
Conclusion

Although computer science has become an industrial activity, in many respects the
success of a programming language is a subjective affair. If “the heart has its reasons
of which reason knows nothing,” then Objective Caml is a reasonable choice for a lover
of heart.

It is based on solid theoretical foundations, all while providing a wide spectrum of
programming paradigms. If one adds the simplicity of interaction with the language
which the toplevel supports, that makes it a language perfectly adapted for teaching.

• Structured types and abstract types support approaching algorithmic problems
and their complex data structures, all while abstracting away from problems of
memory representation and allocation.

• The functional theoretical model underlying the language supplies a precise intro-
duction to the notions of evaluation and typing which, as a “true programmer”,
one owes it to oneself to be taught.

• The various programming models can be approached independently of one an-
other: from modular or object-oriented program structure to low-level systems
programming, there are few areas where Objective Caml is not useful.

• Its suitability for symbolic programming makes it an excellent support for theo-
retical courses such as compiling or artifical intelligence.

For these qualities, Objective Caml is often used as the basis of the introductory com-
puter science curriculum as well as for advanced programming courses which make
explicit the link between the language’s high level of abstraction and its execution.
Many teachers have been and remain seduced by the pedagogical advantages of Objec-
tive Caml and, by way of consequence, many computer scientists have been schooled
in it.

One of the first causes for satisfaction in Objective Caml development is how comfort-
able it is to use. The compiler loads rapidly and its static type inference lets nothing



696 Chapter 22 : Conclusion

escape. Other static analyses of the code give the programmer precious indices of
anomalies if not errors: incomplete pattern-matching is signaled, partial application of
a function in a sequence is detected, etc. To this first cause of satisfaction is added a
second: the compiler very rapidly generates efficient code.

Compiler performance, conciseness of expression of functional programming, quality
and diversity of libraries make Objective Caml a language perfectly adapted to the
needs of “disposable software”. But it would be diminishing it to restrict it to this sin-
gle application domain. For these same reasons, Objective Caml is a precious tool for
experimentation and application prototyping. Moreover, when the structuring mecha-
nisms of modules and objects come to be added to the features already mentioned, the
language opens the way to the conception and development of finished applications.

Finally, Objective Caml and its developer community form a milieu which reacts
quickly to innovation in the area of programming. The free availability and the dis-
tribution of the source code of the language offer emerging concepts a terrain for
experimentation.

Learning Objective Caml requires a certain effort from the programmer familiar with
other languages. And this, as well as the object of study is in constant evolution. We
hope that without masking the complexity of certain concepts, this book will facilitate
this phase of learning and can thus accelerate the return on investment for the Objective
Caml application developer.


