
20
Distributed

Programming

With distributed programming, you can build applications running on several machines
that work together through a network to accomplish a task. The computation model
described here is parallel programming with distributed memory. Local and remote
programs communicate using a network protocol. The best-known and most widely-
used of these is IP (Internet protocol) and its TCP and UDP layers. Beginning with
these low-level layers, many services are built on the client-server model, where a server
waits for requests from different clients, processes those requests, and sends responses.
As an example, the HTTP protocol allows communication between Web browsers and
Web servers. The distribution of tasks between clients and servers is suitable for many
different software architectures.

The Objective Caml language offers, through its Unix library, various means of com-
munication between programs. Sockets allow communication through the TCP/IP and
UDP/IP protocols. This part of the Unix library has been ported to Windows. Be-
cause you can create “heavyweight” processes with Unix.fork as well as lightweight
processes with Thread.create, you can create servers that accept many requests at
once. Finally, an important point when creating a new service is the definition of a
protocol appropriate to the application.

Outline of the Chapter

This chapter presents the basic elements of the Internet, sockets, for the purpose of
building distributed applications (particularly client-server applications) while detail-
ing the problems in designing communications protocols.

The first section briefly explains the Internet, its addressing system and its main ser-
vices.

624 Chapter 20 : Distributed Programming

The second section illustrates communications through sockets between different Ob-
jective Caml processes, both local and remote.

The third section describes the client-server model, while presenting server programs
and universal clients.

The fourth section shows the importance of communications protocols for building
network services.

This chapter is best read after the chapters on systems programming (Chapter 18) and
on concurrent programming (Chapter 19).

The Internet

The Internet is a network of networks. Their interconnection is organized as a hierarchy
of domains, subdomains, and so on, through interfaces. An interface is the hardware in a
computer that allows it to be connected (typically, an Ethernet card). Some computers
may have several interfaces. Each interface has a unique IP address that respects, in
general, the interconnection hierarchy. Message routing is also organized hierarchically:
from domain to domain; then from domain to subdomains, and so on, until a message
reaches its destination interface. Besides their interface addresses, computers usually
also have a name, as do domains and subdomains. Some machines have a particular
role in the network:

bridges connect one network to another;

routers use their knowledge of the topology of the Internet to route data;

name servers track the correspondence between machine names and network ad-
dresses.

The purpose of the Internet protocol (i.e., of the IP) is to make the network of networks
into a single entity. This is why one can speak of the Internet. Any two machines
connected via the Internet can communicate. Many kinds of machines and systems
coexist on the Internet. All of them use IP protocols and most of them, the UDP and
TCP layers.

The different protocols and services used by the Internet are described in RFC’s (Re-
quests For Comments), which can be found on the Jussieu mirror site:

Link: ftp://ftp.lip6.fr/pub/rfc

Internet Protocols and Services

The unit of transfer used by the IP protocol is the datagram or packet. This protocol
in unreliable: it does not assure proper order, safe arrival, or non-duplication of trans-
mitted packets. It only deals with correct routing of packets and signaling of errors

The Internet 625

when a packet is unable to reach its destination. Addresses are coded into 32 bits in
the current version of the protocol: IPv4. These 32 bits are divided into four fields,
each containing values between 0 and 255. IP addresses are written with the four fields
separated by periods, for example: 132.227.60.30.

The IP protocol is in the midst of an important change made necessary by the ex-
haustion of address space and the growing complexity of routing problems due to the
expansion of the Internet. The new version of the IP protocol is IPv6, which is de-
scribed in [Hui97].

Above IP, two protocols allow higher-level transmissions: UDP (User Datagram Pro-
tocol, and TCP (Transfer Control Protocol). These two protocols use IP for com-
munication between machines, also allowing communication between applications (or
programs) running on those machines. They deal with correct transmission of informa-
tion, independent of contents. The identification of applications on a machine is done
via a port number.

UDP is a connectionless, unreliable protocol: it is to applications as IP is to interfaces.
TCP is a connection-oriented, reliable protocol: it manages acknowledgement, retrans-
mission, and ordering of packets. Further, it is capable of optimizing transmission by
a windowing technique.

The standard services (applications) of the Internet most often use the client-server
model. The server manages requests by clients, offering them a specific service. There
is an asymmetry between client and server. The services establish high-level protocols
for keeping track of transmitted contents. Among the standard services, we note:

• FTP (File Transfer Protocol);

• TELNET (Terminal Protocol);

• SMTP (Simple Mail Transfer Protocol);

• HTTP (Hypertext Transfer Protocol).

Other services use the client-server model:

• NFS (Network File System);

• X-Windows

• Unix services: rlogin, rwho . . .

Communication between applications takes place via sockets. Sockets allow communi-
cation between processes residing on possibly different machines. Different processes
can read and write to sockets.

The Unix Module and IP Addressing

The Unix library defines the abstract type inet addr representing Internet addresses,
as well as two conversion functions between an internal representation of addresses and
strings:
Unix.inet addr of string ; ;

626 Chapter 20 : Distributed Programming

- : string -> Unix.inet_addr = <fun>

Unix.string of inet addr ; ;
- : Unix.inet_addr -> string = <fun>

In applications, Internet addresses and port numbers for services (or service numbers)
are often replaced by names. The correspondence between names and address or num-
ber is managed using databases. The Unix library provides functions to request data
from these databases and provides datatypes to allow storage of the obtained informa-
tion. We briefly describe these functions below.

Address tables. The table of addresses (hosts database) contains the assocation
between machine name(s) and interface address(es). The structure of entries in the
address table is represented by:
type host entry =

{ h name : string;
h aliases : string array;
h addrtype : socket domain;
h addr list : inet addr array } ; ;

The first two fields contain the machine name and its aliases; the third contains the
address type (see page 627); the last contains a list of machine addresses.

A machine name is obtained by using the function:
Unix.gethostname ; ;
- : unit -> string = <fun>

let my name = Unix.gethostname () ; ;
val my_name : string = "estephe.inria.fr"

The functions that query the address table require an entry, either the name or the
machine address.
Unix.gethostbyname ; ;
- : string -> Unix.host_entry = <fun>

Unix.gethostbyaddr ; ;
- : Unix.inet_addr -> Unix.host_entry = <fun>

let my entry byname = Unix.gethostbyname my name ; ;
val my_entry_byname : Unix.host_entry =

{Unix.h_name="estephe.inria.fr"; Unix.h_aliases=[|"estephe"|];

Unix.h_addrtype=Unix.PF_INET; Unix.h_addr_list=[|<abstr>|]}

let my addr = my entry byname.Unix.h addr list.(0) ; ;
val my_addr : Unix.inet_addr = <abstr>

let my entry byaddr = Unix.gethostbyaddr my addr ; ;
val my_entry_byaddr : Unix.host_entry =

{Unix.h_name="estephe.inria.fr"; Unix.h_aliases=[|"estephe"|];

Unix.h_addrtype=Unix.PF_INET; Unix.h_addr_list=[|<abstr>|]}

let my full name = my entry byaddr.Unix.h name ; ;
val my_full_name : string = "estephe.inria.fr"

These functions raise the Not found exception in case the request fails.

Sockets 627

Table of services. The table of services contains the correspondence between service
names and port numbers. The majority of Internet services are standardized. The
structure of entries in the table of services is:
type service entry =

{ s name : string;
s aliases : string array;
s port : int;
s proto : string } ; ;

The first two fields are the service name and its eventual aliases; the third field contains
the port number; the last field contains the name of the protocol used.

A service is in fact characterized by its port number and the underlying protocol. The
query functions are:
Unix.getservbyname ; ;
- : string -> string -> Unix.service_entry = <fun>

Unix.getservbyport ; ;
- : int -> string -> Unix.service_entry = <fun>

Unix.getservbyport 80 "tcp" ; ;
- : Unix.service_entry =

{Unix.s_name="www"; Unix.s_aliases=[|"http"|]; Unix.s_port=80;

Unix.s_proto="tcp"}

Unix.getservbyname "ftp" "tcp" ; ;
- : Unix.service_entry =

{Unix.s_name="ftp"; Unix.s_aliases=[||]; Unix.s_port=21; Unix.s_proto="tcp"}

These functions raise the Not found exception if they cannot find the service requested.

Sockets

We saw in chapters 18 and 19 two ways to perform interprocess communication, namely,
pipes and channels. These first two methods use a logical model of concurrency. In
general, they do not give better performance to the degree that the communicating
processes share resources, in particular, the same processor. The third possibility, which
we present in this section, uses sockets for communication. This method originated in
the Unix world. Sockets allow communication between processes executing on the same
machine or on different machines.

Description and Creation

A socket is responsible for establishing communication with another socket, with the
goal of transferring information. We enumerate the different situations that may be
encountered as well as the commands and datatypes that are used by TCP/IP sockets.
The classic metaphor is to compare sockets to telephone sets.

• In order to work, the machine must be connected to the network (socket).

• To receive a call, it is necessary to possess a number of the type sock addr (bind).

• During a call, it is possible to receive another call if the configuration allows it
(listen).

628 Chapter 20 : Distributed Programming

• It is not necessary to have one’s own number to call another set, once the con-
nection is established in both directions (connect).

Domains. Sockets belong to different domains, according to whether they are meant
to communicate internally or externally. The Unix library defines two possible domains
corresponding to the type constructors:
type socket domain = PF UNIX | PF INET; ;

The first domain corresponds to local communication, and the second, to communica-
tion over the Internet. These are the principal domains for sockets.

In the following, we use sockets belonging only to the Internet domain.

Types and protocols. Regardless of their domain, sockets define certain commu-
nications properties (reliability, ordering, etc.) represented by the type constructors:

type socket type = SOCK STREAM | SOCK DGRAM | SOCK SEQPACKET | SOCK RAW ; ;

According to the type of socket used, the underlying communications protocol obeys
definite characteristics. Each type of communication is associated with a default pro-
tocol.

In fact, we will only use the first kind of communication — SOCK STREAM — with
the default protocol TCP. This guarantees reliability, order, prevents duplication of
exchanged messages, and works in connected mode.

For more information, we refer the reader to the Unix literature, for example [Ste92].

Creation. The function to create sockets is:
Unix.socket ; ;
- : Unix.socket_domain -> Unix.socket_type -> int -> Unix.file_descr = <fun>

The third argument allows specification of the protocol associated with communication.
The value 0 is interpreted as “the default protocol” associated with the pair (domain,
type) argument used for the creation of the socket. The value returned by this function
is a file descriptor. Thus such a value can be used with the standard input-output
functions in the Unix library.

We can create a TCP/IP socket with:
let s descr = Unix.socket Unix.PF INET Unix.SOCK STREAM 0 ; ;
val s_descr : Unix.file_descr = <abstr>

Warning

Even though the socket function returns a value of type
file descr, the system distinguishes descriptors for a
files and those associated with sockets. You can use the
file functions in the Unix library with descriptors for
sockets; but an exception is raised when a classical file
descriptor is passed to a function expecting a descriptor
for a socket.

Sockets 629

Closing. Like all file descriptors, a socket is closed by the function:
Unix.close ; ;
- : Unix.file_descr -> unit = <fun>

When a process finishes via a call to exit, all open file descriptors are closed automat-
ically.

Addresses and Connections

A socket does not have an address when it is created. In order to setup a connection
between two sockets, the caller must know the address of the receiver.

The address of a socket (TCP/IP) consists of an IP address and a port number. A
socket in the Unix domain consists simply of a file name.

type sockaddr =

ADDR UNIX of string | ADDR INET of inet addr * int ; ;

Binding a socket to an address. The first thing to do in order to receive calls
after the creation of a socket is to bind the socket to an address. This is the job of the
function:
Unix.bind ; ;
- : Unix.file_descr -> Unix.sockaddr -> unit = <fun>

In effect, we already have a socket descriptor, but the address that is associated with
it at creation is hardly useful, as shown by the following example:
let (addr in, p num) =

match Unix.getsockname s descr with

Unix.ADDR INET (a,n) → (a,n)

| _ → failwith "not INET" ; ;
val addr_in : Unix.inet_addr = <abstr>

val p_num : int = 0

Unix.string of inet addr addr in ; ;
- : string = "0.0.0.0"

We need to create a useful address and to associate it with our socket. We reuse our
local address my addr as described on page 626 and choose port 12345 which, in general,
is unused.
Unix.bind s descr (Unix.ADDR INET(my addr, 12345)) ; ;
- : unit = ()

Listening and accepting connections. It is necessary to use two operations before
our socket is completely operational to receive calls: define its listening capacity and
allow it to accept connections. Those are the respective roles of the two functions:

630 Chapter 20 : Distributed Programming

Unix.listen ; ;
- : Unix.file_descr -> int -> unit = <fun>

Unix.accept ; ;
- : Unix.file_descr -> Unix.file_descr * Unix.sockaddr = <fun>

The second argument to the listen function gives the maximum number of connec-
tions. The call to the accept function waits for a connection request. When accept
finishes, it returns the descriptor for a socket, the so-called service socket. This ser-
vice socket is automatically linked to an address. The accept function may only be
applied to sockets that have called listen, that is, to sockets that have setup a queue
of connection requests.

Connection requests. The function reciprocal to accept is;
Unix.connect ; ;
- : Unix.file_descr -> Unix.sockaddr -> unit = <fun>

A call to Unix.connect s descr s addr establishes a connection between the local
socket s descr (which is automatically bound) and the socket with address s addr

(which must exist).

Communication. From the moment that a connection is established between two
sockets, the processes owning them can communicate in both directions. The input-
output functions are those in the Unix module, described in Chapter 18.

Client-server

Interprocess communication between processes on the same machine or on different
machines through TCP/IP sockets is a mode of point-to-point asynchronous commu-
nication. The reliability of such transmissions is assured by the TCP protocol. It is
nonetheless possible to simulate the broadcast to a group of processes through point-
to-point communication to all receivers.

The roles of different processes communicating in an application are asymmetric, as a
general rule. That description holds for client-server architectures. A server is a process
(or several processes) accepting requests and trying to respond to them. The client,
itself a process, sends a request to the server, hoping for a response.

Client-server Action Model

A server provides a service on a given port by waiting for connections from future
clients. Figure 20.1 shows the sequence of principal tasks for a server and a client.

Client-server 631

socket creation (socket) : TCP/UDP

socket binding (bind) : ADR_IP,PORT

service opening (listen) : number

waiting for connection (accept)

process creation (fork or thread)

connection (connect) : ADR_IPserv,PORT

communication with the server

finish

handling the request

socket creation (socket) : TCP/UDP

successproblem

Server Client

Figure 20.1: Model of a server and client

A client can connect to a service once the server is ready to accept connections
(accept). In order to make a connection, the client must know the IP number of the
server machine and the port number of the service. If the client does not know the IP
number, it needs to request name/number resolution using the function gethostbyname.
Once the connection is accepted by the server, each program can communicate via
input-output channels over the sockets created at both ends.

Client-server Programming

The mechanics of client-server programming follows the model described in Figure 20.1.
These tasks are always performed. For these tasks, we write generic functions param-
eterized by particular functions for a given server. As an example of such a program,
we describe a server that accepts a connection from a client, waits on a socket until a
line of text has been received, converting the line to CAPITALS, and sending back the
converted text to the client.

Figure 20.2 shows the communication between the service and different clients1.

Certain tasks run on the same machine as the server, while others are found on remote
machines.

We will see

1. Note of translator: “boulmich” is a colloquial abbreviation for “Boulevard Saint-Michel”, one the
principal avenues of Quartier Latin in Paris...

632 Chapter 20 : Distributed Programming

client_seq

client_seq

boulmich

tolbiac

client_par

uppercase service

Figure 20.2: CAPITAL service and its clients

1. How to write the code for a “generic server” and instantiate it for our particular
capitalization service.

2. How to test the server, without writing the client, by using the telnet program.

3. How to create two types of clients:
• a sequential client, which waits for a response after sending a request;
• a parallel client, which separates the send and receive tasks.
Therefore, there are two processes for this client.

Code for the Server

A server may be divided into two parts: waiting for a connection and the following
code to handle the connection.

A Generic Server

The generic server function establish server described below takes as its first argu-
ment a function for the service (server fun) that handles requests, and as its second
argument, the address of the socket in the Internet domain that listens for requests.
This function uses the auxiliary function domain of, which extracts the domain of a
socket from its address.

In fact, the function establish server is made up of high-level functions from the
Unix library. This function sets up a connection to a server.

let establish server server fun sockaddr =

let domain = domain of sockaddr in

let sock = Unix.socket domain Unix.SOCK STREAM 0

Client-server 633

in Unix.bind sock sockaddr ;
Unix.listen sock 3;
while true do

let (s, caller) = Unix.accept sock

in match Unix.fork () with

0 → if Unix.fork () <> 0 then exit 0 ;
let inchan = Unix.in channel of descr s

and outchan = Unix.out channel of descr s

in server fun inchan outchan ;
close in inchan ;
close out outchan ;
exit 0

| id → Unix.close s; ignore(Unix.waitpid [] id)

done ; ;
val establish_server :

(in_channel -> out_channel -> ’a) -> Unix.sockaddr -> unit = <fun>

To finish building a server with a standalone executable that takes a port number
parameter, we write a function main server which takes a parameter indicating a
service. The function uses the command-line parameter as the port number of a service.
The auxiliary function get my addr, returns the address of the local machine.
let get my addr () =

(Unix.gethostbyname(Unix.gethostname ())).Unix.h addr list.(0) ; ;
val get_my_addr : unit -> Unix.inet_addr = <fun>

let main server serv fun =

if Array.length Sys.argv < 2 then Printf.eprintf "usage : serv_up port\n"

else try

let port = int of string Sys.argv.(1) in

let my address = get my addr ()
in establish server serv fun (Unix.ADDR INET(my address, port))

with

Failure("int_of_string") →
Printf.eprintf "serv_up : bad port number\n" ; ;

val main_server : (in_channel -> out_channel -> ’a) -> unit = <fun>

Code for the Service

The general mechanism is now in place. To illustrate how it works, we need to define
the service we’re interested in. The service here converts strings to upper-case. It waits
for a line of text over an input channel, converts it, then writes it on the output channel,
flushing the output buffer.
let uppercase service ic oc =

try while true do

let s = input line ic in

let r = String.uppercase s

in output string oc (r^"\n") ; flush oc

done

with _ → Printf.printf "End of text\n" ; flush stdout ; exit 0 ; ;

634 Chapter 20 : Distributed Programming

val uppercase_service : in_channel -> out_channel -> unit = <fun>

In order to correctly recover from exceptions raised in the Unix library, we wrap the
initial call to the service in an ad hoc function from the Unix library:
let go uppercase service () =

Unix.handle unix error main server uppercase service ; ;
val go_uppercase_service : unit -> unit = <fun>

Compilation and Testing of the Service

We group the functions in the file serv up.ml, adding an actual call to the function
go uppercase service. We compile this file, indicating that the Unix library is linked
in

ocamlc -i -custom -o serv_up.exe unix.cma serv_up.ml -cclib -lunix

The transcript from this compilation (using the option -i) gives:

val establish_server :
(in_channel -> out_channel -> ’a) -> Unix.sockaddr -> unit

val main_server : (in_channel -> out_channel -> ’a) -> unit
val uppercase_service : in_channel -> out_channel -> unit
val go_uppercase_service : unit -> unit

We launch the server by writing:

serv_up.exe 1400

The port chosen here is 1400. Now the machine where the server was launched will
accept connections on this port.

Testing with telnet

We can now begin to test the server by using an existing client to send and receive lines
of text. The telnet utility, which normally is a client of the telnetd service on port
23, and used to control a remote connection, can be diverted from this role by passing
a machine name and a different port number. This utility exists on several operating
systems. To test our server under Unix, we type:

$ telnet boulmich 1400
Trying 132.227.89.6...
Connected to boulmich.ufr-info-p6.jussieu.fr.
Escape character is ’^]’.

Client-server 635

The IP address for boulmich is 132.227.89.6 and its complete name, which contains its
domain name, is boulmich.ufr-info-p6.jussieu.fr. The text displayed by telnet
indicates a successful connection to the server. The client waits for us to type on the
keyboard, sending the characters to the server that we have launched on boulmich on
port 1400. It waits for a response from the server and displays:

The little cat is dead.
THE LITTLE CAT IS DEAD.
We obtained the expected result.
WE OBTAINED THE EXPECTED result.

The phrases entered by the user are in lower-case and those sent by the server are in
upper-case. This is exactly the role of this service, to perform this conversion.

To exit from the client, we need to close the window where it was run, by executing
the kill command. This command will close the client’s socket, causing the server’s
socket to close as well. When the server displays the message “End of text,” the
process associated with the service terminates.

The Client Code

While the server is naturally parallel (we would like to handle a particular request
while accepting others, up to some limit), the client may or may not be so, according
to the nature of the application. Below we give two versions of the client. Beforehand,
we present two functions that will be useful for writing these clients.

The function open connection from the Unix library allows us to obtain a couple of
input-output channels for a socket.

The following code is contained in the language distribution.
let open connection sockaddr =

let domain = domain of sockaddr in

let sock = Unix.socket domain Unix.SOCK STREAM 0

in try Unix.connect sock sockaddr ;
(Unix.in channel of descr sock , Unix.out channel of descr sock)

with exn → Unix.close sock ; raise exn ; ;
val open_connection : Unix.sockaddr -> in_channel * out_channel = <fun>

Similarly, the function shutdown connection closes down a socket.
let shutdown connection inchan =

Unix.shutdown (Unix.descr of in channel inchan) Unix.SHUTDOWN SEND ; ;
val shutdown_connection : in_channel -> unit = <fun>

A Sequential Client

From these functions, we can write the main function of a sequential client. This
client takes as its argument a function for sending requests and receiving responses.

636 Chapter 20 : Distributed Programming

This function analyzes the command line arguments to obtain connection parameters
before actual processing.
let main client client fun =

if Array.length Sys.argv < 3

then Printf.printf "usage : client server port\n"

else let server = Sys.argv.(1) in

let server addr =

try Unix.inet addr of string server

with Failure("inet_addr_of_string") →
try (Unix.gethostbyname server).Unix.h addr list.(0)

with Not found →
Printf.eprintf "%s : Unknown server\n" server ;
exit 2

in try

let port = int of string (Sys.argv.(2)) in

let sockaddr = Unix.ADDR INET(server addr,port) in

let ic,oc = open connection sockaddr

in client fun ic oc ;
shutdown connection ic

with Failure("int_of_string") → Printf.eprintf "bad port number";
exit 2 ; ;

val main_client : (in_channel -> out_channel -> ’a) -> unit = <fun>

All that is left is to write the function for client processing.
let client fun ic oc =

try

while true do

print string "Request : " ;
flush stdout ;
output string oc ((input line stdin)^"\n") ;
flush oc ;
let r = input line ic

in Printf.printf "Response : %s\n\n" r;
if r = "END" then (shutdown connection ic ; raise Exit) ;

done

with

Exit → exit 0

| exn → shutdown connection ic ; raise exn ; ;
val client_fun : in_channel -> out_channel -> unit = <fun>

The function client fun enters an infinite loop which reads from the keyboard, sends
a string to the server, gets back the transformed upper-case string, and displays it.
If the string is "END", then the exception Exit is raised in order to exit the loop. If
another exception is raised, typically if the server has shut down, the function ceases
its calculations.

The client program thus becomes:
let go client () = main client client fun ; ;
val go_client : unit -> unit = <fun>

Client-server 637

We place all these functions in a file named client seq.ml, adding a call to the
function go client. We compile the file with the following command line:

ocamlc -i -custom -o client_seq.exe unix.cma client_seq.ml -cclib -lunix

We run the client as follows:

$ client_seq.exe boulmich 1400
Request : The little cat is dead.
Response: THE LITTLE CAT IS DEAD.

Request : We obtained the expected result.
Response: WE OBTAINED THE EXPECTED RESULT.

Request : End
Response: END

The Parallel Client with fork

The parallel client mentioned divides its tasks between two processes: one for send-
ing, and the other for receiving. The processes share the same socket. The functions
associated with each of the processes are passed to them as parameters.

Here is the modified program:
let main client client parent fun client child fun =

if Array.length Sys.argv < 3

then Printf.printf "usage : client server port\n"

else

let server = Sys.argv.(1) in

let server addr =

try Unix.inet addr of string server

with Failure("inet_addr_of_string")

→ try (Unix.gethostbyname server).Unix.h addr list.(0)

with Not found →
Printf.eprintf "%s : unknown server\n" server ;
exit 2

in try

let port = int of string (Sys.argv.(2)) in

let sockaddr = Unix.ADDR INET(server addr,port) in

let ic,oc = open connection sockaddr

in match Unix.fork () with

0 → if Unix.fork () = 0 then client child fun oc ;
exit 0

| id → client parent fun ic ;
shutdown connection ic ;
ignore (Unix.waitpid [] id)

with

Failure("int_of_string") → Printf.eprintf "bad port number" ;
exit 2 ; ;

638 Chapter 20 : Distributed Programming

val main_client : (in_channel -> ’a) -> (out_channel -> unit) -> unit = <fun>

The expected behavior of the parameters is: the (grand)child sends the request and
the parent receives the response.

This architecture has the effect that if the child needs to send several requests, then
the parent receives the responses to requests as each is processed. Consider again the
preceding example for capitalizing strings, modifying the client side program. The
client reads the text from one file, while writing the response to another file. For this
we need a function that copies from one channel, ic, to another, oc, respecting our
little protocol (that is, it recognizes the string "END").
let copy channels ic oc =

try while true do

let s = input line ic

in if s = "END" then raise End of file

else (output string oc (s^"\n"); flush oc)

done

with End of file → () ; ;
val copy_channels : in_channel -> out_channel -> unit = <fun>

We write the two functions for the child and parent using the parallel client model:
let child fun in file out sock =

copy channels in file out sock ;
output string out sock ("FIN\n") ;
flush out sock ; ;

val child_fun : in_channel -> out_channel -> unit = <fun>

let parent fun out file in sock = copy channels in sock out file ; ;
val parent_fun : out_channel -> in_channel -> unit = <fun>

Now we can write the main client function. It must collect two extra command line
parameters: the names of the input and output files.
let go client () =

if Array.length Sys.argv < 5

then Printf.eprintf "usage : client_par server port filein fileout\n"

else let in file = open in Sys.argv.(3)

and out file = open out Sys.argv.(4)

in main client (parent fun out file) (child fun in file) ;
close in in file ;
close out out file ; ;

val go_client : unit -> unit = <fun>

We gather all of our material into the file client par.ml (making sure to include a
call to go client), and compile it. We create a file toto.txt containing the text to be
converted:

The little cat is dead.
We obtained the expected result.

We can test the client by typing:

Client-server 639

client_par.exe boulmich 1400 toto.txt result.txt

The file result.txt contains the text:

$ more result.txt
THE LITTLE CAT IS DEAD.
WE OBTAINED THE EXPECTED RESULT.

When the client finishes, the server always displays the message "End of text".

Client-server Programming with Lightweight

Processes

The preceding presentation of code for a generic server and a parallel client created
processes via the fork primitive in the Unix library. This works well under Unix;
many Unix services are implemented by this technique. Unfortunately, the same cannot
be said for Windows. For portability, it is preferable to write client-server code with
lightweight processes, which were presented in Chapter 19. In this case, it becomes
necessary to examine the interactions among different server processes.

Threads and the Unix Library

The simultaneous use of lightweight processes and the Unix library causes all active
threads to block if a system call does not return immediately. In particular, reads on
file descriptors, including those created by socket, are blocking.

To avoid this problem, the ThreadUnix library reimplements most of the input-output
functions from the Unix library. The functions defined in that library will only block the
thread which is actually making the system call. As a consequence, input and output is
handled with the low-level functions read and write found in the ThreadUnix library.

For example, the standard function for reading a string of characters, input line, is
redefined in such a way that it does not block other threads while reading a line.
let my input line fd =

let s = " " and r = ref ""

in while (ThreadUnix.read fd s 0 1 > 0) && s.[0] <> ’\n’ do r := !r ^s done ;
!r ; ;

val my_input_line : Unix.file_descr -> string = <fun>

Classes for a Server with Threads

Now let us recycle the example of the CAPITALIZATION service, this time giving
a version using lightweight processes. Shifting to threads poses no problem for our
little application on either the server side or the client side, which start processes
independently.

640 Chapter 20 : Distributed Programming

Earlier, we built a generic server parameterized over a service function. We were able
to achieve this kind of abstraction by relying on the functional aspect of the Objective
Caml language. Now we are about to use the object-oriented extensions to the language
to show how objects allow us to achieve a comparable abstraction.

The server is organized into two classes: serv socket and connection. The first of
these handles the service startup, and the second, the service itself. We have introduced
some print statements to trace the main stages of the service.

The serv socket class. has two instance variables: port, the port number for the
service, and socket, the socket for listening. When constructing such an object, the
initializer opens the service and creates this socket. The run method accepts connec-
tions and creates a new connection object for handling requests. The serv socket

uses the connection class described in the following paragraph. Usually, this class
must be defined before the serv socket class.

class serv socket p =

object (self)

val port = p

val mutable sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0

initializer

let my address = get my addr ()
in Unix.bind sock (Unix.ADDR INET(my address,port)) ;

Unix.listen sock 3

method private client addr = function

Unix.ADDR INET(host,_) → Unix.string of inet addr host

| _ → "Unexpected client"

method run () =

while(true) do

let (sd,sa) = ThreadUnix.accept sock in

let connection = new connection(sd,sa)

in Printf.printf "TRACE.serv: new connection from %s\n\n"

(self#client addr sa) ;
ignore (connection#start ())

done

end ; ;
class serv_socket :

int ->

object

val port : int

val mutable sock : Unix.file_descr

method private client_addr : Unix.sockaddr -> string

method run : unit -> unit

end

It is possible to refine the server by inheriting from this class and redefining the run
method.

Client-server 641

The connection class. The instance variables in this class, s descr and s addr,
are initialized to the descriptor and the address of the socket created by accept. The
methods are start, run, and stop. The start creates a thread calling the two other
methods, and returns its thread identifier, which can be used by the calling instance
of serv socket. The run method contains the core functionality of the service. We
have slightly modified the termination condition for the service: we exit on receipt of
an empty string. The stop service just closes the socket descriptor for the service.

Each new connection has an associated number obtained by calling the auxiliary func-
tion gen num when the instance is created.

let gen num = let c = ref 0 in (fun () → incr c; !c) ; ;
val gen_num : unit -> int = <fun>

exception Done ; ;
exception Done

class connection (sd,sa) =

object (self)

val s descr = sd

val s addr = sa

val mutable number = 0

initializer

number <- gen num () ;
Printf.printf "TRACE.connection : object %d created\n" number ;
print newline ()

method start () = Thread.create (fun x → self#run x ; self#stop x) ()

method stop () =

Printf.printf "TRACE.connection : object finished %d\n" number ;
print newline () ;
Unix.close s descr

method run () =

try

while true do

let line = my input line s descr

in if (line = "") or (line = "\013") then raise Done ;
let result = (String.uppercase line)^"\n"

in ignore (ThreadUnix.write s descr result 0 (String.length result))

done

with

Done → ()
| exn → print string (Printexc.to string exn) ; print newline ()

end ; ;
class connection :

Unix.file_descr * ’a ->

object

val mutable number : int

val s_addr : ’a

val s_descr : Unix.file_descr

642 Chapter 20 : Distributed Programming

method run : unit -> unit

method start : unit -> Thread.t

method stop : unit -> unit

end

Here again, by inheritance and redefinition of the run method, we can define a new
service.

We can test this new version of the server by running the protect serv function.
let go serv () = let s = new serv socket 1400 in s#run () ; ;
let protect serv () = Unix.handle unix error go serv () ; ;

Multi-tier Client-server Programming

Even though the client-server relation is asymmetric, nothing prevents a server from
being the client of another service. In this way, we have a communication hierarchy. A
typical client-server application might be the following:

• a mail client presents a friendly user interface;

• a word-processing program is run, followed by an interaction with the user;

• the word-processing program accesses a database.

One of the goals of client-server applications is to alleviate the processing of centralized
machines. Figure 20.3 shows two client-server architectures with three tiers.

Each tier may run on a different machine. The user interface runs on the machine
running the user mail application. The processing part is handled by a machine shared
by a collection of users, which itself sends requests to a remote database server. With
this application, a particular piece of data may be sent to the user mail application or
to the database server.

Some Remarks on the Client-server Programs

In the preceding sections, we constructed servers for a simple CAPITALIZATION ser-
vice. Each server used a different approach for its implementation. The first such server
used the Unix fork mechanism. Once we built that server, it became possible to test
it with the telnet client supplied with the Unix, Windows, and MacOS operating sys-
tems. Next, we built a simple first client. We were then able to test the client and
server together. Clients may have tasks to manage between communications. For this
purpose, we built the client par.exe client, which separates reading from writing
by using forks. A new kind of server was built using threads to clearly show the rel-
ative independence of the server and the client, and to bring input-output into this
setting. This server was organized into two easily-reused classes. We note that both
functional programming and object-oriented programming support the separation of
“mechanical,” reusable code from code for specialized processing.

Communication Protocols 643

Data

Operations

Interface
Operations

Interface

Operations

Operations

Data

Figure 20.3: Different client-server architectures

Communication Protocols

The various client-server communications described in the previous section consisted
of sending a string of characters ending in a carriage-return and receiving another.
However simple, this communication pattern defines a protocol. If we wish to com-
municate more complex values, such as floats, matrices of floats, a tree of arithmetic
expressions, a closure, or an object, we introduce the problem of encoding these values.
Many solutions exist according to the nature of the communicating programs, which
can be characterized by the implementation language, the machine architecture, and
in certain cases, the operating system. Depending on the machine architecture, inte-
gers can be represented in many different ways (most significant bits on the left, on
the right, use of tag bits, and size of a machine word). To communicate a value be-
tween different programs, it is necessary to have a common representation of values,
referred to as the external representation2. More structured values, such as records,
just as integers, must have an external representation. Nonetheless, there are problems
when certain languages allow constructs, such as bit-fields in C, which do not exist in
other languages. Passing functional objects or objects, which contain pieces of code,
poses a new difficulty. Is the code byte-compatible between the sender and receiver,
and does there exist a mechanism for dynamically loading the code? As a general rule,
the problem is simplified by supposing that the code exists on both sides. It is not the

2. Such as the XDR representation (eXternal Data Representation), which was designed for C pro-
grams.

644 Chapter 20 : Distributed Programming

code itself that is transmitted, but information that allows it to be retrieved. For an
object, the instance variables are communicated along with the object’s type, which
allows retrieval of the object’s methods. For a closure, the environment is sent along
with the address of its code. This implies that the two communicating programs are
actually the same executable.

A second difficulty arises from the complexity of linked exchanges and the necessity of
synchronizing communications involving many programs.

We first present text protocols, later discussing acknowledgements and time limits
between requests and responses. We also mention the difficulty of communicating in-
ternal values, in particular as it relates to interoperability between programs written
in different languages.

Text Protocol

Text protocols, that is, communication in ASCII format, are the most common because
they are the simplest to implement and the most portable. When a protocol becomes
complicated, it may become difficult to implement. In this setting, we define a grammar
to describe the communication format. This grammar may be rich, but it will be up to
the communicating programs to handle the work of coding and interpreting the text
strings sent and received.

As a general rule, a network application does not allow viewing the different layers of
protocols in use. This is typified by the case of the HTTP protocol, which allows a
browser to communicate with a Web site.

The HTTP Protocol

The term “HTTP” is seen frequently in advertising. It corresponds to the communi-
cation protocol used by Web applications. The protocol is completely described on the
page of the W3 Consortium:

Link: http://www.w3.org

This protocol is used to send requests from browsers (Communicator, Internet Explorer,
Opera, etc.) and to return the contents of requested pages. A request made by a browser
contains the name of the protocol (HTTP), the name of the machine (www.ufr-info-
p6.jussieu.fr), and the path of the requested page (/Public/Localisation/index.html).
Together these components define a URL (Uniform Resource Locator):

http://www.ufr-info-p6.jussieu.fr/Public/Localisation/index.html

When such a URL is requested by a browser, a connection over a socket is established
between the browser and the server running on the indicated server, by default on port
80. Then the browser sends a request in the HTTP format, like the following:

GET /index.html HTTP/1.0

Communication Protocols 645

The server responds in the protocol HTTP, with a header:

HTTP/1.1 200 OK
Date: Wed, 14 Jul 1999 22:07:48 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 AuthMySQL/2.20
Last-Modified: Thu, 10 Jun 1999 12:53:46 GMT

Accept-Ranges: bytes
Content-Length: 3663
Connection: close
Content-Type: text/html

This header indicates that the request has been accepted (code 200 OK), the kind of
server, the modification date for the page, the length of the send page and the type of
content which follows. Using the GET commmand in the protocol (HTTP/1.0), only
the HTML page is transferred. The following connection with telnet allows us to see
what is actually transmitted:

$ telnet www.ufr-info-p6.jussieu.fr 80
Trying 132.227.68.44...
Connected to triton.ufr-info-p6.jussieu.fr.
Escape character is ’^]’.
GET

<!-- index.html -->
<HTML>
<HEAD>
<TITLE>Serveur de l’UFR d’Informatique de Pierre et Marie Curie</TITLE>
</HEAD>
<BODY>

Unité de Formation et de Recherche 922 - Informatique

Université Pierre et Marie Curie

4, place Jussieu

75252 PARIS Cedex 05, France
<P>
....
</BODY>
</HTML>
<!-- index.html -->

Connection closed by foreign host.

The connection closes once the page has been copied. The base protocol is in text mode
so that the language may be interpreted. Note that images are not transmitted with
the page. It is up to the browser, when analyzing the syntax of the HTML page, to

646 Chapter 20 : Distributed Programming

observe anchors and images (see the IMG tags in the transmitted page). At this time,
the browser sends a new request for each image encountered in the HTML source;
there is a new connection for each image. The images are displayed when they are
received. For this reason, images are often displayed in parallel.

The HTTP protocol is simple enough, but it transports information in the HTML
language, which is more complex.

Protocols with Acknowledgement and Time Limits

When a protocol is complex, it is useful that the receiver of a message indicate to
the sender that it has received the message and that it is grammatically correct. The
client blocks while waiting for a response before working on its tasks. If the part of the
server handling this request has a difficulty interpreting the message, the server must
indicate this fact to the client rather than ignoring the request. The HTTP protocol
has a system of error codes. A correct request results in the code 200. A badly-formed
request or a request for an unauthorized page results in an error code 4xx or 5xx
according to the nature of the error. These error codes allow the client to know what
to do and allow the server to record the details of such incidents in its log files.

When the server is in an inconsistent state, it can always accept a connection from a
client, but risks never sending it a response over the socket. For avoiding these blocking
waits, it is useful to fix a limit to the time for transmission of the response. After this
time has elapsed, the client supposes that the server is no longer responding. Then the
client can close this connection in order to go on to its other work. This is how WWW
browsers work. When a request has no response after a certain time, the browser decides
to indicate that to the user. Objective Caml has input-output with time limits. In the
Thread library, the functions wait time read and wait time write suspend execution
until a character can be read or written, within a certain time limit. As input, these
function take a file descriptor and a time limit in seconds: Unix.file descr -> float

-> bool. If the time limit has passed, the function returns false, otherwise the I/O
is processed.

Transmitting Values in their Internal
Representation

The interest in transmission of internal values comes from simplifying the protocol.
There is no longer any need to encode and decode data in a textual format. The
inherent difficulty in sending and receiving values in their internal representation are
the same as those encountered for persistent values (see the Marshal library, page 228).
In effect, reading or writing a value in a file is equivalent to receiving the same value
over a socket.

Exercises 647

Functional Values

In the case of transmitting a closure between two Objective Caml programs, the code
in the closure is not sent, only its environment and its code pointer (see figure 12.9
page 334). For this strategy to work, it is necessary that the server possess the same
code in the same memory location. This implies that the same program is running on
the server as on the client. Nothing, however, prevents the two programs from running
different parts of the code at the same time. We adapt the matrix calculation service
by sending a closure with an environment containing the data for calculation. When it
is received, the server applies this closure to () and the calculation begins.

Interoperating with Different Languages

The interest in text protocols is that they are independent of implementation languages
for clients and servers. In effect, the ASCII code is always known by programming
languages. Therefore, it is up to the client and to the server to analyze syntactically
the strings of characters transmitted. An example of such an open protocol is the
simulation of soccer players called RoboCup.

Soccer Robots

A soccer team plays against another team. Each member of the team is a client of a
referee server. The players on the same team cannot communicate directly with each
other. They must send information through the server, which retransmits the dialog.
The server shows a part of the field, according to the player’s position. All these
communications follow a text protocol. A Web page that describes the protocol, the
server, and certain clients:

Link: http://www.robocup.org/

The server is written in C. The clients are written in different languages: C, C++,
SmallTalk, Objective Caml, etc. Nothing prevents a team from fielding players written
in different languages.

This protocol responds to the interoperability needs between programs in different
implementation languages. It is relatively simple, but it requires a particular syntax
analyzer for each family of languages.

Exercises

The suggested exercises allow you to try different types of distributed applications. The
first offers a new network service for setting the time on client machines. The second
exercise shows how to use resources on different machines to distribute a calculation.

648 Chapter 20 : Distributed Programming

Service: Clock

This exercise consists of implementing a “clock” service that gives the time to any
client. The idea is to have a reference machine to set the time for different machines
on a network.

1. Define a protocol for transmitting a date containing the day, month, hour, minute,
and second.

2. Write the function or the class for the service reusing one of the generic servers
presented in the Chapter. The service sends date information over each accepted
connection, then closes the socket.

3. Write the client , which sets the clock every hour.

4. Keep track of time differences when requests are sent.

A Network Coffee Machine

We can build a little service that simulates a beverage vending machine. A summary
description of the protocol between the client and service is as follows:

• when it makes a connection, the client receives a list of available drinks;

• it then sends to the server its beverage choice;

• the server returns the price of the beverage;

• the client sends the requested price, or some other sum;

• the server responds with the name of the chosen beverage and shows the change
tendered.

The server may also respond with an error message if it has not understood a request,
does not have enough change, etc. A client request always contains just one piece of
information.

The exchanges between client and server are in the form of strings of characters. The
different components of a message are separated by two periods and all strings end in
:$\n.

The service function communicates with the coffee machine by using a file to pass
commands and a hash table for recovering drinks and change.

This exercise will make use of sockets, lightweight processes with a little concurrency,
and objects.

1. Rewrite the function establish server using the primitives in ThreadUnix.

2. Write two functions, get request and send answer. The first function reads and
encodes a request and the second formats and sends a response beginning with
a list of strings of characters.

3. Write a class cmd fifo to manage pending commands. Each new command is
assigned a unique number. For this purpose, implement a class num cmd gen.

Summary 649

4. Write a class ready table for stocking the machine with drinks.

5. Write the class machine that models the coffee machine. The class contains a
method run that loops through the sequence: wait for a command, then execute
it, as long as there remain drinks available. Define a type drink descr indicating,
for each drink: its name, the quantity in stock, the quantity that will remain after
satisying pending commands, and its price. We can use an auxiliary function
array index which returns the index of the first element in a table satisfying a
criterion passed as a parameter.

6. Write the service function waiter.

7. Write the principal function main that obtains a port number for the service from
the command line and performs a number of initialization tasks. In particular,
the coffee machine executes in a process.

Summary

This chapter presented the new possibilities offered by distributed programming. Com-
munication between programs is accomplished with the fundamental mechanism of
sockets, used by low-level Internet protocols. The action models used by clients and
servers are asymmetric. Communication between clients and servers use some notion
of protocol, most often using plain text. Functional programming and object-oriented
programming allow us to easily build distributed applications. The client-server model
lends itself to different software architectures, with two or three tiers, according to the
distribution of tasks between them.

To Learn More

Communication between distant Objective Caml programs can be rich. Use of text
protocols is greatly facilitated by utilities for syntactic analysis (see Chapter 11). The
persistence mechanism offered by the Marshal library (see Chapter 8) allows sending
complex data in its internal format including functional values if the two communicat-
ing programs are the same. The main deficiency of that mechanism is the inability to
send instances of classes. One solution to that problem is to use an ORB (Object Re-
quest Broker) to transmit objects or invoke remote methods. This architecture already
exists in many object-oriented languages in the form of the CORBA (Common ORB
Architecture) standard. This standard from the OMG (Object Management Group),
which debuted in 1990, allows the use of remote objects, and is independent of the
implementation language used to create classes.

Link: http://www.omg.org

The two principal functions of CORBA are the ability to send objects to a remote
program and, especially, the ability to use the same object at many locations in a
network, in order to call methods which can modify its instance variables. Further, this
standard is independent of the language used to implement these remote objects. To

650 Chapter 20 : Distributed Programming

that end, an ORB furnishes a description language for interfaces called IDL (Interface
Definition Language), in the manner of CAMLIDL for the interface between Objective
Caml and C. For the moment, there is no ORB that works with Objective Caml, but
it is possible to build one, since the IDL language is an abstraction of object-oriented
languages with classes. To simplify, CORBA furnishes a software bus (IIOP) that
allows transferring and addressing remote data.

The ability to reference the same object at many points in a network simulates dis-
tributed shared memory, which is not without problems for automatic garbage collec-
tion.

The ability to reference a remote object does not cause code to be transferred. One can
only receive a copy of an instance of a class if the class exists on the server. For certain
client-server applications, it may be necessary to use dynamic loading of code (such as
in Java applets) and even to migrate processes along with their code. An interesting
example of dynamic loading of remote code is the MMM browser built in Objective
Caml by François Rouaix:

Link: http://caml.inria.fr/˜rouaix/mmm/

This browser can be used conventionally to view Web pages, but can also load Objec-
tive Caml applets from a server and run them in a graphical window.

