
21
Applications

The first application is really a toolbox to facilitate the construction of client-server
applications which transmit Objective Caml values. To build an application using the
toolbox, one need only implement serialization functions for the values to be trans-
mitted, then apply a functor to obtain an abstract class for the server, then add the
application’s processing function by means of inheritance.

The second application revisits the robot simulation, presented on page 550, and adapts
it to the client-server model. The server represents the world in which the robot clients
move around. We thus simulate distributed memory shared by a group of clients pos-
sibly located on various machines on the network.

The third application is an implementation of some small HTTP servers (called servlets).
A server knows how to respond to an HTTP request such as a request to retrieve an
HTML page. Moreover, it is possible to pass values in these requests using the CGI
format of HTTP servers. We will use this functionality right away to construct a server
for requests on the association database, described on page 148. As a client, we will
use a Web browser to which we will send an initial page containing the query form.

Client-server Toolbox

We present a collection of modules to enable client-server interactions among Objective
Caml programs. This toolbox will be used in the two applications that follow.

A client-server application differs from others in the protocol that it uses and in the
processing that it associates with the protocol. Otherwise, all such applications use very
similar mechanisms: waiting for a connection, starting a separate process to handle the
connection, and reading and writing sockets.

Taking advantage of Objective Caml’s ability to combine modular genericity and ex-
tension of objects, we will create a collection of functors which take as argument a

652 Chapter 21 : Applications

communications protocol and produce generic classes implementing the mechanisms of
clients and of servers. We can then subclass these to obtain the particular processing
we need.

Protocols

A communications protocol is a type of data that can be translated into a sequence
of characters and transmitted from one machine to another via a socket. This can be
described using a signature.
module type PROTOCOL =

sig

type t

val to string : t → string

val of string : string → t

end ; ;

The signature requires that the data type be monomorphic; yet we can choose a data
type as complex as we wish, as long as we can translate it to a sequence of characters
and back. In particular, nothing prevents us from using objects as our data.
module Integer =

struct

class integer x =

object

val v = x

method x = v

method str = string of int v

end

type t = integer

let to string o = o#str

let of string s = new integer (int of string s)

end ; ;

By making some restrictions on the types of data to be manipulated, we can use the
module Marshal, described on page 229, to define the translation functions.
module Make Protocol = functor (T : sig type t end) →

struct

type t = T.t

let to string (x:t) = Marshal.to string x [Marshal.Closures]

let of string s = (Marshal.from string s 0 : t)

end ; ;

Communication

Since a protocol is a type of value that can be translated into a sequence of characters,
we can make these values persistent and store them in a file.

Client-server Toolbox 653

The only difficulty in reading such a value from a file when we do not know its type
is that a priori we do not know the size of the data in question. And since the file in
question is in fact a socket, we cannot simply check an end of file marker. To solve this
problem, we will write the size of the data, as a number of characters, before the data
itself. The first twelve characters will contain the size, padded with spaces.

The functor Com takes as its parameter a module with signature PROTOCOL and defines
the functions for transmitting and receiving values encoded using the protocol.

module Com = functor (P : PROTOCOL) →
struct

let send fd m =

let mes = P.to string m in

let l = (string of int (String.length mes)) in

let buffer = String.make 12 ’ ’ in

for i=0 to (String.length l)-1 do buffer.[i] <- l.[i] done ;
ignore (ThreadUnix.write fd buffer 0 12) ;
ignore (ThreadUnix.write fd mes 0 (String.length mes))

let receive fd =

let buffer = String.make 12 ’ ’

in

ignore (ThreadUnix.read fd buffer 0 12) ;
let l = let i = ref 0

in while (buffer.[!i]<>’ ’) do incr i done ;
int of string (String.sub buffer 0 !i)

in

let buffer = String.create l

in ignore (ThreadUnix.read fd buffer 0 l) ;
P.of string buffer

end ; ;
module Com :

functor(P : PROTOCOL) ->

sig

val send : Unix.file_descr -> P.t -> unit

val receive : Unix.file_descr -> P.t

end

Note that we use the functions read and write from module ThreadUnix and not
those from module Unix; this will permit us to use our functions in a thread without
blocking the execution of other processes.

Server

A server is built as an abstract class parameterized by the type of data in the proto-
col. Its constructor takes as arguments a port number and the maximum number of
simultaneous connections allowed. The method for processing a request is abstract; it
must be implemented in a subclass of server to obtain a concrete class.

654 Chapter 21 : Applications

module Server = functor (P : PROTOCOL) →
struct

module Com = Com (P)

class virtual [’a] server p np =

object (s)

constraint ’a = P.t

val port num = p

val nb pending = np

val sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0

method start =

let host = Unix.gethostbyname (Unix.gethostname ()) in

let h addr = host.Unix.h addr list.(0) in

let sock addr = Unix.ADDR INET(h addr, port num) in

Unix.bind sock sock addr ;
Unix.listen sock nb pending ;
while true do

let (service sock, client sock addr) = ThreadUnix.accept sock

in ignore (Thread.create s#process service sock)

done

method send = Com.send

method receive = Com.receive

method virtual process : Unix.file descr → unit

end

end ; ;

In order to show these ideas in use, let us revisit the capital service, adding the
capability of sending lists of strings.
type message = Str of string | LStr of string list ; ;
module Cap Protocol = Make Protocol (struct type t=message end) ; ;
module Cap Server = Server (Cap Protocol) ; ;

class cap server p np =

object (self)

inherit [message] Cap Server.server p np

method process fd =

match self#receive fd with

Str s → self#send fd (Str (String.uppercase s)) ;
Unix.close fd

| LStr l → self#send fd (LStr (List.map String.uppercase l)) ;
Unix.close fd

end ; ;
class cap_server :

int ->

int ->

object

val nb_pending : int

val port_num : int

val sock : Unix.file_descr

method process : Unix.file_descr -> unit

Client-server Toolbox 655

method receive : Unix.file_descr -> Cap_Protocol.t

method send : Unix.file_descr -> Cap_Protocol.t -> unit

method start : unit

end

The processing consists of receiving a request, examining it, processing it and sending
the result. The functor allows us to concentrate on this processing while constructing
the server; the rest is generic. However, if we wanted a different mechanism, such as
for example using acknowledgements, nothing would prevent us from redefining the
inherited methods for communication.

Client

To construct clients using a given protocol, we define three general-purpose functions:

• connect: establishes a connection with a server; it takes the address (IP ad-
dress and port number) and returns a file descriptor corresponding to a socket
connected to the server.

• emit simple: opens a connection, sends a message and closes the connection.

• emit answer: same as emit simple, but waits for the server’s response before
closing the connection.

module Client = functor (P : PROTOCOL) →
struct

module Com = Com (P)

let connect addr port =

let sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0

and in addr = (Unix.gethostbyname addr).Unix.h addr list.(0)

in ThreadUnix.connect sock (Unix.ADDR INET(in addr, port)) ;
sock

let emit simple addr port mes =

let sock = connect addr port

in Com.send sock mes ; Unix.close sock

let emit answer addr port mes =

let sock = connect addr port

in Com.send sock mes ;
let res = Com.receive sock

in Unix.close sock ; res

end ; ;
module Client :

functor(P : PROTOCOL) ->

sig

module Com :

sig

val send : Unix.file_descr -> P.t -> unit

656 Chapter 21 : Applications

val receive : Unix.file_descr -> P.t

end

val connect : string -> int -> Unix.file_descr

val emit_simple : string -> int -> P.t -> unit

val emit_answer : string -> int -> P.t -> P.t

end

The last two functions are of a higher level than the first: the mechanism linking the
client and the server does not appear. The caller of emit answer does not even need
to know that the computation it is requesting is carried out by a remote machine. As
far as the caller is concerned, it invokes a function that is represented by an address
and port, with an argument which is the message to be sent, and a value is returned
to it. The distributed aspect can seem entirely hypothetical.

A client of the capital service is extremely easy to construct. Assume that the
boulmich machine provides the service on port number 12345; then the function
list uppercase can be defined by means of a call to the service.
let list uppercase l =

let module Cap client = Client (Cap Protocol)

in match Cap client.emit answer "boulmich" 12345 (LStr l)

with Str x → [x]

| LStr x → x ; ;
val list_uppercase : string list -> string list = <fun>

To Learn More

The first improvement to be made to our toolbox is some error handling, which has been
totally absent so far. Recovery from exceptions which arise from a broken connection,
and a mechanism for retrying, would be most welcome.

In the same vein, the client and the server would benefit from a timeout mechanism
which would make it possible to limit the time to wait for a response.

Because we have constructed the generic server as a class, which moreover is param-
eterized by the type of data to be transmitted over the network, it is easy to extend it
to augment or modify its behavior in order to implement any desired improvements.

Another approach is to enrich the communication protocols. One can for example
add requests for acknowledgement to the protocol, or accompany each request by a
checksum allowing verification that the network has not corrupted the data.

The Robots of Dawn

As we promised in the last application of the third part (page 550), we will now revisit
the problem of robots in order to treat it in a distributed framework where the world
is a server and where each robot is an independent process capable of being executed
on a remote machine.

The Robots of Dawn 657

This application is a good summary of the possibilities of the Objective Caml language
because we will utilize and combine the majority of its features. In addition to the dis-
tributed model which is imposed on us by the exercise, we will make use of concurrency
to construct a server in which multiple connections will be handled independently while
all sharing a single memory representation of the “world”. All access to and modifica-
tion of the state of affairs of the world will therefore have to be protected by critical
sections.

In order to reuse as much as possible the code that we have already built for robots in
one section, and the client-server architecture of another section, we will use functors
and inheritance of classes at the same time.

This application is quite minimal, but we will see that its architecture lends itself
particularly well to extensions in multiple directions.

World-Server

We take a representation of the world similar to that which we developed in Part III.
The world is a grid of finite size, and each cell of the grid can be occupied by only one
robot. A robot is identified by its name and by its position; the world is determined
by its size and by the robots that live in it. This information is represented by the
following types:

type position = { x:int ; y:int } ; ;

type robot info = { name : string ; mutable pos : position }
type world info = { length : int ; width : int ;

mutable robots : robot info list } ; ;

The world will have to serve two sorts of clients:

• passive clients which simply observe the positions of various robots. They will
allow us to build the clients in charge of displays. We will call them spies.

• active clients, able to ask the server to move robots and thus modify its state.

These two categories of clients and their behavior will determine the collection of
messages exchanged by the server and clients.

When a client connects, it declares itself passive (Spy) or active (Enter). A spy receives
as response to its connection the global state of the world. Then, it is kept informed
of all changes. However, it cannot submit any requests. A robot which connects must
supply its characteristics (its name and its initial position); the world then confirms
its arrival. Then, it can request information: its own position (GetPos) or the list of
robots that surround it (Look). It can also instruct the world to move it. The protocol
of requests to the world from distributed robots is represented by the following type:
type query =

| Spy (* initial declaration requests *)

| Enter of robot info

658 Chapter 21 : Applications

| Move of position (* robot requests *)

| GetPos

| Look of int

| World of world info (* messages delivered by the world *)

| Pos of robot info

| Exit of robot info ; ;

From this protocol, using the functors from the “distributed toolbox” of the previous
chapter, we immediately derive the generic server.
module Pquery = Make Protocol (struct type t = query end) ; ;
module Squery = Server (Pquery) ; ;

Now we need only specify the behavior of the server by implementing the method
process to handle both the data that represent the world and the data for managing
connections.

More precisely, the server contains a variable world (of type world info) which is
protected by the lock sem (of type Mutex.t). It also contains a variable spies which is
a list of queues of messages to send to observers, with one queue per spy. To activate
the processes in charge of sending these messages, the server also maintains a signal
(of type Condition.t).

We provide an auxiliary function dist to calculate the distance between two positions:

let dist p q = max (abs (p.x-q.x)) (abs (p.y-q.y)) ; ;
val dist : position -> position -> int = <fun>

The function critical encapsulates the calculation of a value within a critical section:

let critical m f a =

Mutex.lock m ; let r = f a in Mutex.unlock m ; r ; ;
val critical : Mutex.t -> (’a -> ’b) -> ’a -> ’b = <fun>

Here is the definition of the class server implementing the world-server. It is long, but
we will follow it up with a step-by-step explanation.
class server l w n np =

object (self)

inherit [query] Squery.server n np

val world = { length=l ; width=w ; robots=[] }
val sem = Mutex.create ()
val mutable spies = []
val signal = Condition.create ()

method lock = Mutex.lock sem

method unlock = Mutex.unlock sem

The Robots of Dawn 659

method legal pos p = p.x>=0 && p.x<l && p.y>=0 && p.y<w

method free pos p =

let is not here r = r.pos.x<>p.x || r.pos.y<>p.y

in critical sem (List.for all is not here) world.robots

method legal move r p =

let dist1 p = (dist r.pos p) <= 1

in (critical sem dist1 p) && self#legal pos p && self#free pos p

method queue message mes =

List.iter (Queue.add mes) spies ;
Condition.broadcast signal

method trace loop s q =

let foo = Mutex.create () in

let f () =

try

spies <- q :: spies ;
self#send s (World world) ;
while true do

while Queue.length q = 0 do Condition.wait signal foo done ;
self#send s (Queue.take q)

done

with _ → spies <- List.filter ((!=) q) spies ;
Unix.close s

in ignore (Thread.create f ())

method remove robot r =

self#lock ;
world.robots <- List.filter ((<>) r) world.robots ;
self#queue message (Exit {r with name=r.name}) ;
self#unlock

method try move robot r p =

if self#legal move r p

then begin

self#lock ;
r.pos <- p ;
self#queue message (Pos {r with name=r.name}) ;
self#unlock

end

method process robot s r =

let f () =

try

world.robots <- r :: world.robots ;
self#send s (Pos r) ;
self#queue message (Pos r) ;
while true do

660 Chapter 21 : Applications

Thread.delay 0.5 ;
match self#receive s with

Move p → self#try move robot r p

| GetPos → self#send s (Pos r)

| Look d →
self#lock ;
let dist p = max (abs (p.x-r.pos.x)) (abs (p.y-r.pos.y)) in

let l = List.filter (fun x → (dist x.pos)<=d) world.robots

in self#send s (World { world with robots = l }) ;
self#unlock

| _ → ()
done

with _ → self#unlock ;
self#remove robot r ;
Unix.close s

in ignore (Thread.create f ())

method process s =

match self#receive s with

Spy → self#trace loop s (Queue.create ())
| Enter r →

(if not (self#legal pos r.pos && self#free pos r.pos) then

let i = ref 0 and j = ref 0 in

(try

for x=0 to l do

for y=0 to w do

let p = { x=x ; y=y }
in if self#legal pos p && self#free pos p

then (i:=x ; j:=y; failwith "process")

done done ;
Unix.close s

with Failure "process" → r.pos <- { x= !i ; y= !j })) ;
self#process robot s r

| _ → Unix.close s

end ; ;
class server :

int ->

int ->

int ->

int ->

object

val nb_pending : int

val port_num : int

val sem : Mutex.t

val signal : Condition.t

val sock : Unix.file_descr

val mutable spies : Pquery.t Queue.t list

val world : world_info

method free_pos : position -> bool

method legal_move : robot_info -> position -> bool

method legal_pos : position -> bool

The Robots of Dawn 661

method lock : unit

method process : Unix.file_descr -> unit

method process_robot : Unix.file_descr -> robot_info -> unit

method queue_message : Pquery.t -> unit

method receive : Unix.file_descr -> Pquery.t

method remove_robot : robot_info -> unit

method send : Unix.file_descr -> Pquery.t -> unit

method start : unit

method trace_loop : Unix.file_descr -> Pquery.t Queue.t -> unit

method try_move_robot : robot_info -> position -> unit

method unlock : unit

end

The method process starts out by distinguishing between the two types of client.
Depending on whether the client is active or passive, it invokes a processing method
called: trace loop for an observer, process robot for a robot. In the second case, it
checks that the initial position proposed by the client is compatible with the state of
the world; if not, it finds a valid initial position. The remainder of the code can be
divided into four categories:

1. General methods: these are methods which we developed in Part III for general
worlds. Mainly, it is a matter of verifying that a displacement is legal for a given
robot.

2. Management of observers: each observer is associated with a socket through
which it is sent data, with a queue containing all the messages which have not
yet been sent to it, and with a process. The method trace loop is an infinite
loop that empties the queue of messages by sending them; it goes to sleep when
the queue is empty. The queues are filled, all at the same time, by the method
queue message. Note that after appending a message, the activation signal is
sent to all processes.

3. Management of robots: here again, each robot is associated with a dedicated
process. The method process robot is an infinite loop: it waits for a request,
processes it, and responds if necessary. Then it resumes waiting for the next
request. Note that it is these robot-management methods which issue calls to the
method queue message when the state of the world has been modified. If the
connection with a robot is lost—that is, if an exception is raised while waiting
for a request—the robot is considered to have terminated and its departure is
signaled to the observers.

4. Inherited methods: these are the methods of the generic server obtained by
application of the functor Server to the protocol of our application.

Observer-client

The functor Client gives us generic functions for connecting with a server according
to the particular protocol that concerns us here.
module Cquery = Client (Pquery) ; ;
module Cquery :

662 Chapter 21 : Applications

sig

module Com :

sig

val send : Unix.file_descr -> Pquery.t -> unit

val receive : Unix.file_descr -> Pquery.t

end

val connect : string -> int -> Unix.file_descr

val emit_simple : string -> int -> Pquery.t -> unit

val emit_answer : string -> int -> Pquery.t -> Pquery.t

end

The behavior of a spy is simple: it connects to the server and displays the information
that the server sends it. The spy includes three display functions which we provide
below:
let display robot r =

Printf.printf "The robot %s is located at (%d,%d)\n" r.name r.pos.x r.pos.y ;
flush stdout ; ;

val display_robot : robot_info -> unit = <fun>

let display exit r = Printf.printf "The robot %s has terminated\n" r.name ;
flush stdout ; ;

val display_exit : robot_info -> unit = <fun>

let display world w =

Printf.printf "The world is a grid of size %d by %d \n" w.length w.width ;
List.iter display robot w.robots ;
flush stdout ; ;

val display_world : world_info -> unit = <fun>

The primary function of the spy-client is:
let trace client name port =

let sock = Cquery.connect name port

in Cquery.Com.send sock Spy ;
(match Cquery.Com.receive sock with

World w → display world w

| _ → failwith "the server did not follow the protocol") ;
while true do

match Cquery.Com.receive sock with

Pos r → display robot r

| Exit r → display exit r

|_ → failwith "the server did not follow the protocol"

done ; ;
val trace_client : string -> int -> unit = <fun>

There are two ways of constructing a graphical display. The first is simple but not
very efficient: since the server sends the complete set of information when a connection
is established, one can simply open a new connection at regular intervals, display the
world in its entirety, and close the connection. The other approach involves using the
information sent by the server to maintain a copy of the state of the world. It is then

The Robots of Dawn 663

easy to display only the modifications to the state upon reception of messages. It is
this second solution which we have implemented.

Robot-Client

As we defined them in the previous chapter (cf. page 550), the robots conform to the
following signature.

module type ROBOT =

sig

class robot : int → int →
object

val mutable i : int

val mutable j : int

method get pos : int * int

method next pos : unit → int * int

method set pos : int * int → unit

end

end ; ;

The part that we wish to save from the various classes is that which necessarily varies
from one type of robot to another and which defines its behavior: the method next pos.

In addition, we need a method for connecting the robot to the world (start) and a
loop that alternately calculates a new position and communicates with the server to
submit the chosen position.

We define a functor which, when given a class implementing a virtual robot (that is,
conforming to the signature ROBOT), creates, by inheritance, a new class containing the
proper methods to make an autonomous client out of the robot.

module RobotClient (R : ROBOT) =

struct

class robot robname x y hostname port =

object (self)

inherit R.robot x y as super

val mutable socket = Unix.stderr

val mutable rob = { name=robname ; pos={x=x;y=y} }

method private adjust pos r =

rob.pos <- r.pos ; i <- r.pos.x ; j <- r.pos.y

method get pos =

Cquery.Com.send socket GetPos ;
match Cquery.Com.receive socket with

Pos r → self#adjust pos r ; super#get pos

| _ → failwith "the server did not follow the protocol"

664 Chapter 21 : Applications

method set pos =

failwith "the method set_pos cannot be used"

method start =

socket <- Cquery.connect hostname port ;
Cquery.Com.send socket (Enter rob) ;
match Cquery.Com.receive socket with

Pos r → self#adjust pos r ; self#run

| _ → failwith "the server did not follow the protocol"

method run =

while true do

let (x,y) = self#next pos ()
in Cquery.Com.send socket (Move {x=x;y=y}) ;

ignore (self#get pos)

done

end

end ; ;
module RobotClient :

functor(R : ROBOT) ->

sig

class robot :

string ->

int ->

int ->

string ->

int ->

object

val mutable i : int

val mutable j : int

val mutable rob : robot_info

val mutable socket : Unix.file_descr

method private adjust_pos : robot_info -> unit

method get_pos : int * int

method next_pos : unit -> int * int

method run : unit

method set_pos : int * int -> unit

method start : unit

end

end

Notice that the method get pos has been redefined as a query to the server: the
instance variables i and j are not reliable, because they can be modified without the
consent of the world. For the same reason, the use of set pos has been made invalid:
calling it will always raise an exception. This policy may seem severe, but it’s a good bet
that if this method were used by next pos then a discrepancy would appear between
the real position (as known by the server) and the supposed position (as known by the
client).

HTTP Servlets 665

We use the functor RobotClient to create various classes corresponding to the various
robots.

module Fix = RobotClient (struct class robot = fix robot end) ; ;
module Crazy = RobotClient (struct class robot = crazy robot end) ; ;
module Obstinate = RobotClient (struct class robot = obstinate robot end) ; ;

The following small program provides a way to launch the server and the various clients
from the command line. The argument passed to the program specifies which one to
launch.
let port = 1200 in

if Array.length Sys.argv >=2 then

match Sys.argv.(1) with

"1" → let s = new server 25 30 port 10 in s#start

| "2" → trace client "localhost" port

| "3" → let o = new Fix.robot "fix" 10 10 "localhost" port in o#start

| "4" → let o = new Crazy.robot "crazy" 10 10 "localhost" port in o#start

| "5" → let o = new Obstinate.robot "obstinate" 10 10 "localhost" port

in o#start

| _ → () ; ;

To Learn More

The world of robots stimulates the imagination. With the elements already given here,
one can easily create an “intelligent robot” which is both a robot and a spy. This allows
the various inhabitants of the world to cooperate. One can then extend the application
to obtain a small action game like “chickens-foxes-snakes” in which the foxes chase the
chickens, the snakes chase the foxes and the chickens eat the snakes.

HTTP Servlets

A servlet is a “module” that can be integrated into a server application to respond
to client requests. Although a servlet need not use a specific protocol, we will use the
HTTP protocol for communication (see figure 21.1). In practice, the term servlet refers
to an HTTP servlet.

The classic method of constructing dynamic HTML pages on a server is to use CGI
(Common Gateway Interface) commands. These take as argument a URL which can
contain data coming from an HTML form. The execution then produces a new HTML
page which is sent to the client. The following links describe the HTTP and CGI
protocols.

Link: http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1945.html

Link: http://hoohoo.ncsa.uiuc.edu/docs/cgi/overview.html

666 Chapter 21 : Applications

It is a slightly heavyweight mechanism because it launches a new program for each
request.

HTTP servlets are launched just once, and can can decode arguments in CGI format
to execute a request. Servlets can take advantage of the Web browser’s capabilities to
construct a graphical interface for an application.

http://boulmich

text

forms

HTML pageHTTP request

(in Objective Caml)
mini server HTTP

Browser

Figure 21.1: communication between a browser and an Objective Camlserver

In this section we will define a server for the HTTP protocol. We will not handle
the entire specification of the protocol, but instead will limit ourselves to those func-
tions necessary for the implementation of a server that mimics the behavior of a CGI
application.

At an earlier time, we defined a generic server module Gsd. Now we will give the code
to create an application of this generic server for processing part of the HTTP protocol.

HTTP and CGI Formats

We want to obtain a server that imitates the behavior of a CGI application. One of the
first tasks is to decode the format of HTTP requests with CGI extensions for argument
passing.

The clients of this server can be browsers such as Netscape or Internet Explorer.

Receiving Requests

Requests in the HTTP protocol have essentially three components: a method, a URL
and some data. The data must follow a particular format.

In this section we will construct a collection of functions for reading, decomposing and
decoding the components of a request. These functions can raise the exception:
exception Http error of string ; ;
exception Http_error of string

HTTP Servlets 667

Decoding The function decode, which uses the helper function rep xcode, attempts
to restore the characters which have been encoded by the HTTP client: spaces (which
have been replaced by +), and certain reserved characters which have been replaced by
their hexadecimal code.

let rec rep xcode s i =

let xs = "0x00" in

String.blit s (i+1) xs 2 2;
String.set s i (char of int (int of string xs));
String.blit s (i+3) s (i+1) ((String.length s)-(i+3));
String.set s ((String.length s)-2) ’\000’;
Printf.printf"rep_xcode1(%s)\n" s ; ;

val rep_xcode : string -> int -> unit = <fun>

exception End of decode of string ; ;
exception End_of_decode of string

let decode s =

try

for i=0 to pred(String.length s) do

match s.[i] with

’+’ → s.[i] <- ’ ’

| ’%’ → rep xcode s i

| ’\000’ → raise (End of decode (String.sub s 0 i))

| _ → ()
done;
s

with

End of decode s → s ; ;
val decode : string -> string = <fun>

String manipulation functions The module String plus contains some functions
for taking apart character strings:

• prefix and suffix, which extract the substrings to either side of an index;

• split, which returns the list of substrings determined by a separator character;

• unsplit, which concatenates a list of strings, inserting separator characters be-
tween them.

module String plus =

struct

let prefix s n =

try String.sub s 0 n

with Invalid argument("String.sub") → s

668 Chapter 21 : Applications

let suffix s i =

try String.sub s i ((String.length s)-i)

with Invalid argument("String.sub") → ""

let rec split c s =

try

let i = String.index s c in

let s1, s2 = prefix s i, suffix s (i+1) in

s1 :: (split c s2)

with

Not found → [s]

let unsplit c ss =

let f s1 s2 = match s2 with "" → s1 | _ → s1^(Char.escaped c)^s2 in

List.fold right f ss ""

end ; ;

Decomposing data from a form Requests typically arise from an HTML page
containing a form. The contents of the form are transmitted as a character string
containing the names and values associated with the fields of the form. The function
get field pair transforms such a string into an association list.
let get field pair s =

match String plus.split ’=’ s with

[n;v] → n,v

| _ → raise (Http error ("Bad field format : "^s)) ; ;
val get_field_pair : string -> string * string = <fun>

let get form content s =

let ss = String plus.split ’&’ s in

List.map get field pair ss ; ;
val get_form_content : string -> (string * string) list = <fun>

Reading and decomposing The function get query extracts the method and the
URL from a request and stores them in an array of character strings. One can thus use
a standard CGI application which retrieves its arguments from the array of command-
line arguments. The function get query uses the auxiliary function get. We arbitrarily
limit requests to a maximum size of 2555 characters.
let get =

let buff size = 2555 in

let buff = String.create buff size in

(fun ic → String.sub buff 0 (input ic buff 0 buff size)) ; ;
val get : in_channel -> string = <fun>

let query string http frame =

try

let i0 = String.index http frame ’ ’ in

HTTP Servlets 669

let q0 = String plus.prefix http frame i0 in

match q0 with

"GET"

→ begin

let i1 = succ i0 in

let i2 = String.index from http frame i1 ’ ’ in

let q = String.sub http frame i1 (i2-i1) in

try

let i = String.index q ’?’ in

let q1 = String plus.prefix q i in

let q = String plus.suffix q (succ i) in

Array.of list (q0 :: q1 :: (String plus.split ’ ’ (decode q)))

with

Not found → [|q0;q|]
end

| _ → raise (Http error ("Unsupported method: "^q0))

with e → raise (Http error ("Unknown request: "^http frame)) ; ;
val query_string : string -> string array = <fun>

let get query string ic =

let http frame = get ic in

query string http frame; ;
val get_query_string : in_channel -> string array = <fun>

The Server

To obtain a CGI pseudo-server, able to process only the GET method, we write the class
http servlet, whose argument fun serv is a function for processing HTTP requests
such as might have been written for a CGI application.
module Text Server = Server (struct type t = string

let to string x = x

let of string x = x

end); ;

module P Text Server (P : PROTOCOL) =

struct

module Internal Server = Server (P)

class http servlet n np fun serv =

object(self)

inherit [P.t] Internal Server.server n np

method receive h fd =

let ic = Unix.in channel of descr fd in

input line ic

method process fd =

let oc = Unix.out channel of descr fd in (

try

let request = self#receive h fd in

670 Chapter 21 : Applications

let args = query string request in

fun serv oc args;
with

Http error s → Printf.fprintf oc "HTTP error : %s
" s

| _ → Printf.fprintf oc "Unknown error
");
flush oc;
Unix.shutdown fd Unix.SHUTDOWN ALL

end

end; ;

As we do not expect the servlet to communicate using Objective Caml’s special internal
values, we choose the type string as the protocol type. The functions of string and
to string do nothing.
module Simple http server =

P Text Server (struct type t = string

let of string x = x

let to string x = x

end); ;
Finally, we write the primary function to launch the service and construct an instance
of the class http servlet.
let cgi like server port num fun serv =

let sv = new Simple http server.http servlet port num 3 fun serv

in sv#start; ;
val cgi_like_server : int -> (out_channel -> string array -> unit) -> unit =

<fun>

Testing the Servlet

It is always useful during development to be able to test the parts that are already built.
For this purpose, we build a small HTTP server which sends the file specified in the
HTTP request as is. The function simple serv sends the file whose name follows the
GET request (the second element of the argument array). The function also displays
all of the arguments passed in the request.
let send file oc f =

let ic = open in bin f in

try

while true do

output byte oc (input byte ic)

done

with End of file → close in ic; ;
val send_file : out_channel -> string -> unit = <fun>

let simple serv oc args =

try

Array.iter (fun x → print string (x^" ")) args;
print newline () ;
send file oc args.(1)

with _ → Printf.printf "error\n"; ;
val simple_serv : out_channel -> string array -> unit = <fun>

HTTP Servlets 671

let run n = cgi like server n simple serv; ;
val run : int -> unit = <fun>

The command run 4003 launches this servlet on port 4003. In addition, we launch a
browser to issue a request to load the page baro.html on port 4003. The figure 21.2
shows the display of the contents of this page in the browser.

Figure 21.2: HTTP request to an Objective Caml servlet

The browser has sent the request GET /baro.html to load the page, and then the
request GET /canard.gif to load the image.

HTML Servlet Interface

We will use a CGI-style server to build an HTML-based interface to the database of
chapter 6 (see page 148).

The menu of the function main will now be displayed in a form on an HTML page,
providing the same selections. The responses to requests are also HTML pages, gen-
erated dynamically by the servlet. The dynamic page construction makes use of the
utilities defined below.

Application Protocol

Our application will use several elements from several protocols:

1. Requests are transmitted from a Web browser to our application server in the
HTTP request format.

2. The data items within a request are encoded in the format used by CGI appli-
cations.

3. The response to the request is presented as an HTML page.

672 Chapter 21 : Applications

4. Finally, the nature of the request is specified in a format specific to the applica-
tion.

We wish to respond to three kinds of request: queries for the list of mail addresses,
queries for the list of email addresses, and queries for the state of received fees between
two given dates. We give these query types respectively the names:
mail_addr, email_addr and fees_state. In the last case, we will also transmit two
character strings containing the desired dates. These two dates correspond to the values
of the fields start and end on an HTML form.

When a client first connects, the following page is sent. The names of the requests are
encoded within it in the form of HTML anchors.

<HTML>
<TITLE> association </TITLE>
<BODY>
<HR>
<H1 ALIGN=CENTER>Association</H1>
<P>
<HR>

List of

mail addresses

List of

email addresses

State of received fees

<FORM
method="GET"
action="http://freres-gras.ufr-info-p6.jussieu.fr:12345/fees_state">

Start date : <INPUT type="text" name="start" value="">
End date : <INPUT type="text" name="end" value="">
<INPUT name="action" type="submit" value="Send">
</FORM>

<HR>
</BODY>
</HTML>

We assume that this page is contained in the file assoc.html.

HTML Primitives

The HTML utility functions are grouped together into a single class called print. It
has a field specifying the output channel. Thus, it can be used just as well in a CGI

HTTP Servlets 673

application (where the output channel is the standard output) as in an application
using the HTTP server defined in the previous section (where the output channel is a
network socket).

The proposed methods essentially allow us to encapsulate text within HTML tags.
This text is either passed directly as an argument to the method in the form of a
character string, or produced by a function. For example, the principal method page
takes as its first argument a string corresponding to the header of the page1, and as
its second argument a function that prints out the contents of the page. The method
page produces the tags corresponding to the HTML protocol.

The names of the methods match the names of the corresponding HTML tags, with
additional options added in some cases.
class print (oc0:out channel) =

object(self)

val oc = oc0

method flush () = flush oc

method str =

Printf.fprintf oc "%s"

method page header (body:unit → unit) =

Printf.fprintf oc "<HTML><HEAD><TITLE>%s</TITLE></HEAD>\n<BODY>" header;
body () ;
Printf.fprintf oc "</BODY>\n</HTML>\n"

method p () =

Printf.fprintf oc "\n<P>\n"

method br () =

Printf.fprintf oc "
\n"

method hr () =

Printf.fprintf oc "<HR>\n"

method hr () =

Printf.fprintf oc "\n<HR>\n"

method h i s =

Printf.fprintf oc "<H%d>%s</H%d>" i s i

method h center i s =

Printf.fprintf oc "<H%d ALIGN=\"CENTER\">%s</H%d>" i s i

method form url (form content:unit → unit) =

Printf.fprintf oc "<FORM method=\"post\" action=\"%s\">\n" url;
form content () ;
Printf.fprintf oc "</FORM>"

method input text =

Printf.fprintf oc

"<INPUT type=\"text\" name=\"%s\" size=\"%d\" value=\"%s\">\n"

method input hidden text =

Printf.fprintf oc "<INPUT type=\"hidden\" name=\"%s\" value=\"%s\">\n"

method input submit =

Printf.fprintf oc "<INPUT name=\"%s\" type=\"submit\" value=\"%s\">"

method input radio =

Printf.fprintf oc "<INPUT type=\"radio\" name=\"%s\" value=\"%s\">\n"

method input radio checked =

1. This header is generally displayed in the title bar of the browser window.

674 Chapter 21 : Applications

Printf.fprintf oc

"<INPUT type=\"radio\" name=\"%s\" value=\"%s\" CHECKED>\n"

method option =

Printf.fprintf oc "<OPTION> %s\n"

method option selected opt =

Printf.fprintf oc "<OPTION SELECTED> %s" opt

method select name options selected =

Printf.fprintf oc "<SELECT name=\"%s\">\n" name;
List.iter

(fun s → if s=selected then self#option selected s else self#option s)

options;
Printf.fprintf oc "</SELECT>\n"

method options selected =

List.iter

(fun s → if s=selected then self#option selected s else self#option s)

end ; ;

We will assume that these utilities are provided by the module Html frame.

Dynamic Pages for Managing the Association

Database

For each of the three kinds of request, the application must construct a page in response.
For this purpose we use the utility module Html frame given above. This means that
the pages are not really constructed, but that their various components are emitted
sequentially on the output channel.
We provide an additional (virtual) page to be returned in response to a request that
is invalid or not understood.

Error page The function print error takes as arguments a function for emitting
an HTML page (i.e., an instance of the class print) and a character string containing
the error message.

let print error (print:Html frame.print) s =

let print body () =

print#str s; print#br ()
in

print#page "Error" print body ; ;
val print_error : Html_frame.print -> string -> unit = <fun>

All of our functions for emitting responses to requests will take as their first argument
a function for emitting an HTML page.

List of mail addresses To obtain the page giving the response to a query for the list
of mail addresses, we will format the list of character strings obtained by the function
mail addresses, which was defined as part of the database (see page 157). We will

HTTP Servlets 675

assume that this function, and all others directly involving requests to the database,
have been defined in a module named Assoc.

To emit this list, we use a function for outputting simple lines:
let print lines (print:Html frame.print) ls =

let print line l = print#str l; print#br () in

List.iter print line ls ; ;
val print_lines : Html_frame.print -> string list -> unit = <fun>

The function for responding to a query for the list of mail addresses is:
let print mail addresses print db =

print#page "Mail addresses"

(fun () → print lines print (Assoc.mail addresses db))

; ;
val print_mail_addresses : Html_frame.print -> Assoc.data_base -> unit =

<fun>

In addition to the parameter for emitting a page, the function print mail addresses
takes the database as its second parameter.

List of email addresses This function is built on the same principles as that giving
the list of mail addresses, except that it calls the function email addresses from the
module Assoc:
let print email addresses print db =

print#page "Email addresses"

(fun () → print lines print (Assoc.email addresses db)) ; ;
val print_email_addresses : Html_frame.print -> Assoc.data_base -> unit =

<fun>

State of received fees The same principle also governs the definition of this func-
tion: retrieving the data corresponding to the request (which here is a pair), then
emitting the corresponding character strings.
let print fees state print db d1 d2 =

let ls, t = Assoc.fees state db d1 d2 in

let page body () =

print lines print ls;
print#str ("Total : "^(string of float t));
print#br ()
in

print#page "State of received fees" page body ; ;
val print_fees_state :

Html_frame.print -> Assoc.data_base -> string -> string -> unit = <fun>

676 Chapter 21 : Applications

Analysis of Requests and Response

We define two functions for producing responses based on an HTTP request. The
first (print get answer) responds to a request presumed to be formulated using the
GET method of the HTTP protocol. The second alters the production of the answer
according to the actual method that the request used.

These two functions take as their second argument an array of character strings contain-
ing the elements of the HTTP request as analyzed by the function get query string
(see page 668). The first element of the array contains the method, the second the
name of the database request.
In the case of a query for the state of received fees, the start and end dates for the
request are contained in the two fields of the form associated with the query. The data
from the form are contained in the third field of the array, which must be decomposed
by the function get form content (see page 668).

let print get answer print q db =

match q.(1) with

| "/mail_addr" → print mail addresses print db

| "/email_addr" → print email addresses print db

| "/fees_state"

→ let nvs = get form content q.(2) in

let d1 = List.assoc "start" nvs

and d2 = List.assoc "end" nvs in

print fees state print db d1 d2

| _ → print error print ("Unknown request: "^q.(1)) ; ;
val print_get_answer :

Html_frame.print -> string array -> Assoc.data_base -> unit = <fun>

let print answer print q db =

try

match q.(0) with

"GET" → print get answer print q db

| _ → print error print ("Unsupported method: "^q.(0))

with

e

→ let s = Array.fold right (^) q "" in

print error print ("Something wrong with request: "^s) ; ;
val print_answer :

Html_frame.print -> string array -> Assoc.data_base -> unit = <fun>

Main Entry Point and Application

The application is a standalone executable that takes the port number as a parameter.
It reads in the database before launching the server. The main function is obtained from
the function print answer defined above and from the generic HTTP server function
cgi like server defined in the previous section (see page 670). The latter function is
located in the module Servlet.

HTTP Servlets 677

let get port num () =

if (Array.length Sys.argv) < 2 then 12345

else

try int of string Sys.argv.(1)

with _ → 12345 ; ;
val get_port_num : unit -> int = <fun>

let main () =

let db = Assoc.read base "assoc.dat" in

let assoc answer oc q = print answer (new Html frame.print oc) q db in

Servlet.cgi like server (get port num ()) assoc answer ; ;
val main : unit -> unit = <fun>

To obtain a complete application, we combine the definitions of the display functions
into a file httpassoc.ml. The file ends with a call to the function main:

main() ;;

We can then produce an executable named assocd using the compilation command:

ocamlc -thread -custom -o assocd unix.cma threads.cma \
gsd.cmo servlet.cmo html_frame.cmo string_plus.cmo assoc.cmo \
httpassoc.ml -cclib -lunix -cclib -lthreads

All that’s left is to launch the server, load the HTML page2 contained in the file
assoc.html given at the beginning of this section (page 672), and click.

The figure 21.3 shows an example of the application in use. The browser establishes
an initial connection with the servlet, which sends it the menu page. Once the entry
fields are filled in, the user sends a new request which contains the data entered. The
server decodes the request and calls on the association database to retrieve the desired
information. The result is translated into HTML and sent to the client, which then
displays this new page.

To Learn More

This application has numerous possible enhancements. First of all, the HTTP protocol
used here is overly simple compared to the new versions, which add a header supplying
the type and length of the page being sent. Likewise, the method POST, which allows
modification of the server, is not supported.3

To be able to describe the type of a page to be returned, the servlet would have to
support the MIME convention, which is used for describing documents such as those
attached to email messages.

2. . . . taking care to update the URL according to your machine
3. Nothing prevents one from using GET for this, but that does not correspond to the standard.

678 Chapter 21 : Applications

Figure 21.3: HTTP request to an Objective Caml servlet

The transmission of images, such as in figure 21.2, makes it possible to construct
interfaces for 2-player games (see chapter 17), where one associates links with drawings
of positions to be played. Since the server knows which moves are legal, only the valid
positions are associated with links.

The MIME extension also allows defining new types of data. One can thus support
a private protocol for Objective Caml values by defining a new MIME type. These
values will be understandable only by an Objective Caml program using the same
private protocol. In this way, a request by a client for a remote Objective Caml value
can be issued via HTTP. One can even pass a serialized closure as an argument within
an HTTP request. This, once reconstructed on the server side, can be executed to
provide the desired result.

