ref = {contents=0}

Operations on the counter n are protected by the mutex m:
let n = ref 0 ; ;
val n : int ref = {contents=0}

let m = Mutex.create () ; ;
val m : Mutex.t = <abstr>

let cpt incr () = Mutex.lock m ; incr n ; Mutex.unlock m ; ;
val cpt_incr : unit -> unit = <fun>

let cpt decr () = Mutex.lock m ; decr n ; Mutex.unlock m ; ;
val cpt_decr : unit -> unit = <fun>

let cpt signal () = Mutex.lock m ;
if !n=0 then Condition.signal c ;
Mutex.unlock m ; ;

val cpt_signal : unit -> unit = <fun>

The readers update the counter and emit the signal c when no more readers are present.
This is how they indicate to the writer that it may come into action.

let c = Condition.create () ; ;
val c : Condition.t = <abstr>

let read i =

cpt incr () ;
Printf.printf "Reader (%d) read (data=%d)\n" i !data ;
Thread.delay (Random.float 1.5) ;
Printf.printf "Reader (%d) has finished reading\n" i ;
cpt decr () ;
cpt signal () ; ;

val read : int -> unit = <fun>

let reader i = while true do read i ; Thread.delay (Random.float 1.5) done ; ;
val reader : int -> unit = <fun>

The writer needs to block the counter to prevent the readers from accessing the shared
data. But it can only do so if the counter is 0, otherwise it waits for the signal indicating
that this is the case.
let write () =

Mutex.lock m ;
while !n<>0 do Condition.wait c m done ;
print string "The writer is writing\n" ; flush stdout ;
data := 1 ; Thread.delay (Random.float 1.) ; data := 0 ;
Mutex.unlock m ; ;

val write : unit -> unit = <fun>

let writer () =

while true do write () ; Thread.delay (Random.float 1.5) done ; ;
val writer : unit -> unit = <fun>

612 Chapter 19 : Concurrent Programming

We create a reader and six writers to test these functions.
ignore (Thread.create writer ());
for i=0 to 5 do ignore(Thread.create reader i) done;
while true do Thread.delay 5. done ; ;

This solution guarantees that the writer and the readers cannot have access to the
data at the same time. On the contrary, nothing guarantees that the writer could ever
“fufill his officé’, there we are confronted again with a case of starvation.

Synchronous Communication

Module Event from the thread library implements the communication of assorted val-
ues between two processes through particular “communication channels”. The effective
communication of the value is synchronized through send and receive events.

This model of communication synchronized by events allows the transfer through typed
channels of the values of the language, including closures, objects, and events.

It is described in [Rep99].

Synchronization using Communication Events

The primitive communication events are:

• send c v sends a value v on the channel c;

• receive c receives a value on the channel c

So as to implement the physical action with which they are associated, two events
should be synchronized. For this purpose, we introduce an operation of synchroniza-
tion (sync) on events. The sending and receiving of a value are not effective unless
the two communicating processes are in phase. If a single process wishes to synchro-
nize itself, the operation gets blocked, waiting for the second process to perform its
synchronization. This implies that a sender wishing to synchronize the sending of a
value (sync (send c v)) can find itself blocked waiting for a synchronization from a
receiver (sync (receive c)).

Transmitted Values

The communication channels through which the exchanged values travel are typed:
Nothing prevents us from creating multiple channels for communicating each type of
value. As this communication takes place between Objective Caml threads, any value
of the language can be sent on a channel of the same type. This is useful for closures,
objects, and also events, for a “relayed” synchronization request.

Synchronous Communication 613

Module Event

The values encapsulated in communication events travel through communication chan-
nels of the abstract data type ’a channel. The creation function for channels is:
Event.new channel ; ;
- : unit -> ’a Event.channel = <fun>

Send and receive events are created by a function call:
Event.send ; ;
- : ’a Event.channel -> ’a -> unit Event.event = <fun>

Event.receive ; ;
- : ’a Event.channel -> ’a Event.event = <fun>

We can consider the functions send and receive as constructors of the abstract type
’a event. The event constructed by send does not preserve the information about
the type of the value to transmit (type unit Event.event). On the other hand, the
receive event takes account of it to recover the value during a synchronization. These
functions are non-blocking in the sense that the transmission of a value does not take
place until the time of the synchronization of two processes by the function:
Event.sync ; ;
- : ’a Event.event -> ’a = <fun>

This function may be blocking for the sender and the receiver.

There is a non-blocking version:
Event.poll ; ;
- : ’a Event.event -> ’a option = <fun>

This function verifies that another process is waiting for synchronization.

If this is the case, it performs the transmissions, and returns the value Some v, if
v is the value associated with the event, and None otherwise. The received message,
extracted by the function sync, can be the result of a more or less complicated process,
triggering other exchanges of messages.

Example of synchronization. We define three threads. The first, t1, sends a chain
of characters on channel c (function g) shared by all the processes. The two others t2
and t3 wait for a value on the same channel. Here are the functions executed by the
different processes:

let c = Event.new channel () ; ;
val c : ’_a Event.channel = <abstr>

let f () =

let ids = string of int (Thread.id (Thread.self ()))
in print string ("-------- before -------" ^ ids) ; print newline () ;

let e = Event.receive c

in print string ("-------- during -------" ^ ids) ; print newline () ;
let v = Event.sync e

614 Chapter 19 : Concurrent Programming

in print string (v ^ " " ^ ids ^ " ") ;
print string ("-------- after -------" ^ ids) ; print newline () ; ;

val f : unit -> unit = <fun>

let g () =

let ids = string of int (Thread.id (Thread.self ()))
in print string ("Start of " ^ ids ^ "\n");

let e2 = Event.send c "hello"

in Event.sync e2 ;
print string ("End of " ^ ids) ;
print newline () ; ;

val g : unit -> unit = <fun>

The three processes are created and executed:
let t1,t2,t3 = Thread.create f (), Thread.create f (), Thread.create g () ; ;
val t1 : Thread.t = <abstr>

val t2 : Thread.t = <abstr>

val t3 : Thread.t = <abstr>

Thread.delay 1.0; ;
Start of 5

-------- before -------6

-------- during -------6

hello 6 -------- after -------6

-------- before -------7

-------- during -------7

End of 5

- : unit = <unknown constructor>

The transmission may block. The trace of t1 is displayed after the synchronization
traces of t2 and t3. Only one of the two processes t1 or t2 is really terminated, as
the following calls show:
Thread.kill t1; ;
- : unit = ()

Thread.kill t2; ;
Uncaught exception: Failure("Thread.kill: killed thread")

Example: Post Office

We present, to end this chapter, a slightly more complete example of a concurrent
program: modelling a common queue at a number of counters at a post office.

As always in concurrent programming the problems are posed metaphorically, but
replace the counters of the post office by a collection of printers and you have the
solution to a genuine problem in computing.

Here the policy of service that we propose; it is well tried and tested, rather than
original: each client takes a number when he arrives; when a clerk has finished serving

Example: Post Office 615

a client, he calls for a number. When his number is called, the client goes to the
corresponding counter.

Organization of development. We distinguish in our development resources, and
agents. The former are: the number dispenser, the number announcer, and the windows.
The latter are: the clerks and the clients. The resources are modeled by objects which
manage their own mutual exclusion mechanisms. The agents are modelled by functions
executed by a thread. When an agent wishes to modify or examine the state of an
object, it does not itself have to know about or manipulate mutexes, which allows a
simplified organization for access to sensitive data, and avoids oversights in the coding
of the agents.

The Components

The Dispenser. The number dispenser contains two fields: a counter and a mutex.
The only method provided by the distributor is the taking of a new number.

class dispenser () =

object

val mutable n = 0

val m = Mutex.create ()
method take () = let r = Mutex.lock m ; n <- n+1 ; n

in Mutex.unlock m ; r

end ; ;
class dispenser :

unit ->

object val m : Mutex.t val mutable n : int method take : unit -> int end

The mutex prevents two clients from taking a number at the same time. Note the way
in which we use an intermediate variable (r) to guarantee that the number calculated
in the critical section is the same as the one return by the method call.

The Announcer. The announcer contains three fields: an integer (the client number
being called); a mutex and a condition variable. The two methods are: (wait) which
reads the number, and (call), which modifies it.

class announcer () =

object

val mutable nclient = 0

val m = Mutex.create ()
val c = Condition.create ()

method wait n =

Mutex.lock m;
while n > nclient do Condition.wait c m done;
Mutex.unlock m;

616 Chapter 19 : Concurrent Programming

method call () =

let r = Mutex.lock m ;
nclient <- nclient+1 ;
nclient

in Condition.broadcast c ;
Mutex.unlock m ;
r

end ; ;

The condition variable is used to put the clients to sleep, waiting for their number.
They are all woken up when the method call is invoked. Reading or writing access to
the called number is protected by the mutex.

The window. The window consists of five fields: a fixed window number (variable
ncounter); the number of the client being waited for (variable nclient); a boolean
(variable available); a mutex, and a condition variable.

It offers eight methods, of which two are private: two simple access methods (methods
get ncounter and get nclient): a group of three methods simulating the waiting
period of the clerk between two clients (private method wait and public methods
await arrival, await departure); a group of three methods simulate the occupation
of the window (private method set available and methods arrive, depart).

class counter (i:int) =

object(self)

val ncounter = i

val mutable nclient = 0

val mutable available = true

val m = Mutex.create ()
val c = Condition.create ()

method get ncounter = ncounter

method get nclient = nclient

method private wait f =

Mutex.lock m ;
while f () do Condition.wait c m done ;
Mutex.unlock m

method wait arrival n = nclient <- n ; self#wait (fun () → available)

method wait departure () = self#wait (fun () → not available)

method private set available b =

Mutex.lock m ;
available <- b ;
Condition.signal c ;
Mutex.unlock m

method arrive () = self#set available false

method leave () = self#set available true

Example: Post Office 617

end ; ;

A post office. We collect these three resources in a record type:

type office = { d : dispenser ; a : announcer ; cs : counter array } ; ;

Clients and Clerks

The behaviour of the system as a whole will depend on the three following parameters:

let service delay = 1.7 ; ;
let arrival delay = 1.7 ; ;
let counter delay = 0.5 ; ;

Each represents the maximum value of the range from which each effective value will
be randomly chosen. The first parameter models the time taken to serve a client; the
second, the delay between the arrival of clients in the post office; the last, the time it
takes a clerk to call a new client after the last one has left.

The Clerk. The work of a clerk consists of looping indefinitely over the following
sequence:

1. Call for a number.

2. Wait for the arrival of a client holding the called number.

3. Wait for the departure of the client occupying his counter.

Adding some output, we get the function:
let clerk ((a:announcer), (c:counter)) =

while true do

let n = a#call ()
in Printf.printf "Counter %d calls %d\n" c#get ncounter n ;

c#wait arrival n ;
c#wait departure () ;
Thread.delay (Random.float counter delay)

done ; ;
val clerk : announcer * counter -> unit = <fun>

The Client. A client executes the following sequence:

1. Take a waiting number.

618 Chapter 19 : Concurrent Programming

2. Wait until his number is called.

3. Go to the window having called for the number to obtain service.

The only slightly complex activity of the client is to find the counter where they are
expected.

We give, for this, the auxiliary function:
let find counter n cs =

let i = ref 0 in while cs.(!i)#get ncounter <> n do incr i done ; !i ; ;
val find_counter : ’a -> < get_ncounter : ’a; .. > array -> int = <fun>

Adding some output, the principal function of the client is:
let client o =

let n = o.d#take ()
in Printf.printf "Arrival of client %d\n" n ; flush stdout ;

o.a#wait n ;
let ic = find counter n o.cs

in o.cs.(ic)#arrive () ;
Printf.printf "Client %d occupies window %d\n" n ic ;
flush stdout ;
Thread.delay (Random.float service delay) ;
o.cs.(ic)#leave () ;
Printf.printf "Client %d leaves\n" n ; flush stdout ; ;

val client : office -> unit = <fun>

The System

The main programme of the application creates a post office and its clerks (each clerk
is a process) then launches a process which creates an infinite stream of clients (each
client is also a process).

let main () =

let o =

{ d = new dispenser () ;
a = new announcer () ;
cs = (let cs0 = Array.create 5 (new counter 0) in

for i=0 to 4 do cs0.(i) <- new counter i done;
cs0)

}
in for i=0 to 4 do ignore (Thread.create clerk (o.a, o.cs.(i))) done ;

let create clients o = while true do

ignore (Thread.create client o) ;
Thread.delay (Random.float arrival delay)

done

in ignore (Thread.create create clients o) ;
Thread.sleep () ; ;

val main : unit -> unit = <fun>

Exercises 619

The last instruction puts the process associated with the program to sleep in order to
pass control immediately to the other active processes of the application.

Exercises

The Philosophers Disentangled

To solve the possible deadlock of the dining philosophers, it suffices to limit access to
the table to four at once. Implement this solution.

More of the Post Office

We suggest the following modification to the post office described on page 614: some
impatient clients may leave before there number has been called.

1. Add a method wait (with type int -> unit) to the class dispenser which
causes the caller to wait while the last number distributed is less than or equal
to the parameter of the method (it is necessary to modify take so that it emits
a signal).

2. Modify the method await arrival of class counter, so that it returns the
boolean value true if the expected client arrives, and false if the client has not
arrived at the end of a certain time.

3. Modify the class announcer by passing it a number dispenser as a parameter
and:
(a) adding a method wait until which returns true if the expected number

has been called during a given waiting period, and false otherwise;
(b) modifying the method call to take a counter as parameter and update the

field nclient of this counter (it is necessary to add an update method in
the counter class).

4. Modify the function clerk to take fruitless waits into account.

5. Write a function impatient client which simulates the behaviour of an impa-
tient client.

Object Producers and Consumers

This exercise revisits the producer-consumer algorithm with the following variation: the
storage warehouse is of finite size (i.e. a table rather than a list managed as a FIFO).
Also, we propose to make an implementation that uses objects to model resources, like
the post office.

1. Define a class product with signature:
class product : string →

object

620 Chapter 19 : Concurrent Programming

val name : string

method name : string

end

2. Define a class shop such that:
class show : int →

object

val mutable buffer : product array

val c : Condition.t

val mutable ic : int

val mutable ip : int

val m : Mutex.t

val mutable np : int

val size : int

method dispose : product → unit

method acquire : unit → product

end

The indexes ic and ip are manipulated by the producers and the consumers,
respectively. The index ic holds the index of the last product taken and ip that
of the last product stored. The counter np gives the number of products in stock.
Mutual exclusion and control of the waiting of producers and consumers will be
managed by the methods of this class.

3. Define a function consumer: shop → string → unit.

4. Define a function create product of type string -> product. The name given
to a product will be composed of the string passed as an argument concatenated
with a product number incremented at every invocation of the function.
Use this function to define producer: shop → string → unit.

Summary

This chapter tackled the topic of concurrent programming in which a number of pro-
cesses interact, either through shared memory, or by synchronous communication. The
first case represents concurrency for imperative programming. In particular, we have
detailed the mechanisms of mutual exclusion whose use permits the synchronization
of processes for access to shared memory. Synchronous communication offers a model
for concurrency in functional programming. In particular, the possibility of sending
closures and synchronization events on communication channels facilitates the compo-
sition of calculations carried out in different processes.

The processes used in this chapter are the threads of the Objective Caml Thread
module.

To Learn More 621

To Learn More

The first requirements for concurrent algorithms arose from systems programming. For
this application, the imperative model of shared memory is the most widely used. For
example, the relation of mutual exclusion and semaphores are used to manage shared
resources. The different low-level mechanisms of managing processes accessing shared
memory are described in [Ari90].

Nonetheless, the possibility of expressing concurrent algorithms in one’s favorite lan-
guages makes it possible to investigate this kind of algorithm, as presented in [And91].
It may be noted that while the concepts of such algorithms can simplify the solution
of certain problems, the production of the corresponding programs is quite hard work.

The model of synchronous communication presented by CML, and followed by the
Event module, is fully described in [Rep99]. The online version is at the following
address:

Link: http://cm.bell-labs.com/cm/cs/who/jhr/index.html

An interesting example is the threaded graphical library EXene, implemented in CML
under X-Windows. The preceding link contains a pointer to this library.

622 Chapter 19 : Concurrent Programming

