
Part I

Language Core

7

9

The first part of this book is a complete introduction to the core of the Objective
Caml language, in particular the expression evaluation mechanism, static typing and
the data memory model.

An expression is the description of a computation. Evaluation of an expression returns
a value at the end of the computation. The execution of an Objective Caml program
corresponds to the computation of an expression. Functions, program execution control
structures, even conditions or loops, are themselves also expressions.

Static typing guarantees that the computation of an expression cannot cause a run-time
type error. In fact, application of a function to some arguments (or actual parameters)
isn’t accepted unless they all have types compatible with the formal parameters indi-
cated in the definition of the function. Furthermore, the Objective Caml language has
type infererence: the compiler automatically determines the most general type of an
expression.

Finally a minimal knowledge of the representation of data is indispensable to the
programmer in order to master the effects of physical modifications to the data.

Outline

Chapter 2 contains a complete presentation of the purely functional part of the lan-
guage and the constraints due to static typing. The notion of expression evaluation is
illustrated there at length. The following control structures are detailed: conditional,
function application and pattern matching. The differences between the type and the
domain of a function are discussed in order to introduce the exception mechanism. This
feature of the language goes beyond the functional context and allows management of
computational breakdowns.

Chapter 3 exhibits the imperative style. The constructions there are closer to classic
languages. Associative control structures such as sequence and iteration are presented
there, as well as mutable data structures. The interaction between physical modifica-
tions and sharing of data is then detailed. Type inference is described there in the
context of these new constructions.

Chapter 4 compares the two preceding styles and especially presents different mixed
styles. This mixture supports in particular the construction of lazy data structures,
including mutable ones.

Chapter 5 demonstrates the use of the Graphics library included in the language
distribution. The basic notions of graphics programming are exhibited there and im-
mediately put into practice. There’s even something about GUI construction thanks
to the minimal event control provided by this library.

These first four chapters are illustrated by a complete example, the implementation
of a calculator, which evolves from chapter to chapter.

Chapter 6 presents three complete applications: a little database, a mini-BASIC inter-
preter and the game Minesweeper. The first two examples are constructed mainly in a
functional style, while the third is done in an imperative style.

10

The rudiments of syntax

Before beginning we indicate the first elements of the syntax of the language. A program
is a sequence of phrases in the language. A phrase is a complete, directly executable
syntactic element (an expression, a declaration). A phrase is terminated with a double
semi-colon (; ;). There are three different types of declarations which are each marked
with a different keyword:

value declaration : let

exception declaration : exception

type declaration : type

All the examples given in this part are to be input into the interactive toplevel of the
language.

Here’s a first (little) Objective Caml program, to be entered into the toplevel, whose
prompt is the pound character (#), in which a function fact computing the factorial
of a natural number, and its application to a natural number 8, are defined.
let rec fact n = if n < 2 then 1 else n * fact(n-1) ; ;

val fact : int -> int = <fun>

fact 8 ; ;

- : int = 40320

This program consists of two phrases. The first is the declaration of a function value
and the second is an expression. One sees that the toplevel prints out three pieces
of information which are: the name being declared, or a dash (-) in the case of an
expression; the inferred type; and the return value. In the case of a function value, the
system prints <fun>.

The following example demonstrates the manipulation of functions as values in the
language. There we first of all define the function succ which calculates the successor
of an integer, then the function compose which composes two functions. The latter will
be applied to fact and succ.

let succ x = x+1 ; ;

val succ : int -> int = <fun>

let compose f g x = f(g x) ; ;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

compose fact succ 8 ; ;

- : int = 362880

This last call carries out the computation fact(succ 8) and returns the expected
result. Let us note that the functions fact and succ are passed as parameters to
compose in the same way as the natural number 8.

2
Functional

programming

The first functional language, Lisp, appeared at the end of the 1950’s. That is, at
the same time as Fortran, the first representative of the imperative languages. These
two languages still exist, although both have evolved greatly. They are used widely for
numerical programming (in the case of Fortran) and symbolic applications in the case of
Lisp. Interest in functional programming arises from the great ease of writing programs
and specifying the values which they manipulate. A program is a function applied to its
arguments. It computes a result which is returned (when the computation terminates)
as the output of the program. In this way it becomes easy to combine programs: the
output of one program becomes an input argument to another, in the sense of function
composition.

Functional programming is based on a simple computation model with three construc-
tions: variables, function definitions, and applications of a function to an argument.
This model is called the λ-calculus and it was introduced by Alonzo Church in 1932,
thus before the first computer. It was created to offer a general theoretical model of
the notion of computability. In the λ-calculus, all functions are values which can be
manipulated. They can be used as arguments to other functions, or returned as the
result of a call to another function. The theory of λ-calculus asserts that everything
which is computable (i.e., programmable) can be written in this formalism. Its syntax
is too limited to make its use as a programming language practical, so primitive values
(such as integers or character strings), operations on these primitive values, control
structures, and declarations which allow the naming of values or functions and, in
particular, recursive functions, have all been added to the λ-calculus to make it more
palatable.

There are several classifications of functional languages. For our part, we will distin-
guish them according to two characteristics which seem to us most salient:

• Without side effects (pure) or with side effects (impure): a pure functional lan-
guage is a language in which there is no change of state. There everything is
simply a computation and the way it is carried out is unimportant. Impure func-

12 Chapter 2 : Functional programming

tional languages, such as Lisp or ML, integrate imperative traits such as change
of state. They permit the writing of algorithms in a style closer to languages like
Fortran, where the order of evaluation of expressions is significant.

• Dynamically typed or statically typed: typing permits verification of whether
an argument passed to a function is indeed of the type of the function’s formal
parameter. This verification can be made during program execution. In that case
this verification is called dynamic typing. If type errors occur the program will
halt in a consistent state. This is the case in the language Lisp. This verification
can also be done before program execution, that is, at compilation time. This a
priori verification is called static typing. Having been carried out once and for all,
it won’t slow down program execution. This is the case in the ML language and
its dialects such as Objective Caml. Only correctly typed programs, i.e., those
accepted by the type verifier, will be able to be compiled and then executed.

Chapter outline

This chapter presents the basic elements of the functional part of the Objective Caml
language, namely its syntactic elements, its language of types and its exception mech-
anism. This will lead us to the development of a first example of a complete program.

The first section describes the core of the language, beginning with primitive values
and the functions which manipulate them. We then go on to structured values and to
function values. The basic control structures are introduced as well as local and global
value declarations. The second section deals with type definitions for the construction
of structured values and with pattern matching to access these structures. The third
section compares the inferred type of functions and their domain of definition, which
leads us to introduce the exception mechanism. The fourth section illustrates all these
notions put together, by describing a simple application: a desktop calculator.

Functional core of Objective Caml

Like all functional languages, Objective Caml is an expression oriented language, where
programming consists mainly of creating functions and applying them. The result of
the evaluation of one of these expressions is a value in the language and the execution
of a program is the evaluation of all the expressions which comprise it.

Primitive values, functions, and types

Integers and floating-point numbers, characters, character strings, and booleans are
predefined in Objective Caml.

Functional core of Objective Caml 13

Numbers

There are two kinds of numbers: integers1 of type int and floating-point numbers of
type float. Objective Caml follows the IEEE 754 standard2 for representing double-
precision floating-point numbers. The operations on integers and floating-point num-
bers are described in figure 2.1. Let us note that when the result of an integer operation
is outside the interval on which values of type int are defined, this does not produce
an error, but the result is an integer within the system’s interval of integers. In other
words, all integer operations are operations modulo the boundaries of the interval.

integer numbers floating-point numbers
+ addition
- subtraction and unary negation
* multiplication
/ integer division

mod remainder of integer division

+. addition
-. subtraction and unary negation
*. multiplication
/. division
** exponentiation

1 ; ;

- : int = 1

1 + 2 ; ;

- : int = 3

9 / 2 ; ;

- : int = 4

11 mod 3 ; ;

- : int = 2

(* limits of the representation *)

(* of integers *)

2147483650 ; ;

- : int = 2

2.0 ; ;

- : float = 2

1.1 +. 2.2 ; ;

- : float = 3.3

9.1 /. 2.2 ; ;

- : float = 4.13636363636

1. /. 0. ; ;

- : float = inf

(* limits of the representation *)

(* of floating-point numbers *)

222222222222.11111 ; ;

- : float = 222222222222

Figure 2.1: Operations on numbers.

Differences between integers and floating-point numbers Values having dif-
ferent types such as float and int can never be compared directly. But there are
functions for conversion (float of int and int of float) between one and the other.

2 = 2.0 ; ;

Characters 5-8:

This expression has type float but is here used with type int

3.0 = float of int 3 ; ;

1. In the interval [−230, 230 − 1] on 32-bit machines and in the interval [−262, 262 − 1] on 64-bit
machines
2. The floating point number m× 10n is represented with a 53-bit mantissa m and an exponent n in
the interval [−1022, 1023].

14 Chapter 2 : Functional programming

- : bool = true

In the same way, operations on floating-point numbers are distinct from those on
integers.

3 + 2 ; ;

- : int = 5

3.0 +. 2.0 ; ;

- : float = 5

3.0 + 2.0 ; ;

Characters 0-3:

This expression has type float but is here used with type int

sin 3.14159 ; ;

- : float = 2.65358979335e-06

An ill-defined computation, such as a division by zero, will raise an exception (see page
54) which interrupts the computation. Floating-point numbers have a representation
for infinite values (printed as Inf) and ill-defined computations (printed as NaN3). The
main functions on floating-point numbers are described in figure 2.2.

functions on floats trigonometric functions
ceil

floor

sqrt square root
exp exponential
log natural log
log10 log base 10

cos cosine
sin sine
tan tangent
acos arccosine
asin arcsine
atan arctangent

ceil 3.4 ; ;

- : float = 4

floor 3.4 ; ;

- : float = 3

ceil (-.3.4) ; ;

- : float = -3

floor (-.3.4) ; ;

- : float = -4

sin 1.57078 ; ;

- : float = 0.999999999867

sin (asin 0.707) ; ;

- : float = 0.707

acos 0.0 ; ;

- : float = 1.57079632679

asin 3.14 ; ;

- : float = nan

Figure 2.2: Functions on floats.

3. Not a Number

Functional core of Objective Caml 15

Characters and Strings

Characters, type char, correspond to integers between 0 and 255 inclusive, following
the ASCII encoding for the first 128. The functions char of int and int of char
support conversion between integers and characters. Character strings, type string,
are sequences of characters of definite length (less than 224 − 6). The concatenation
operator is ^ . The functions int of string, string of int, string of float and
float of string carry out the various conversions between numbers and character
strings.
’B’ ; ;

- : char = ’B’

int of char ’B’ ; ;

- : int = 66

"is a string" ; ;

- : string = "is a string"

(string of int 1987) ^ " is the year Caml was created" ; ;

- : string = "1987 is the year Caml was created"

Even if a string contains the characters of a number, it won’t be possible to use it in
operations on numbers without carrying out an explicit conversion.
"1999" + 1 ; ;

Characters 1-7:

This expression has type string but is here used with type int

(int of string "1999") + 1 ; ;

- : int = 2000

Numerous functions on character strings are gathered in the String module (see page
217).

Booleans

Booleans, of type bool, belong to a set consisting of two values: true and false. The
primitive operators are described in figure 2.3. For historical reasons, the “and” and
“or” operators each have two forms.

not negation
&& sequential and
|| sequential or

& synonym for &&
or synonym for ||

Figure 2.3: Operators on booleans.

true ; ;

- : bool = true

not true ; ;

- : bool = false

16 Chapter 2 : Functional programming

true && false ; ;

- : bool = false

The operators && and ||, or their synonyms, evaluate their left argument and then,
depending on its value, evaluate their right argument. They can be rewritten in the
form of conditional constructs (see page 18).

= structural equality
== physical equality
<> negation of =
!= negation of ==

< less than
> greater than
<= less than or equal to
>= greater than or equal to

Figure 2.4: Equality and comparison operators.

The equality and comparison operators are described in figure 2.4. They are polymor-
phic, i.e., they can be used to compare two integers as well as two character strings.
The only constraint is that their two operands must be of the same type (see page 28).

1<=118 && (1=2 || not(1=2)) ; ;

- : bool = true

1.0 <= 118.0 && (1.0 = 2.0 || not (1.0 = 2.0)) ; ;

- : bool = true

"one" < "two" ; ;

- : bool = true

0 < ’0’ ; ;

Characters 4-7:

This expression has type char but is here used with type int

Structural equality tests the equality of two values by traversing their structure, whereas
physical equality tests whether the two values occupy the same region in memory. These
two equality operators return the same result for simple values: booleans, characters,
integers and constant constructors (page 45).

Warning Floating-point numbers and character strings are con-
sidered structured values.

Unit

The unit type describes a set which possesses only a single element, denoted: ().
() ; ;

- : unit = ()

This value will often be used in imperative programs (see chapter 3, page 67) for
functions which carry out side effects. Functions whose result is the value () simulate
the notion of procedure, which doesn’t exist in Objective Caml, just as the type void
does in the C language.

Functional core of Objective Caml 17

Cartesian product, tuple

Values of possibly different types can be gathered in pairs or more generally in tuples.
The values making up a tuple are separated by commas. The type constructor * in-
dicates a tuple. The type int * string is the type of pairs whose first element is an
integer (of type int) and whose second is a character string (of type string).
(12 , "October") ; ;

- : int * string = 12, "October"

When there is no ambiguity, it can be written more simply:
12 , "October" ; ;

- : int * string = 12, "October"

The functions fst and snd allow access to the first and second elements of a pair.
fst (12 , "October") ; ;

- : int = 12

snd (12 , "October") ; ;

- : string = "October"

These two functions accept pairs whose components are of any type whatsoever. They
are polymorphic, in the same way as equality.
fst; ;

- : ’a * ’b -> ’a = <fun>

fst ("October", 12) ; ;

- : string = "October"

The type int * char * string is that of triplets whose first element is of type int,
whose second is of type char, and whose third is of type string. Its values are written

(65 , ’B’ , "ascii") ; ;

- : int * char * string = 65, ’B’, "ascii"

Warning The functions fst and snd applied to a tuple, other
than a pair, result in a type error.

snd (65 , ’B’ , "ascii") ; ;

Characters 7-25:

This expression has type int * char * string but is here used with type

’a * ’b

There is indeed a difference between the type of a pair and that of a triplet. The type
int * int * int is different from the types (int * int) * int and int * (int *

int). Functions to access a triplet (and other tuples) are not defined by the core library.
One can use pattern matching to define them if need be (see page 34).

Lists

Values of the same type can be gathered into a list. A list can either be empty or
consist of elements of the same type.
[] ; ;

- : ’a list = []

18 Chapter 2 : Functional programming

[1 ; 2 ; 3] ; ;

- : int list = [1; 2; 3]

[1 ; "two" ; 3] ; ;

Characters 14-17:

This expression has type int list but is here used with type string list

The function which adds an element at the head of a list is the infix operator :: . It is
the analogue of Lisp’s cons.
1 :: 2 :: 3 :: [] ; ;

- : int list = [1; 2; 3]

Concatenation of two lists is also an infix operator @.
[1] @ [2 ; 3] ; ;

- : int list = [1; 2; 3]

[1 ; 2] @ [3] ; ;

- : int list = [1; 2; 3]

The other list manipulation functions are defined in the List library. The functions
hd and tl from this library give respectively the head and the tail of a list when these
values exist. These functions are denoted by List.hd and List.tl to indicate to the
system that they can be found in the module List4.
List.hd [1 ; 2 ; 3] ; ;

- : int = 1

List.hd [] ; ;

Uncaught exception: Failure("hd")

In this last example, it is indeed problematic to request retrieval of the first element
of an empty list. It is for this reason that the system raises an exception (see page 54).

Conditional control structure

One of the indispensable control structures in any programming language is the struc-
ture called conditional (or branch) which guides the computation as a function of a
condition.

Syntax : if expr1 then expr2 else expr3

The expression expr1 is of type bool. The expressions expr2 and expr3 must be of the
same type, whatever it may be.

if 3=4 then 0 else 4 ; ;

- : int = 4

if 3=4 then "0" else "4" ; ;

4. The List module is presented on page 217.

Functional core of Objective Caml 19

- : string = "4"

if 3=4 then 0 else "4"; ;

Characters 20-23:

This expression has type string but is here used with type int

A conditional construct is itself an expression and its evaluation returns a value.

(if 3=5 then 8 else 10) + 5 ; ;

- : int = 15

Note
The else branch can be omitted, but in this case it is implicitly replaced
by else () . Consequently, the type of the expression expr2 must be unit

(see page 79).

Value declarations

A declaration binds a name to a value. There are two types: global declarations and
local declarations. In the first case, the declared names are known to all the expressions
following the declaration; in the second, the declared names are only known to one
expression. It is equally possible to simultaneously declare several name-value bindings.

Global declarations

Syntax : let name = expr ;;

A global declaration defines the binding between the name name and the value of the
expression expr which will be known to all subsequent expressions.
let yr = "1999" ; ;

val yr : string = "1999"

let x = int of string(yr) ; ;

val x : int = 1999

x ; ;

- : int = 1999

x + 1 ; ;

- : int = 2000

let new yr = string of int (x + 1) ; ;

val new_yr : string = "2000"

20 Chapter 2 : Functional programming

Simultaneous global declarations

Syntax :

let name1 = expr1
and name2 = expr2
...
and namen = exprn ;;

A simultaneous declaration declares different symbols at the same level. They won’t
be known until the end of all the declarations.
let x = 1 and y = 2 ; ;

val x : int = 1

val y : int = 2

x + y ; ;

- : int = 3

let z = 3 and t = z + 2 ; ;

Characters 18-19:

Unbound value z

It is possible to gather several global declarations in the same phrase; then printing of
their types and their values does not take place until the end of the phrase, marked by
double “;;”. These declarations are evaluated sequentially, in contrast with a simulta-
neous declaration.
let x = 2

let y = x + 3 ; ;

val x : int = 2

val y : int = 5

A global declaration can be masked by a new declaration of the same name (see page
26).

Local declarations

Syntax : let name = expr1 in expr2;;

The name name is only known during the evaluation of expr2. The local declaration
binds it to the value of expr1.
let xl = 3 in xl * xl ; ;

- : int = 9

The local declaration binding xl to the value 3 is only in effect during the evaluation
of xl * xl.
xl ; ;

Characters 1-3:

Unbound value xl

A local declaration masks all previous declarations of the same name, but the previous
value is reinstated upon leaving the scope of the local declaration:
let x = 2 ; ;

Functional core of Objective Caml 21

val x : int = 2

let x = 3 in x * x ; ;

- : int = 9

x * x ; ;

- : int = 4

A local declaration is an expression and can thus be used to construct other expressions:

(let x = 3 in x * x) + 1 ; ;

- : int = 10

Local declarations can also be simultaneous.

Syntax :

let name1 = expr1
and name2 = expr2
...
and namen = exprn

in expr ;;

let a = 3.0 and b = 4.0 in sqrt (a*.a +. b*.b) ; ;

- : float = 5

b ; ;

Characters 0-1:

Unbound value b

Function expressions, functions

A function expression consists of a parameter and a body. The formal parameter is a
variable name and the body an expression. The parameter is said to be abstract. For
this reason, a function expression is also called an abstraction.

Syntax : function p –> expr

Thus the function which squares its argument is written:
function x → x*x ; ;

- : int -> int = <fun>

The Objective Caml system deduces its type. The function type int -> int indicates
a function expecting a parameter of type int and returning a value of type int.

Application of a function to an argument is written as the function followed by the
argument.
(function x → x * x) 5 ; ;

- : int = 25

The evaluation of an application amounts to evaluating the body of the function, here

22 Chapter 2 : Functional programming

x * x, where the formal parameter, x, is replaced by the value of the argument (or the
actual parameter), here 5.

In the construction of a function expression, expr is any expression whatsoever. In
particular, expr may itself be a function expression.

function x → (function y → 3*x + y) ; ;

- : int -> int -> int = <fun>

The parentheses are not required. One can write more simply:
function x → function y → 3*x + y ; ;

- : int -> int -> int = <fun>

The type of this expression can be read in the usual way as the type of a function which
expects two integers and returns an integer value. But in the context of a functional
language such as Objective Caml we are dealing more precisely with the type of a
function which expects an integer and returns a function value of type int -> int:
(function x → function y → 3*x + y) 5 ; ;

- : int -> int = <fun>

One can, of course, use the function expression in the usual way by applying it to two
arguments. One writes:
(function x → function y → 3*x + y) 4 5 ; ;

- : int = 17

When one writes f a b, there is an implicit parenthesization on the left which makes
this expression equivalent to: (f a) b.

Let’s examine the application

(function x → function y → 3*x + y) 4 5

in detail. To compute the value of this expression, it is necessary to compute the value
of

(function x → function y → 3*x + y) 4

which is a function expression equivalent to

function y → 3*4 + y

obtained by replacing x by 4 in 3*x + y. Applying this value (which is a function) to
5 we get the final value 3*4+5 = 17:
(function x → function y → 3*x + y) 4 5 ; ;

- : int = 17

Functional core of Objective Caml 23

Arity of a function

The number of arguments of a function is called its arity. Usage inherited from math-
ematics demands that the arguments of a function be given in parentheses after the
name of the function. One writes: f(4, 5). We’ve just seen that in Objective Caml, one
more usually writes: f 4 5. One can, of course, write a function expression in Objective
Caml which can be applied to (4, 5):
function (x,y) → 3*x + y ; ;

- : int * int -> int = <fun>

But, as its type indicates, this last expression expects not two, but only one argument:
a pair of integers. Trying to pass two arguments to a function which expects a pair or
trying to pass a pair to a function which expects two arguments results in a type error:

(function (x,y) → 3*x + y) 4 5 ; ;

Characters 29-30:

This expression has type int but is here used with type int * int

(function x → function y → 3*x + y) (4, 5) ; ;

Characters 39-43:

This expression has type int * int but is here used with type int

Alternative syntax

There is a more compact way of writing function expressions with several parameters.
It is a legacy of former versions of the Caml language. Its form is as follows:

Syntax : fun p1 . . . pn –> expr

It allows one to omit repetitions of the function keyword and the arrows. It is equiv-
alent to the following translation:

function p1 –> . . . –> function pn –> expr

fun x y → 3*x + y ; ;

- : int -> int -> int = <fun>

(fun x y → 3*x + y) 4 5 ; ;

- : int = 17

This form is still encountered often, in particular in the libraries provided with the
Objective Caml distribution.

Closure

Objective Caml treats a function expression like any other expression and is able to
compute its value. The value returned by the computation is a function expression and
is called a closure. Every Objective Caml expression is evaluated in an environment

24 Chapter 2 : Functional programming

consisting of name-value bindings coming from the declarations preceding the expres-
sion being computed. A closure can be described as a triplet consisting of the name
of the formal parameter, the body of the function, and the environment of the expres-
sion. This environment needs to be preserved because the body of a function expression
may use, in addition to the formal parameters, every other variable declared previously.
These variables are said to be “free” in the function expression. Their values will be
needed when the function expression is applied.
let m = 3 ; ;

val m : int = 3

function x → x + m ; ;

- : int -> int = <fun>

(function x → x + m) 5 ; ;

- : int = 8

When application of a closure to an argument returns a new closure, the latter pos-
sesses within its environment all the bindings necessary for a future application. The
subsection on the scope of variables (see page 26) details this notion. We will return
to the memory representation of a closure in chapter 4 (page 103) as well as chapter
12 (page 332).

The function expressions used until now are anonymous. It is rather useful to be able
to name them.

Function value declarations

Function values are declared in the same way as other language values, by the let

construct.
let succ = function x → x + 1 ; ;

val succ : int -> int = <fun>

succ 420 ; ;

- : int = 421

let g = function x → function y → 2*x + 3*y ; ;

val g : int -> int -> int = <fun>

g 1 2; ;

- : int = 8

To simplify writing, the following notation is allowed:

Syntax : let name p1 . . . pn = expr

which is equivalent to the following form:

let name = function p1 –> . . . –> function pn –> expr

The following declarations of succ and g are equivalent to their previous declaration.
let succ x = x + 1 ; ;

Functional core of Objective Caml 25

val succ : int -> int = <fun>

let g x y = 2*x + 3*y ; ;

val g : int -> int -> int = <fun>

The completely functional character of Objective Caml is brought out by the following
example, in which the function h1 is obtained by the application of g to a single integer.
In this case one speaks of partial application:
let h1 = g 1 ; ;

val h1 : int -> int = <fun>

h1 2 ; ;

- : int = 8

One can also, starting from g, define a function h2 by fixing the value of the second
parameter, y, of g:
let h2 = function x → g x 2 ; ;

val h2 : int -> int = <fun>

h2 1 ; ;

- : int = 8

Declaration of infix functions

Certain functions taking two arguments can be applied in infix form. This is the case
with addition of integers. One writes 3 + 5 for the application of + to 3 and 5. To
use the symbol + as a regular function value, this must be syntactically indicated by
surrounding the infix symbol with parentheses. The syntax is as follows:

Syntax : (op)

The following example defines the function succ using (+).
(+) ; ;

- : int -> int -> int = <fun>

let succ = (+) 1 ; ;

val succ : int -> int = <fun>

succ 3 ; ;

- : int = 4

It is also possible to define new operators. We define an operator ++, addition on pairs
of integers
let (++) c1 c2 = (fst c1)+(fst c2), (snd c1)+(snd c2) ; ;

val ++ : int * int -> int * int -> int * int = <fun>

let c = (2,3) ; ;

val c : int * int = 2, 3

c ++ c ; ;

- : int * int = 4, 6

26 Chapter 2 : Functional programming

There is an important limitation on the possible operators. They must contain only
symbols (such as *, +, @, etc.) and not letters or digits. Certain functions predefined as
infixes are exceptions to the rule. They are listed as follows: or mod land lor lxor
lsl lsr asr.

Higher order functions

A function value (a closure) can be returned as a result. It can equally well be passed as
an argument to a function. Functions taking function values as arguments or returning
them as results are called higher order.
let h = function f → function y → (f y) + y ; ;

val h : (int -> int) -> int -> int = <fun>

Note
Application is implicitly parenthesized to the left, but function types are
implicitly parenthesized to the right. Thus the type of the function h can
be written
(int -> int) -> int -> int or (int -> int) -> (int -> int)

Higher order functions offer elegant possibilities for dealing with lists. For example the
function List.map can apply a function to all the elements of a list and return the
results in a list.
List.map ; ;

- : (’a -> ’b) -> ’a list -> ’b list = <fun>

let square x = string of int (x*x) ; ;

val square : int -> string = <fun>

List.map square [1; 2; 3; 4] ; ;

- : string list = ["1"; "4"; "9"; "16"]

As another example, the function List.for all can find out whether all the elements
of a list satisfy a given criterion.
List.for all ; ;

- : (’a -> bool) -> ’a list -> bool = <fun>

List.for all (function n → n<>0) [-3; -2; -1; 1; 2; 3] ; ;

- : bool = true

List.for all (function n → n<>0) [-3; -2; 0; 1; 2; 3] ; ;

- : bool = false

Scope of variables

In order for it to be possible to evaluate an expression, all the variables appearing
therein must be defined. This is the case in particular for the expression e in the dec-

Functional core of Objective Caml 27

laration let p = e. But since p is not yet known within this expression, this variable
can only be present if it refers to another value issued by a previous declaration.
let p = p ^ "-suffix" ; ;

Characters 9-10:

Unbound value p

let p = "prefix" ; ;

val p : string = "prefix"

let p = p ^ "-suffix" ; ;

val p : string = "prefix-suffix"

In Objective Caml, variables are statically bound. The environment used to execute
the application of a closure is the one in effect at the moment of its declaration (static
scope) and not the one in effect at the moment of application (dynamic scope).

let p = 10 ; ;

val p : int = 10

let k x = (x, p, x+p) ; ;

val k : int -> int * int * int = <fun>

k p ; ;

- : int * int * int = 10, 10, 20

let p = 1000 ; ;

val p : int = 1000

k p ; ;

- : int * int * int = 1000, 10, 1010

The function k contains a free variable: p. Since the latter is defined in the global
environment, the definition of k is legal. The binding between the name p and the
value 10 in the environment of the closure k is static, i.e., does not depend on the most
recent definition of p.

Recursive declarations

A variable declaration is called recursive if it uses its own identifier in its definition.
This facility is used mainly for functions, notably to simulate a definition by recurrence.
We have just seen that the let declaration does not support this. To declare a recursive
function we will use a dedicated syntactic construct.

Syntax : let rec name = expr ;;

We can equally well use the syntactic facility for defining function values while indi-
cating the function parameters:

Syntax : let rec name p1 . . . pn = expr ;;

By way of example, here is the function sigma which computes the sum of the (non-
negative) integers between 0 and the value of its argument, inclusive.
let rec sigma x = if x = 0 then 0 else x + sigma (x-1) ; ;

val sigma : int -> int = <fun>

28 Chapter 2 : Functional programming

sigma 10 ; ;

- : int = 55

It may be noted that this function does not terminate if its argument is strictly negative.

A recursive value is in general a function. The compiler rejects some recursive decla-
rations whose values are not functions:
let rec x = x + 1 ; ;

Characters 13-18:

This kind of expression is not allowed as right-hand side of ‘let rec’

We will see however that in certain cases such declarations are allowed (see page 52).

The let rec declaration may be combined with the and construction for simultaneous
declarations. In this case, all the functions defined at the same level are known within
the bodies of each of the others. This permits, among other things, the declaration of
mutually recursive functions.
let rec even n = (n<>1) && ((n=0) or (odd (n-1)))

and odd n = (n<>0) && ((n=1) or (even (n-1))) ; ;

val even : int -> bool = <fun>

val odd : int -> bool = <fun>

even 4 ; ;

- : bool = true

odd 5 ; ;

- : bool = true

In the same way, local declarations can be recursive. This new definition of sigma tests
the validity of its argument before carrying out the computation of the sum defined by
a local function sigma rec.
let sigma x =

let rec sigma rec x = if x = 0 then 0 else x + sigma rec (x-1) in

if (x<0) then "error: negative argument"

else "sigma = " ^ (string of int (sigma rec x)) ; ;

val sigma : int -> string = <fun>

Note
The need to give a return value of the same type, whether the argument is
negative or not, has forced us to give the result in the form of a character
string. Indeed, what value should be returned by sigma when its argument
is negative? We will see the proper way to manage this problem, using
exceptions (see page 54).

Polymorphism and type constraints

Some functions execute the same code for arguments having different types. For exam-
ple, creation of a pair from two values doesn’t require different functions for each type

Functional core of Objective Caml 29

known to the system5. In the same way, the function to access the first field of a pair
doesn’t have to be differentiated according to the type of the value of this first field.
let make pair a b = (a,b) ; ;

val make_pair : ’a -> ’b -> ’a * ’b = <fun>

let p = make pair "paper" 451 ; ;

val p : string * int = "paper", 451

let a = make pair ’B’ 65 ; ;

val a : char * int = ’B’, 65

fst p ; ;

- : string = "paper"

fst a ; ;

- : char = ’B’

Functions are called polymorphic if their return value or one of their parameters is of
a type which need not be specified. The type synthesizer contained in the Objective
Caml compiler finds the most general type for each expression. In this case, Objective
Caml uses variables, here ’a and ’b, to designate these general types. These variables
are instantiated to the type of the argument during application of the function.

With Objective Caml’s polymorphic functions, we get the advantages of being able
to write generic code usable for values of every type, while still preserving the exe-
cution safety of static typing. Indeed, although make pair is polymorphic, the value
created by (make pair ’B’ 65) has a well-specified type which is different from that of
(make pair "paper" 451). Moreover, type verification is carried out on compilation,
so the generality of the code does not hamper the efficiency of the program.

Examples of polymorphic functions and values

The following examples of polymorphic functions have functional parameters whose
type is parameterized.

The app function applies a function to an argument.
let app = function f → function x → f x ; ;

val app : (’a -> ’b) -> ’a -> ’b = <fun>

So it can be applied to the function odd defined previously:
app odd 2; ;

- : bool = false

The identity function (id) takes a parameter and returns it as is.
let id x = x ; ;

val id : ’a -> ’a = <fun>

app id 1 ; ;

- : int = 1

5. Fortunately since the number of types is only limited by machine memory

30 Chapter 2 : Functional programming

The compose function takes two functions and another value and composes the appli-
cation of these two functions to this value.
let compose f g x = f (g x) ; ;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

let add1 x = x+1 and mul5 x = x*5 in compose mul5 add1 9 ; ;

- : int = 50

It can be seen that the result of g must be of the same type as the argument of f.

Values other than functions can be polymorphic as well. For example, this is the case
for the empty list:
let l = [] ; ;

val l : ’a list = []

The following example demonstrates that type synthesis indeed arises from resolution
of the constraints coming from function application and not from the value obtained
upon execution.
let t = List.tl [2] ; ;

val t : int list = []

The type of List.tl is ’a list -> ’a list, so this function applied to a list of
integers returns a list of integers. The fact that upon execution it is the empty list
which is obtained doesn’t change its type at all.

Objective Caml generates parameterized types for every function which doesn’t use
the form of its arguments. This polymorphism is called parametric polymorphism6.

Type constraint

As the Caml type synthesizer generates the most general type, it may be useful or
necessary to specify the type of an expression.

The syntactic form of a type constraint is as follows:

Syntax : (expr : t)

When it runs into such a constraint, the type synthesizer will take it into account while
constructing the type of the expression. Using type constraints lets one:

• make the type of the parameters of a function visible;

• forbid the use of a function outside its intended context;

• specify the type of an expression, which will be particularly useful for mutable
values (see page 68).

The following examples demonstrate the use of such type constraints
let add (x:int) (y:int) = x + y ; ;

6. Some predefined functions do not obey this rule, in particular the structural equality function (=)
which is polymorphic (its type is ’a -> ’a -> bool) but which explores the structure of its arguments
to test their equality.

Functional core of Objective Caml 31

val add : int -> int -> int = <fun>

let make pair int (x:int) (y:int) = x,y; ;

val make_pair_int : int -> int -> int * int = <fun>

let compose fn int (f : int → int) (g : int → int) (x:int) =

compose f g x; ;

val compose_fn_int : (int -> int) -> (int -> int) -> int -> int = <fun>

let nil = ([] : string list); ;

val nil : string list = []

’H’ :: nil; ;

Characters 5-8:

This expression has type string list but is here used with type char list

Restricting polymorphism this way lets us control the type of an expression better by
constraining the polymorphism of the type deduced by the system. Any defined type
whatsoever may be used, including ones containing type variables, as the following
example shows:
let llnil = ([] : ’a list list) ; ;

val llnil : ’a list list = []

[1;2;3]:: llnil ; ;

- : int list list = [[1; 2; 3]]

The symbol llnil is a list of lists of any type whatsoever.

Here we are dealing with constraints, and not replacing Objective Caml’s type synthesis
with explicit typing. In particular, one cannot generalize types beyond what inference
permits.
let add general (x:’a) (y:’b) = add x y ; ;

val add_general : int -> int -> int = <fun>

Type constraints will be used in module interfaces (see chapter 14) as well as in class
declarations (see chapter 15).

Examples

In this section we will give several somewhat elaborate examples of functions. Most of
these functions are predefined in Objective Caml. We will redefine them for the sake
of “pedagogy”.

Here, the test for the terminal case of recursive functions is implemented by a condi-
tional. Hence a programming style closer to Lisp. We will see how to give a more ML
character to these definitions when we present another way of defining functions by
case (see page 34).

Length of a list

Let’s start with the function null which tests whether a list is empty.
let null l = (l = []) ; ;

32 Chapter 2 : Functional programming

val null : ’a list -> bool = <fun>

Next, we define the function size to compute the length of a list (i.e., the number of
its elements).
let rec size l =

if null l then 0

else 1 + (size (List.tl l)) ; ;

val size : ’a list -> int = <fun>

size [] ; ;

- : int = 0

size [1;2;18;22] ; ;

- : int = 4

The function size tests whether the list argument is empty. If so it returns 0, if not it
returns 1 plus the value resulting from computing the length of the tail of the list.

Iteration of composition

The expression iterate n f computes the value f iterated n times.
let rec iterate n f =

if n = 0 then (function x → x)

else compose f (iterate (n-1) f) ; ;

val iterate : int -> (’a -> ’a) -> ’a -> ’a = <fun>

The iterate function tests whether n is 0, if yes it returns the identity function, if not
it composes f with the iteration of f n-1 times.

Using iterate, one can define exponentiation as iteration of multiplication.
let rec power i n =

let i times = (*) i in

iterate n i times 1 ; ;

val power : int -> int -> int = <fun>

power 2 8 ; ;

- : int = 256

The power function iterates n times the function expression i times, then applies this
result to 1, which does indeed compute the nth power of an integer.

Multiplication table

We want to write a function multab which computes the multiplication table of an
integer passed as an argument.

First we define the function apply fun list such that, if f list is a list of functions,
apply fun list x f list returns the list of results of applying each element of f list

to x.
let rec apply fun list x f list =

if null f list then []

else ((List.hd f list) x) :: (apply fun list x (List.tl f list)) ; ;

val apply_fun_list : ’a -> (’a -> ’b) list -> ’b list = <fun>

apply fun list 1 [(+) 1;(+) 2;(+) 3] ; ;

Functional core of Objective Caml 33

- : int list = [2; 3; 4]

The function mk mult fun list returns the list of functions multiplying their argument
by i, for i varying from 0 to n.
let mk mult fun list n =

let rec mmfl aux p =

if p = n then [(*) n]

else ((*) p) :: (mmfl aux (p+1))

in (mmfl aux 1) ; ;

val mk_mult_fun_list : int -> (int -> int) list = <fun>

We obtain the multiplication table of 7 by:
let multab n = apply fun list n (mk mult fun list 10) ; ;

val multab : int -> int list = <fun>

multab 7 ; ;

- : int list = [7; 14; 21; 28; 35; 42; 49; 56; 63; 70]

Iteration over lists

The function call fold left f a [e1; e2; ... ; en] returns f ... (f (f a e1) e2)
... en. So there are n applications.
let rec fold left f a l =

if null l then a

else fold left f (f a (List.hd l)) (List.tl l) ; ;

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

The function fold left permits the compact definition of a function to compute the
sum of the elements of a list of integers:
let sum list = fold left (+) 0 ; ;

val sum_list : int list -> int = <fun>

sum list [2;4;7] ; ;

- : int = 13

Or else, the concatenation of the elements of a list of strings:
let concat list = fold left (^) "" ; ;

val concat_list : string list -> string = <fun>

concat list ["Hello "; "world" ; "!"] ; ;

- : string = "Hello world!"

34 Chapter 2 : Functional programming

Type declarations and pattern matching

Although Objective Caml’s predefined types permit the construction of data structures
from tuples and lists, one needs to be able to define new types to describe certain data
structures. In Objective Caml, type declarations are recursive and may be parameter-
ized by type variables, in the same vein as the type ’a list already encountered. Type
inference takes these new declarations into account to produce the type of an expres-
sion. The construction of values of these new types uses the constructors described in
their definition. A special feature of languages in the ML family is pattern matching. It
allows simple access to the components of complex data structures. A function defini-
tion most often corresponds to pattern matching over one of its parameters, allowing
the function to be defined by cases.

First of all we present pattern matching over the predefined types, and then go on to
describe the various ways to declare structured types and how to construct values of
such types, as well as how to access their components through pattern matching.

Pattern matching

A pattern is not strictly speaking an Objective Caml expression. It’s more like a correct
(syntactically, and from the point of view of types) arrangement of elements such as
constants of the primitive types (int, bool, char, ..), variables, constructors, and the
symbol called the wildcard pattern. Other symbols are used in writing patterns. We
will introduce them to the extent needed.

Pattern matching applies to values. It is used to recognize the form of this value and lets
the computation be guided accordingly, associating with each pattern an expression to
compute.

Syntax :

match expr with

| p1 –> expr1
...
| pn –> exprn

The expression expr is matched sequentially to the various patterns p1, . . . , pn. If one of
the patterns (for example pi) is consistent with the value of expr then the corresponding
computation branch (expri) is evaluated. The various patterns pi are of the same type.
The same goes for the various expressions expri. The vertical bar preceding the first
pattern is optional.

Examples

Here are two ways to define by pattern matching a function imply of type (bool *

bool) –> bool implementing logical implication. A pattern which matches pairs has
the form (,).

Type declarations and pattern matching 35

The first version of imply enumerates all possible cases, as a truth table would:
let imply v = match v with

(true,true) → true

| (true,false) → false

| (false,true) → true

| (false,false) → true; ;

val imply : bool * bool -> bool = <fun>

By using variables which group together several cases, we obtain a more compact
definition.
let imply v = match v with

(true,x) → x

| (false,x) → true; ;

val imply : bool * bool -> bool = <fun>

These two versions of imply compute the same function. That is, they return the same
values for the same inputs.

Linear pattern

A pattern must necessarily be linear, that is, no given variable can occur more than
once inside the pattern being matched. Thus, we might have hoped to be able to write:

let equal c = match c with

(x,x) → true

| (x,y) → false; ;

Characters 35-36:

This variable is bound several times in this matching

But this would have required the compiler to know how to carry out equality tests.
Yet this immediately raises numerous problems. If we accept physical equality between
values, we get a system which is too weak, incapable of recognizing the equality be-
tween two occurrences of the list [1; 2], for example. If we decide to use structural
equality, we run the risk of having to traverse, ad infinitum, circular structures. Re-
cursive functions, for example, are circular structures, but we can construct recursive,
hence circular, values which are not functions as well (see page 52).

Wildcard pattern

The symbol matches all possible values. It is called a wildcard pattern. It can be used
to match complex types. We use it, for example, to further simplify the definition of
the function imply:
let imply v = match v with

(true,false) → false

| _ → true; ;

val imply : bool * bool -> bool = <fun>

36 Chapter 2 : Functional programming

A definition by pattern matching must handle the entire set of possible cases of the
values being matched. If this is not the case, the compiler prints a warning message:
let is zero n = match n with 0 → true ; ;

Characters 17-40:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val is_zero : int -> bool = <fun>

Indeed if the actual parameter is different from 0 the function doesn’t know what value
to return. So the case analysis can be completed using the wildcard pattern.
let is zero n = match n with

0 → true

| _ → false ; ;

val is_zero : int -> bool = <fun>

If, at run-time, no pattern is selected, then an exception is raised. Thus, one can write:

let f x = match x with 1 → 3 ; ;

Characters 11-30:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

0

val f : int -> int = <fun>

f 1 ; ;

- : int = 3

f 4 ; ;

Uncaught exception: Match_failure("", 11, 30)

The Match Failure exception is raised by the call to f 4, and if it is not handled
induces the computation in progress to halt (see 54)

Combining patterns

Combining several patterns lets us obtain a new pattern which can match a value
according to one or another of the original patterns. The syntactic form is as follows:

Syntax : p1 | . . . | pn

It constructs a new pattern by combining the patterns p1, . . . and pn. The only strong
constraint is that all naming is forbidden within these patterns. So each one of them
must contain only constant values or the wildcard pattern. The following example
demonstrates how to verify that a character is a vowel.
let is a vowel c = match c with

’a’ | ’e’ | ’i’ | ’o’ | ’u’ | ’y’ → true

| _ → false ; ;

val is_a_vowel : char -> bool = <fun>

Type declarations and pattern matching 37

is a vowel ’i’ ; ;

- : bool = true

is a vowel ’j’ ; ;

- : bool = false

Pattern matching of a parameter

Pattern matching is used in an essential way for defining functions by cases. To make
writing these definitions easier, the syntactic construct function allows pattern match-
ing of a parameter:

Syntax :

function | p1 –> expr1
| p2 –> expr2

...
| pn –> exprn

The vertical bar preceding the first pattern is optional here as well. In fact, like Mr.
Jourdain, each time we define a function, we use pattern matching7. Indeed, the con-
struction function x –> expression, is a definition by pattern matching using a
single pattern reduced to one variable. One can make use of this detail with simple
patterns as in:
let f = function (x,y) → 2*x + 3*y + 4 ; ;

val f : int * int -> int = <fun>

In fact the form

function p1 –> expr1 | . . . | pn –> exprn

is equivalent to

function expr –> match expr with p1 –> expr1 | . . . | pn –> exprn

Using the equivalence of the declarations mentioned on page 24, we write:
let f (x,y) = 2*x + 3*y + 4 ; ;

val f : int * int -> int = <fun>

But this natural way of writing is only possible if the value being matched belongs to

7. Translator’s note: In Molière’s play Le Bourgeois Gentilhomme (The Bourgeois Gentleman), the
character Mr. Jourdain is amazed to discover that he has been speaking prose all his life. The play
can be found at
Link: http://www.site-moliere.com/pieces/bourgeoi.htm

and
Link: http://moliere-in-english.com/bourgeois.html

gives an excerpt from an English translation, including this part.

38 Chapter 2 : Functional programming

a type having only a single constructor. If such is not the case, the pattern matching
is not exhaustive:
let is zero 0 = true ; ;

Characters 13-21:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val is_zero : int -> bool = <fun>

Naming a value being matched

During pattern matching, it is sometimes useful to name part or all of the pattern. The
following syntactic form introduces the keyword as which binds a name to a pattern.

Syntax : (p as name)

This is useful when one needs to take apart a value while still maintaining its integrity.
In the following example, the function min rat gives the smaller rational of a pair of
rationals. The latter are each represented by a numerator and denominator in a pair.

let min rat pr = match pr with

((_,0),p2) → p2

| (p1,(_,0)) → p1

| (((n1,d1) as r1), ((n2,d2) as r2)) →
if (n1 * d2) < (n2 * d1) then r1 else r2; ;

val min_rat : (int * int) * (int * int) -> int * int = <fun>

To compare two rationals, it is necessary to take them apart in order to name their
numerators and denominators (n1, n2, d1 and d2), but the initial pair (r1 or r2) must
be returned. The as construct allows us to name the parts of a single value in this way.
This lets us avoid having to reconstruct the rational returned as the result.

Pattern matching with guards

Pattern matching with guards corresponds to the evaluation of a conditional expression
immediately after the pattern is matched. If this expression comes back true, then
the expression associated with that pattern is evaluated, otherwise pattern matching
continues with the following pattern.

Syntax :

match expr with
...
| pi when condi –> expri

...

The following example uses two guards to test equality of two rationals.
let eq rat cr = match cr with

Type declarations and pattern matching 39

((_,0),(_,0)) → true

| ((_,0),_) → false

| (_,(_,0)) → false

| ((n1,1), (n2,1)) when n1 = n2 → true

| ((n1,d1), (n2,d2)) when ((n1 * d2) = (n2 * d1)) → true

| _ → false; ;

val eq_rat : (int * int) * (int * int) -> bool = <fun>

If the guard fails when the fourth pattern is matched, matching continues with the
fifth pattern.

Note
The verification carried out by Objective Caml as to whether the pattern
matching is exhaustive assumes that the conditional expression in the
guard may be false. Consequently, it does not count this pattern since it is
not possible to know, before execution, whether the guard will be satisfied
or not.

It won’t be possible to detect that the pattern matching in the following example is
exhaustive.
let f = function x when x = x → true; ;

Characters 10-40:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

_

val f : ’a -> bool = <fun>

Pattern matching on character intervals

In the context of pattern matching on characters, it is tedious to construct the combi-
nation of all the patterns corresponding to a character interval. Indeed, if one wishes
to test a character or even a letter, one would need to write 26 patterns at a minimum
and combine them. For characters, Objective Caml permits writing patterns of the
form:

Syntax : ’c1’ .. ’cn’

It is equivalent to the combination: ’c1’ | ’c2’ | ...| ’cn’.

For example the pattern ’0’ .. ’9’ corresponds to the pattern ’0’ | ’1’ | ’2’
| ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’. The first form is nicer to read and
quicker to write.

Warning This feature is among the extensions to the language
and may change in future versions.

Using combined patterns and intervals, we define a function categorizing characters
according to several criteria.
let char discriminate c = match c with

40 Chapter 2 : Functional programming

’a’ | ’e’ | ’i’ | ’o’ | ’u’ | ’y’

| ’A’ | ’E’ | ’I’ | ’O’ | ’U’ | ’Y’ → "Vowel"

| ’a’..’z’ | ’A’..’Z’ → "Consonant"

| ’0’..’9’ → "Digit"

| _ → "Other" ; ;

val char_discriminate : char -> string = <fun>

It should be noted that the order of the groups of patterns has some significance.
Indeed, the second set of patterns includes the first, but it is not examined until after
the check on the first.

Pattern matching on lists

As we have seen, a list can be:

• either empty (the list is of the form []),

• or composed of a first element (its head) and a sublist (its tail). The list is then
of the form h::t.

These two possible ways of writing a list can be used as patterns and allow pattern
matching on a list.
let rec size x = match x with

[] → 0

| _::tail x → 1 + (size tail x) ; ;

val size : ’a list -> int = <fun>

size [] ; ;

- : int = 0

size [7;9;2;6]; ;

- : int = 4

So we can redo the examples described previously (see page 31) using pattern matching,
such as iteration over lists for example.
let rec fold left f a = function

[] → a

| head :: tail → fold left f (f a head) tail ; ;

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

fold left (+) 0 [8;4;10]; ;

- : int = 22

Value declaration through pattern matching

Value declaration in fact uses pattern matching. The declaration let x = 18 matches
the value 18 with the pattern x. Any pattern is allowed as the left-hand side of a
declaration; the variables in the pattern are bound to the values which they match.
let (a,b,c) = (1, true, ’A’); ;

val a : int = 1

Type declarations and pattern matching 41

val b : bool = true

val c : char = ’A’

let (d,c) = 8, 3 in d + c; ;

- : int = 11

The scope of pattern variables is the usual static scope for local declarations. Here, c
remains bound to the value ’A’.
a + (int of char c); ;

- : int = 66

As with any kind of pattern matching, value declaration may not be exhaustive.
let [x;y;z] = [1;2;3]; ;

Characters 5-12:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val x : int = 1

val y : int = 2

val z : int = 3

let [x;y;z] = [1;2;3;4]; ;

Characters 4-11:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

Uncaught exception: Match_failure("", 4, 11)

Any pattern is allowed, including constructors, wildcards and combined patterns.
let head :: 2 :: _ = [1; 2; 3] ; ;

Characters 5-19:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val head : int = 1

let _ = 3. +. 0.14 in "PI" ; ;

- : string = "PI"

This last example is of little use in the functional world insofar as the computed value
3.14 is not named and so is lost.

Type declaration

Type declarations are another possible ingredient in an Objective Caml phrase. They
support the definition of new types corresponding to the original data structures used
in a program. There are two major families of types: product types for tuples or records;
and sum types for unions.

42 Chapter 2 : Functional programming

Type declarations use the keyword type.

Syntax : type name = typedef ;;

In contrast with variable declarations, type declarations are recursive by default. That
is, type declarations, when combined, support the declaration of mutually recursive
types.

Syntax :

type name1 = typedef1
and name2 = typedef2

...
and namen = typedefn ;;

Type declarations can be parameterized by type variables. A type variable name always
begins with an apostrophe (the ’ character):

Syntax : type ’a name = typedef ;;

When there are several of them, the type parameters are declared as a tuple in front
of the name of the type:

Syntax : type (’a1 . . . ’an) name = typedef ;;

Only the type parameters defined on the left-hand side of the declaration may appear
on the right-hand side.

Note
Objective Caml’s type printer renames the type parameters encountered;
the first is called ’a, the second ’b and so forth.

One can always define a new type from one or more existing types.

Syntax : type name = type expression

This is useful for constraining a type which one finds too general.
type ’param paired with integer = int * ’param ; ;

type ’a paired_with_integer = int * ’a

type specific pair = float paired with integer ; ;

type specific_pair = float paired_with_integer

Nevertheless without type constraints, inference will produce the most general type.
let x = (3, 3.14) ; ;

val x : int * float = 3, 3.14

But one can use a type constraint to see the desired name appear:
let (x:specific pair) = (3, 3.14) ; ;

val x : specific_pair = 3, 3.14

Type declarations and pattern matching 43

Records

Records are tuples, each of whose fields is named in the same way as the Pascal record
or the C struct. A record always corresponds to the declaration of a new type. A record
type is defined by the declaration of its name and the names and types of each of its
fields.

Syntax : type name = { name1 : t1; . . . ; namen : tn } ;;

We can define a type representing complex numbers by:
type complex = { re:float; im:float } ; ;

type complex = { re: float; im: float }

The creation of a value of record type is done by giving a value to each of its fields (in
arbitrary order).

Syntax : { namei1 = expri1; . . . ; namein = exprin } ;;

For example, we create a complex number with real part 2. and imaginary part 3.:
let c = {re=2.;im=3.} ; ;

val c : complex = {re=2; im=3}

c = {im=3.;re=2.} ; ;

- : bool = true

In the case where some fields are missing, the following error is produced:
let d = { im=4. } ; ;

Characters 9-18:

Some labels are undefined

A field can be accessed in two ways: by the dot notation or by pattern matching on
certain fields.

The dot notation syntax is as usual:

Syntax : expr.name

The expression expr must be of a record type containing a field name.

Pattern matching a record lets one retrieve the value bound to several fields. A pattern
to match a record has the following syntax:

Syntax : { namei = pi ; . . . ; namej = pj }

The patterns are to the right of the = sign (pi, . . . , pj). It is not necessary to make all
the fields of a record appear in such a pattern.

44 Chapter 2 : Functional programming

The function add complex accesses fields through the dot notation, while the function
mult complex accesses them through pattern matching.
let add complex c1 c2 = {re=c1.re+.c2.re; im=c1.im+.c2.im}; ;
val add_complex : complex -> complex -> complex = <fun>

add complex c c ; ;

- : complex = {re=4; im=6}

let mult complex c1 c2 = match (c1,c2) with

({re=x1;im=y1},{re=x2;im=y2}) → {re=x1*.x2-.y1*.y2;im=x1*.y2+.x2*.y1} ; ;

val mult_complex : complex -> complex -> complex = <fun>

mult complex c c ; ;

- : complex = {re=-5; im=12}

The advantages of records, as opposed to tuples, are at least twofold:

• descriptive and distinguishing information thanks to the field names: in particular
this allows pattern matching to be simplified;

• access in an identical way, by name, to any field of the record whatsoever: the
order of the fields no longer has significance, only their names count.

The following example shows the ease of accessing the fields of records as opposed to
tuples:
let a = (1,2,3) ; ;

val a : int * int * int = 1, 2, 3

let f tr = match tr with x,_,_ → x ; ;

val f : ’a * ’b * ’c -> ’a = <fun>

f a ; ;

- : int = 1

type triplet = {x1:int; x2:int; x3:int} ; ;

type triplet = { x1: int; x2: int; x3: int }

let b = {x1=1; x2=2; x3=3} ; ;

val b : triplet = {x1=1; x2=2; x3=3}

let g tr = tr.x1 ; ;

val g : triplet -> int = <fun>

g b ; ;

- : int = 1

For pattern matching, it is not necessary to indicate all the fields of the record being
matched. The inferred type is then that of the last field.
let h tr = match tr with {x1=x} → x; ;

val h : triplet -> int = <fun>

h b; ;

- : int = 1

There is a construction which lets one create a record identical to another except for
some fields. It is often useful for records containing many fields.

Type declarations and pattern matching 45

Syntax : { name with namei= expri ; . . . ; namej=exprj}

let c = {b with x1=0} ; ;

val c : triplet = {x1=0; x2=2; x3=3}

A new copy of the value of b is created where only the field x1 has a new value.

Warning This feature is among the extensions to the language
and may change in future versions.

Sum types

In contrast with tuples or records, which correspond to a Cartesian product, the dec-
laration of a sum type corresponds to a union of sets. Different types (for example
integers or character strings) are gathered into a single type. The various members of
the sum are distinguished by constructors, which support on the one hand, as their
name indicates, construction of values of this type and on the other hand, thanks to
pattern matching, access to the components of these values. To apply a constructor to
an argument is to indicate that the value returned belongs to this new type.

A sum type is declared by giving the names of its constructors and the types of their
eventual arguments.

Syntax :

type name = . . .
| Namei . . .
| Namej of tj . . .
| Namek of tk * ...* tl . . . ;;

A constructor name is a particular identifier:

Warning The names of constructors always begin with a capital
letter.

Constant constructors

A constructor which doesn’t expect an argument is called a constant constructor. Con-
stant constructors can subsequently be used directly as a value in the language, as a
constant.
type coin = Heads | Tails; ;

type coin = | Heads | Tails

Tails; ;

- : coin = Tails

The type bool can be defined in this way.

46 Chapter 2 : Functional programming

Constructors with arguments

Constructors can have arguments. The keyword of indicates the type of the construc-
tor’s arguments. This supports the gathering into a single type of objects of different
types, each one being introduced with a particular constructor.

Here is a classic example of defining a datatype to represent the cards in a game, here
Tarot8. The types suit and card are defined in the following way:
type suit = Spades | Hearts | Diamonds | Clubs ; ;

type card =

King of suit

| Queen of suit

| Knight of suit

| Knave of suit

| Minor card of suit * int

| Trump of int

| Joker ; ;

The creation of a value of type card is carried out through the application of a con-
structor to a value of the appropriate type.
King Spades ; ;

- : card = King Spades

Minor card(Hearts, 10) ; ;

- : card = Minor_card (Hearts, 10)

Trump 21 ; ;

- : card = Trump 21

And here, for example, is the function all cards which constructs a list of all the
cards of a suit passed as a parameter.
let rec interval a b = if a = b then [b] else a :: (interval (a+1) b) ; ;

val interval : int -> int -> int list = <fun>

let all cards s =

let face cards = [Knave s; Knight s; Queen s; King s]

and other cards = List.map (function n → Minor card(s,n)) (interval 1 10)

in face cards @ other cards ; ;

val all_cards : suit -> card list = <fun>

all cards Hearts ; ;

- : card list =

[Knave Hearts; Knight Hearts; Queen Hearts; King Hearts;

Minor_card (Hearts, 1); Minor_card (Hearts, 2); Minor_card (Hearts, 3);

Minor_card (Hearts, ...); ...]

8. Translator’s note: The rules for French Tarot can be found, for example, at

Link: http://www.pagat.com/tarot/frtarot.html

Type declarations and pattern matching 47

To handle values of sum types, we use pattern matching. The following example con-
structs conversion functions from values of type suit and of type card to character
strings (type string):
let string of suit = function

Spades → "spades"

| Diamonds → "diamonds"

| Hearts → "hearts"

| Clubs → "clubs" ; ;

val string_of_suit : suit -> string = <fun>

let string of card = function

King c → "king of " ^ (string of suit c)

| Queen c → "queen of " ^ (string of suit c)

| Knave c → "knave of " ^ (string of suit c)

| Knight c → "knight of " ^ (string of suit c)

| Minor card (c, n) → (string of int n) ^ " of "^(string of suit c)

| Trump n → (string of int n) ^ " of trumps"

| Joker → "joker" ; ;

val string_of_card : card -> string = <fun>

Lining up the patterns makes these functions easy to read.

The constructor Minor card is treated as a constructor with two arguments. Pattern
matching on such a value requires naming its two components.
let is minor card c = match c with

Minor card v → true

| _ → false; ;

Characters 41-53:

The constructor Minor_card expects 2 argument(s),

but is here applied to 1 argument(s)

To avoid having to name each component of a constructor, one declares it to have a
single argument by parenthesizing the corresponding tuple type. The two constructors
which follow are pattern-matched differently.
type t =

C of int * bool

| D of (int * bool) ; ;

let access v = match v with

C (i, b) → i,b

| D x → x; ;

val access : t -> int * bool = <fun>

Recursive types

Recursive type definitions are indispensable in any algorithmic language for describing
the usual data structures (lists, heaps, trees, graphs, etc.). To this end, in Objective
Caml type definition is recursive by default, in contrast with value declaration (let).

48 Chapter 2 : Functional programming

Objective Caml’s predefined type of lists only takes a single parameter. One may wish
to store values of belonging to two different types in a list structure, for example,
integers (int) or characters (char). In this case, one defines:
type int or char list =

Nil

| Int cons of int * int or char list

| Char cons of char * int or char list ; ;

let l1 = Char cons (’=’, Int cons(5, Nil)) in

Int cons (2, Char cons (’+’, Int cons(3, l1))) ; ;

- : int_or_char_list =

Int_cons (2, Char_cons (’+’, Int_cons (3, Char_cons (’=’, Int_cons (...)))))

Parametrized types

A user can equally well declare types with parameters. This lets us generalize the
example of lists containing values of two different types.
type (’a, ’b) list2 =

Nil

| Acons of ’a * (’a, ’b) list2

| Bcons of ’b * (’a, ’b) list2 ; ;

Acons(2, Bcons(’+’, Acons(3, Bcons(’=’, Acons(5, Nil))))) ; ;

- : (int, char) list2 =

Acons (2, Bcons (’+’, Acons (3, Bcons (’=’, Acons (...)))))

One can, obviously, instantiate the parameters ’a and ’b with the same type.
Acons(1, Bcons(2, Acons(3, Bcons(4, Nil)))) ; ;

- : (int, int) list2 = Acons (1, Bcons (2, Acons (3, Bcons (4, Nil))))

This use of the type list2 can, as in the preceding example, serve to mark even
integers and odd integers. In this way we extract the sublist of even integers in order
to construct an ordinary list.
let rec extract odd = function

Nil → []

| Acons(_, x) → extract odd x

| Bcons(n, x) → n :: (extract odd x) ; ;

val extract_odd : (’a, ’b) list2 -> ’b list = <fun>

The definition of this function doesn’t give a single clue as to the nature of the values
stored in the structure. That is why its type is parameterized.

Type declarations and pattern matching 49

Scope of declarations

Constructor names obey the same scope discipline as global declarations: a redefini-
tion masks the previous one. Nevertheless values of the masked type still exist. The
interactive toplevel does not distinguish these two types in its output. Whence some
unclear error messages.

In this first example, the constant constructor Nil of type int or char has been
masked by the constructor declarations of the type (’a, ’b) list2.
Int cons(0, Nil) ; ;

Characters 13-16:

This expression has type (’a, ’b) list2 but is here used with type

int_or_char_list

This second example provokes a rather baffling error message, at least the first time it
appears. Let the little program be as follows:
type t1 = Empty | Full; ;

type t1 = | Empty | Full

let empty t1 x = match x with Empty → true | Full → false ; ;

val empty_t1 : t1 -> bool = <fun>

empty t1 Empty; ;

- : bool = true

Then, we redeclare the type t1:
type t1 = {u : int; v : int} ; ;

type t1 = { u: int; v: int }

let y = { u=2; v=3 } ; ;

val y : t1 = {u=2; v=3}

Now if we apply the function empty t1 to a value of the new type t1, we get the
following error message:
empty t1 y; ;

Characters 10-11:

This expression has type t1 but is here used with type t1

The first occurrence of t1 represents the first type defined, while the second corresponds
to the second type.

Function types

The type of the argument of a constructor may be arbitrary. In particular, it may very
well contain a function type. The following type constructs lists, all of whose elements
except the last are function values.
type ’a listf =

Val of ’a

| Fun of (’a → ’a) * ’a listf ; ;

50 Chapter 2 : Functional programming

type ’a listf = | Val of ’a | Fun of (’a -> ’a) * ’a listf

Since function values are values which can be manipulated in the language, we can
construct values of type listf:
let eight div = (/) 8 ; ;

val eight_div : int -> int = <fun>

let gl = Fun (succ, (Fun (eight div, Val 4))) ; ;

val gl : int listf = Fun (<fun>, Fun (<fun>, Val 4))

and functions which pattern-match such values:
let rec compute = function

Val v → v

| Fun(f, x) → f (compute x) ; ;

val compute : ’a listf -> ’a = <fun>

compute gl; ;

- : int = 3

Example: representing trees

Tree structures come up frequently in programming. Recursive types make it easy to
define and manipulate such structures. In this subsection, we give two examples of tree
structures.

Binary trees We define a binary tree structure whose nodes are labelled with values
of a single type by declaring:
type ’a bin tree =

Empty

| Node of ’a bin tree * ’a * ’a bin tree ; ;

We use this structure to define a little sorting program using binary search trees. A
binary search tree has the property that all the values in the left branch are less than
that of the root, and all those of the right branch are greater. Figure 2.5 gives an
example of such a structure over the integers. The empty nodes (constructor Empty)
are represented there by little squares; the others (constructor Node), by a circle in
which is inscribed the stored value.

A sorted list is extracted from a binary search tree via an inorder traversal carried out
by the following function:

let rec list of tree = function

Empty → []

| Node(lb, r, rb) → (list of tree lb) @ (r :: (list of tree rb)) ; ;

val list_of_tree : ’a bin_tree -> ’a list = <fun>

Type declarations and pattern matching 51

9

7

8

5

3

4

0

1

2

6

Figure 2.5: Binary search tree.

To obtain a binary search tree from a list, we define an insert function.
let rec insert x = function

Empty → Node(Empty, x, Empty)

| Node(lb, r, rb) → if x < r then Node(insert x lb, r, rb)

else Node(lb, r, insert x rb) ; ;

val insert : ’a -> ’a bin_tree -> ’a bin_tree = <fun>

The function to transform a list into a tree is obtained by iterating the function insert.

let rec tree of list = function

[] → Empty

| h :: t → insert h (tree of list t) ; ;

val tree_of_list : ’a list -> ’a bin_tree = <fun>

The sort function is then simply the composition of the functions tree of list and
list of tree.
let sort x = list of tree (tree of list x) ; ;

val sort : ’a list -> ’a list = <fun>

sort [5; 8; 2; 7; 1; 0; 3; 6; 9; 4] ; ;

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

General planar trees In this part, we use the following predefined functions from
the List module (see page 217):

• List.map: which applies a function to all the elements of a list and returns the
list of results;

52 Chapter 2 : Functional programming

• List.fold left: which is an equivalent version of the function fold left defined
on page 33;

• List.exists: which applies a boolean-valued function to all the elements of a
list; if one of these applications yields true then the result is true, otherwise the
function returns false.

A general planar tree is a tree whose number of branches is not fixed a priori; to each
node is associated a list of branches whose length may vary.
type ’a tree = Empty

| Node of ’a * ’a tree list ; ;

The empty tree is represented by the value Empty. A leaf is a node without branches
either of the form Node(x,[]), or of the degenerate form Node(x, [Empty;Empty;
..]). It is then relatively easy to write functions to manipulate these trees, e.g., to
determine whether an element belongs to a tree or compute the height of the tree.

To test membership of an element e, we use the following algorithm: if the tree is empty
then e does not belong to this tree, otherwise e belongs to the tree if and only if either
it is equal to the label of the root, or it belongs to one of its branches.
let rec belongs e = function

Empty → false

| Node(v, bs) → (e=v) or (List.exists (belongs e) bs) ; ;

val belongs : ’a -> ’a tree -> bool = <fun>

To compute the height of a tree, we use the following definition: an empty tree has
height 0, otherwise the height of the tree is equal to the height of its highest subtree
plus 1.
let rec height =

let max list l = List.fold left max 0 l in

function

Empty → 0

| Node (_, bs) → 1 + (max list (List.map height bs)) ; ;

val height : ’a tree -> int = <fun>

Recursive values which are not functions

Recursive declaration of non-function values allows the construction of circular data
structures.

The following declaration constructs a circular list with one element.
let rec l = 1 :: l ; ;

val l : int list =

[1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...]

Application of a recursive function to such a list risks looping until memory overflows.

Type declarations and pattern matching 53

size l ; ;

Stack overflow during evaluation (looping recursion?).

Structural equality remains usable with such lists only when physical equality is first
verified:
l=l ; ;

- : bool = true

In short, if you define a new list, even an equal one, you must not use the structural
equality test on pain of seeing your program loop indefinitely. So we don’t recommend
attempting to evaluate the following example:

let rec l2 = 1::l2 in l=l2 ;;

On the other hand, physical equality always remains possible.
let rec l2 = 1 :: l2 in l==l2 ; ;

- : bool = false

The predicate == tests equality of an immediate value or sharing of a structured object
(equality of the address of the value). We will use it to verify that in traversing a list
we don’t retraverse a sublist which was already examined. First of all, we define the
function memq, which verifies the presence of an element in the list by relying on physical
equality. It is the counterpart to the function mem which tests structural equality; these
two functions belong to the module List.
let rec memq a l = match l with

[] → false

| b :: l → (a==b) or (memq a l) ; ;

val memq : ’a -> ’a list -> bool = <fun>

The size computation function is redefined, storing the list of lists already examined
and halting if a list is encountered a second time.
let special size l =

let rec size aux previous l = match l with

[] → 0

| _::l1 → if memq l previous then 0

else 1 + (size aux (l :: previous) l1)

in size aux [] l ; ;

val special_size : ’a list -> int = <fun>

special size [1;2;3;4] ; ;

- : int = 4

special size l ; ;

- : int = 1

let rec l1 = 1 :: 2 :: l2 and l2 = 1 :: 2 :: l1 in special size l1 ; ;

- : int = 4

54 Chapter 2 : Functional programming

Typing, domain of definition, and

exceptions

The inferred type of a function corresponds to a subset of its domain of definition. Just
because a function takes a parameter of type int doesn’t mean it will know how to
compute a value for all integers passed as parameters. In general this problem is dealt
with using Objective Caml’s exception mechanism. Raising an exception results in a
computational interruption which can be intercepted and handled by the program. For
this to happen program execution must have registered an exception handler before
the computation of the expression which raises this exception.

Partial functions and exceptions

The domain of definition of a function corresponds to the set of values on which the
function carries out its computation. There are many mathematical functions which
are partial; we might mention division or taking the natural log. This problem also
arises for functions which manipulate more complex data structures. Indeed, what is
the result of computing the first element of an empty list? In the same way, evaluation
of the factorial function on a negative integer can lead to an infinite recursion.

Several exceptional situations may arise during execution of a program, for example
an attempt to divide by zero. Trying to divide a number by zero will provoke at best a
program halt, at worst an inconsistent machine state. The safety of a programming lan-
guage comes from the guarantee that such a situation will not arise for these particular
cases. Exceptions are a way of responding to them.

Division of 1 by 0 will cause a specific exception to be raised:
1/0; ;

Uncaught exception: Division_by_zero

The message Uncaught exception: Division_by_zero indicates on the one hand
that the Division by zero exception has been raised, and on the other hand that it
has not been handled. This exception is among the core declarations of the language.

Often, the type of a function does not correspond to its domain of definition when a
pattern-matching is not exhaustive, that is, when it does not match all the cases of a
given expression. To prevent such an error, Objective Caml prints a message in such a
case.
let head l = match l with h :: t → h ; ;

Characters 14-36:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val head : ’a list -> ’a = <fun>

Typing, domain of definition, and exceptions 55

If the programmer nevertheless keeps the incomplete definition, Objective Caml will
use the exception mechanism in the case of an erroneous call to the partial function:
head [] ; ;

Uncaught exception: Match_failure("", 14, 36)

Finally, we have already met with another predefined exception: Failure. It takes an
argument of type string. One can raise this exception using the function failwith.
We can use it in this way to complete the definition of our head:
let head = function

[] → failwith "Empty list"

| h :: t → h; ;

val head : ’a list -> ’a = <fun>

head [] ; ;

Uncaught exception: Failure("Empty list")

Definition of an exception

In Objective Caml, exceptions belong to a predefined type exn. This type is very
special since it is an extensible sum type: the set of values of the type can be extended
by declaring new constructors9. This detail lets users define their own exceptions by
adding new constructors to the type exn.

The syntax of an exception declaration is as follows:

Syntax : exception Name ;;

or

Syntax : exception Name of t ;;

Here are some examples of exception declarations:
exception MY EXN; ;

exception MY_EXN

MY EXN; ;

- : exn = MY_EXN

exception Depth of int; ;

exception Depth of int

Depth 4; ;

- : exn = Depth(4)

Thus an exception is a full-fledged language value.

9. Translator’s note: Thanks to the new “polymorphic variants” feature of Objective Caml 3.00, some
other sum types can now be extended as well

56 Chapter 2 : Functional programming

Warning The names of exceptions are constructors. So they nec-
essarily begin with a capital letter.

exception lowercase ; ;

Characters 11-20:

Syntax error

Warning
Exceptions are monomorphic: they do not have type
parameters in the declaration of the type of their argu-
ment.

exception Value of ’a ; ;

Characters 20-22:

Unbound type parameter ’a

A polymorphic exception would permit the definition of functions with an arbitrary
return type as we will see further on, page 58.

Raising an exception

The function raise is a primitive function of the language. It takes an exception as an
argument and has a completely polymorphic return type.
raise ; ;

- : exn -> ’a = <fun>

raise MY EXN; ;

Uncaught exception: MY_EXN

1+(raise MY EXN); ;

Uncaught exception: MY_EXN

raise (Depth 4); ;

Uncaught exception: Depth(4)

It is not possible to write the function raise in Objective Caml. It must be predefined.

Exception handling

The whole point of raising exceptions lies in the ability to handle them and to direct
the sequence of computation according to the value of the exception raised. The order
of evaluation of an expression thus becomes important for determining which exception
is raised. We are leaving the purely functional context, and entering a domain where
the order of evaluation of arguments can change the result of a computation, as will
be discussed in the following chapter (see page 85).

The following syntactic construct, which computes the value of an expression, permits
the handling of an exception raised during this computation:

Typing, domain of definition, and exceptions 57

Syntax :

try expr with

| p1 –> expr1
...
| pn –> exprn

If the evaluation of expr does not raise any exception, then the result is that of the
evaluation of expr. Otherwise, the value of the exception which was raised is pattern-
matched; the value of the expression corresponding to the first matching pattern is
returned. If none of the patterns corresponds to the value of the exception then the
latter is propagated up to the next outer try-with entered during the execution of the
program. Thus pattern matching an exception is always considered to be exhaustive.
Implicitly, the last pattern is | e -> raise e. If no matching exception handler is
found in the program, the system itself takes charge of intercepting the exception and
terminates the program while printing an error message.

One must not confuse computing an exception (that is, a value of type exn) with raising
an exception which causes computation to be interrupted. An exception being a value
like others, it can be returned as the result of a function.
let return x = Failure x ; ;

val return : string -> exn = <fun>

return "test" ; ;

- : exn = Failure("test")

let my raise x = raise (Failure x) ; ;

val my_raise : string -> ’a = <fun>

my raise "test" ; ;

Uncaught exception: Failure("test")

We note that applying my raise does not return any value while applying return
returns one of type exn.

Computing with exceptions

Beyond their use for handling exceptional values, exceptions also support a specific
programming style and can be the source of optimizations. The following example
finds the product of all the elements of a list of integers. We use an exception to
interrupt traversal of the list and return the value 0 when we encounter it.
exception Found zero ; ;

exception Found_zero

let rec mult rec l = match l with

[] → 1

| 0 :: _ → raise Found zero

| n :: x → n * (mult rec x) ; ;

val mult_rec : int list -> int = <fun>

let mult list l =

try mult rec l with Found zero → 0 ; ;

val mult_list : int list -> int = <fun>

mult list [1;2;3;0;5;6] ; ;

58 Chapter 2 : Functional programming

- : int = 0

So all the computations standing by, namely the multiplications by n which follow each
of the recursive calls, are abandoned. After encountering raise, computation resumes
from the pattern-matching under with.

Polymorphism and return values of

functions

Objective Caml’s parametric polymorphism permits the definition of functions whose
return type is completely unspecified. For example:
let id x = x ; ;

val id : ’a -> ’a = <fun>

However, the return type depends on the type of the argument. Thus, when the function
id is applied to an argument, the type inference mechanism knows how to instantiate
the type variable ’a. So for each particular use, the type of id can be determined.

If this were not so, it would no longer make sense to use strong static typing, entrusted
with ensuring execution safety. Indeed, a function of completely unspecified type such
as ’a -> ’b would allow any type conversion whatsoever, which would inevitably lead
to a run-time error since the physical representations of values of different types are
not the same.

Apparent contradiction

However, it is possible in the Objective Caml language to define a function whose return
type contains a type variable which does not appear in the types of its arguments. We
will consider several such examples and see why such a possibility is not contradictory
to strong static typing.

Here is a first example:
let f x = [] ; ;

val f : ’a -> ’b list = <fun>

This function lets us construct a polymorphic value from anything at all:
f () ; ;

- : ’_a list = []

f "anything at all" ; ;

- : ’_a list = []

Nevertheless, the value obtained isn’t entirely unspecified: we’re dealing with a list. So
it can’t be used just anywhere.

Desktop Calculator 59

Here are three examples whose type is the dreaded ’a -> ’b:
let rec f1 x = f1 x ; ;

val f1 : ’a -> ’b = <fun>

let f2 x = failwith "anything at all" ; ;

val f2 : ’a -> ’b = <fun>

let f3 x = List.hd [] ; ;

val f3 : ’a -> ’b = <fun>

These functions are not, in fact, dangerous vis-a-vis execution safety, since it isn’t
possible to use them to construct a value: the first one loops forever, the latter two
raise an exception which interrupts the computation.

Similarly, it is in order to prevent functions of type ’a -> ’b from being defined that
new exception constructors are forbidden from having arguments whose type contains
a variable.

Indeed, if one could declare a polymorphic exception Poly exn of type ’a -> exn, one
could then write the function:
let f = function

0 → raise (Poly exn false)

| n → n+1 ; ;

The function f being of type int -> int and Poly exn being of type ’a -> exn, one
could then define:
let g n = try f n with Poly exn x → x+1 ; ;

This function is equally well-typed (since the argument of Poly exn may be arbitrary)
and now, evaluation of (g 0) would end up in an attempt to add an integer and a
boolean!

Desktop Calculator

To understand how a program is built in Objective Caml, it is necessary to develop one.
The chosen example is a desktop calculator—that is, the simplest model, which only
works on whole numbers and only carries out the four standard arithmetic operations.

To begin, we define the type key to represent the keys of a pocket calculator. The latter
has fifteen keys, namely: one for each operation, one for each digit, and the = key.
type key = Plus | Minus | Times | Div | Equals | Digit of int ; ;

We note that the numeric keys are gathered under a single constructor Digit taking
an integer argument. In fact, some values of type key don’t actually represent a key.
For example, (Digit 32) is a possible value of type key, but doesn’t represent any of
the calculator’s keys.

So we write a function valid which verifies that its argument corresponds to a calcu-
lator key. The type of this function is key -> bool, that is, it takes a value of type
key as argument and returns a value of type bool.

60 Chapter 2 : Functional programming

The first step is to define a function which verifies that an integer is included between
0 and 9. We declare this function under the name is digit:
let is digit = function x → (x>=0) && (x<=9) ; ;

val is_digit : int -> bool = <fun>

We then define the function valid by pattern-matching over its argument of type key:

let valid ky = match ky with

Digit n → is digit n

| _ → true ; ;

val valid : key -> bool = <fun>

The first pattern is applied when the argument of valid is a value made with the Digit
constructor; in this case, the argument of Digit is tested by the function is digit.
The second pattern is applied to every other kind of value of type key. Recall that
thanks to typing, the value being matched is necessarily of type key.

Before setting out to code the calculator mechanism, we will specify a model allowing
us to describe from a formal point of view the reaction to the activation of one of the
device’s keys. We will consider a pocket calculator to have four registers in which are
stored respectively the last computation done, the last key activated, the last operator
activated, and the number printed on the screen. The set of these four registers is
called the state of the calculator; it is modified by each keypress on the keypad. This
modification is called a transition and the theory governing this kind of mechanism is
that of automata. A state will be represented in our program by a record type:
type state = {

lcd : int; (* last computation done *)

lka : key; (* last key activated *)

loa : key; (* last operator activated *)

vpr : int (* value printed *)

} ; ;

Figure 2.6 gives an example of a sequence of transitions.

state key
(0, =, =, 0) 3

−→ (0, 3,=, 3) +
−→ (3, +, +, 3) 2
−→ (3, 2,+, 2) 1
−→ (3, 1,+, 21) ×
−→ (24, ∗, ∗, 24) 2
−→ (24, 2, ∗, 2) =
−→ (48, =, =, 48)

Figure 2.6: Transitions for 3 + 21 ∗ 2 = .

Desktop Calculator 61

In what follows we need the function evaluate which takes two integers and a value
of type key containing an operator and which returns the result of the operation
corresponding to the key, applied to the integers. This function is defined by pattern-
matching over its last argument, of type key:
let evaluate x y ky = match ky with

Plus → x + y

| Minus → x - y

| Times → x * y

| Div → x / y

| Equals → y

| Digit _ → failwith "evaluate : no op"; ;

val evaluate : int -> int -> key -> int = <fun>

Now we give the definition of the transition function by enumerating all possible cases.
We assume that the current state is the quadruplet (a, b,⊕, d):

• a key with digit x is pressed, then there are two cases to consider:
– the last key pressed was also a digit. So it is a number which the user of the

pocket calculator is in the midst of entering; consequently the digit x must
be affixed to the printed value, i.e., replacing it with d × 10 + x. The new
state is:

(a, (Digit x),⊕, d× 10 + x)

– the last key pressed was not a digit. So it is the start of a new number which
is being entered. The new state is:

(a, (Digit x),⊕, x)

• a key with operator ⊗ has been pressed, the second operand of the operation has
thus been completely entered and the calculator has to deal with carrying out
this operation. It is to this end that the last operation (here ⊕) is stored. The
new state is:

(⊕d,⊗,⊗, a⊕ d)

To write the function transition, it suffices to translate the preceding definition word
for word into Objective Caml: the definition by cases becomes a definition by pattern-
matching over the key passed as an argument. The case of a key, which itself is made up
of two cases, is handled by the local function digit transition by pattern-matching
over the last key activated.
let transition st ky =

let digit transition n = function

Digit _ → { st with lka=ky; vpr=st.vpr*10+n }
| _ → { st with lka=ky; vpr=n }

in

match ky with

Digit p → digit transition p st.lka

| _ → let res = evaluate st.lcd st.vpr st.loa

in { lcd=res; lka=ky; loa=ky; vpr=res } ; ;

62 Chapter 2 : Functional programming

val transition : state -> key -> state = <fun>

This function takes a state and a key and computes the new state.

We can now test this program on the previous example:
let initial state = { lcd=0; lka=Equals; loa=Equals; vpr=0 } ; ;

val initial_state : state = {lcd=0; lka=Equals; loa=Equals; vpr=0}

let state2 = transition initial state (Digit 3) ; ;

val state2 : state = {lcd=0; lka=Digit 3; loa=Equals; vpr=3}

let state3 = transition state2 Plus ; ;

val state3 : state = {lcd=3; lka=Plus; loa=Plus; vpr=3}

let state4 = transition state3 (Digit 2) ; ;

val state4 : state = {lcd=3; lka=Digit 2; loa=Plus; vpr=2}

let state5 = transition state4 (Digit 1) ; ;

val state5 : state = {lcd=3; lka=Digit 1; loa=Plus; vpr=21}

let state6 = transition state5 Times ; ;

val state6 : state = {lcd=24; lka=Times; loa=Times; vpr=24}

let state7 = transition state6 (Digit 2) ; ;

val state7 : state = {lcd=24; lka=Digit 2; loa=Times; vpr=2}

let state8 = transition state7 Equals ; ;

val state8 : state = {lcd=48; lka=Equals; loa=Equals; vpr=48}

This run can be written in a more concise way using a function applying a sequence of
transitions corresponding to a list of keys passed as an argument.

let transition list st ls = List.fold left transition st ls ; ;

val transition_list : state -> key list -> state = <fun>

let example = [Digit 3; Plus; Digit 2; Digit 1; Times; Digit 2; Equals]

in transition list initial state example ; ;

- : state = {lcd=48; lka=Equals; loa=Equals; vpr=48}

Exercises

Merging two lists

1. Write a function merge i which takes as input two integer lists sorted in in-
creasing order and returns a new sorted list containing the elements of the first
two.

2. Write a general function merge which takes as argument a comparison function
and two lists sorted in this order and returns the list merged in the same order.
The comparison function will be of type ’a → ’a → bool.

3. Apply this function to two integer lists sorted in decreasing order, then to two
string lists sorted in decreasing order.

4. What happens if one of the lists is not in the required decreasing order?

Exercises 63

5. Write a new list type in the form of a record containing three fields: the
conventional list, an order function and a boolean indicating whether the list is
in that order.

6. Write the function insert which adds an element to a list of this type.

7. Write a function sort which insertion sorts the elements of a list.

8. Write a new function merge for these lists.

Lexical trees

Lexical trees (or tries) are used for the representation of dictionaries.
type lex node = Letter of char * bool * lex tree

and lex tree = lex node list; ;

type word = string; ;

The boolean value in lex node marks the end of a word when it equals true. In such
a structure, the sequence of words “fa, false, far, fare, fried, frieze” is stored in the
following way:

F

A*
�

L

S
�

E*
�

R*
�

E*
�

R

I

E

D*
�

Z

E*
�

An asterisk (*) marks the end of a word.

1. Write the function exists which tests whether a word belongs to a dictionary
of type lex tree.

2. Write a function insert which takes a word and a dictionary and returns a new
dictionary which additionally contains this word. If the word is already in the
dictionary, it is not necessary to insert it.

3. Write a function construct which takes a list of words and constructs the
corresponding dictionary.

4. Write a function verify which takes a list of words and a dictionary and returns
the list of words not belonging to this dictionary.

5. Write a function select which takes a dictionary and a length and returns the
set of words of this length.

64 Chapter 2 : Functional programming

Graph traversal

We define a type ’a graph representing directed graphs by adjacency lists containing
for each vertex the list of its successors:
type ’a graph = (’a * ’a list) list ; ;

1. Write a function insert vtx which inserts a vertex into a graph and returns the
new graph.

2. Write a function insert edge which adds an edge to a graph already possessing
these two vertices.

3. Write a function has edges to which returns all the vertices following directly
from a given vertex.

4. Write a function has edges from which returns the list of all the vertices leading
directly to a given vertex.

Summary

This chapter has demonstrated the main features of functional programming and para-
metric polymorphism, which are two essential features of the Objective Caml language.
The syntax of the expressions in the functional core of the language as well as those of
the types which have been described allowed us to develop our first programs. More-
over, the profound difference between the type of a function and its domain of defini-
tion was underlined. Introducing the exception mechanism allowed us to resolve this
problem and already introduces a new programming style in which one specifies how
computations should unfold.

To learn more

The computation model for functional languages is λ-calculus, which was invented by
Alonzo Church in 1932. Church’s goal was to define a notion of effective computability
through the medium of λ-definability. Later, it became apparent that the notion thus
introduced was equivalent to the notions of computability in the sense of Turing (Tur-
ing machine) and Gödel-Herbrand (recursive functions). This cöıncidence leads one to
think that there exists a universal notion of computability, independent of particular
formalisms: this is Church’s thesis. In this calculus, the only two constructions are ab-
straction and application. Data structures (integers, booleans, pairs, ...) can be coded
by λ-termes.

Functional languages, of which the first representative was Lisp, implement this model
and extend it mainly with more efficient data structures. For the sake of efficiency, the
first functional languages implemented physical modifications of memory, which among
other things forced the evaluation strategy to be immediate, or strict, evaluation. In
this strategy, the arguments of functions are evaluated before being passed to the

To learn more 65

function. It is in fact later, for other languages such as Miranda, Haskell, or LML, that
the strategy of delayed (lazy, or call-by-need) evaluation was implemented for pure
functional languages.

Static typing, with type inference, was promoted by the ML family at the start of the
80’s. The web page

Link: http://www.pps.jussieu.fr/˜cousinea/Caml/caml history.html

presents a historical overview of the ML language. Its computation model is typed
λ-calculus, a subset of λ-calculus. It guarantees that no type error will occur during
program execution. Nevertheless “completely correct” programs can be rejected by
ML’s type system. These cases seldom arise and these programs can always be rewritten
in such a way as to conform to the type system.

The two most-used functional languages are Lisp and ML, representatives of impure
functional languages. To deepen the functional approach to programming, the books
[ASS96] and [CM98] each present a general programming course using the languages
Scheme (a dialect of Lisp) and Caml-Light, respectively.

66 Chapter 2 : Functional programming

