
Part V

Appendices

697

A
Cyclic Types

Objective Caml’s type system would be much simpler if the language were purely
functionnal. Alas, language extensions entail extensions to the type language, and to
the inference mechanism, of which we saw the illustration with the weak type variables
(see page 74), made unavoidable by imperative extensions.

Object typing introduces the notion of cyclic type, associated with the keyword as

(see page 454), which can be used independently of any concept of object oriented
programming. The present appendix describes this extension of the type language,
available through an option of the compiler.

Cyclic types

In Objective Caml, it is possible to declare recursive data structures: such a structure
may contain a value with precisely the same structure.

type sum ex1 = Ctor of sum ex1 ; ;
type sum_ex1 = | Ctor of sum_ex1

type record ex1 = { field : record ex1 } ; ;
type record_ex1 = { field: record_ex1 }

How to build values with such types is not obvious, since we need a value before
building one! The recursive declaration of values allows to get out of this vicious circle.

let rec sum val = Ctor sum val ; ;
val sum_val : sum_ex1 = Ctor (Ctor (Ctor (Ctor (Ctor ...))))

let rec val record 1 = { field = val record 2 }

700 Cyclic Types

and val record 2 = { field = val record 1 } ; ;
val val_record_1 : record_ex1 = {field={field={field={field={field=...}}}}}

val val_record_2 : record_ex1 = {field={field={field={field={field=...}}}}}

Arbitrary planar trees can be represented by such a data structure.

type ’a tree = Vertex of ’a * ’a tree list ; ;
type ’a tree = | Vertex of ’a * ’a tree list

let height 1 = Vertex (0,[]) ; ;
val height_1 : int tree = Vertex (0, [])

let height 2 = Vertex (0,[Vertex (1,[]); Vertex (2,[]); Vertex (3,[])]) ; ;
val height_2 : int tree =

Vertex (0, [Vertex (1, []); Vertex (2, []); Vertex (3, [])])

let height 3 = Vertex (0,[height 2; height 1]) ; ;
val height_3 : int tree =

Vertex

(0,

[Vertex (0, [Vertex (...); Vertex (...); Vertex (...)]); Vertex (0, [])])

(* same with a record *)

type ’a tree rec = { label:’a ; sons:’a tree rec list } ; ;
type ’a tree_rec = { label: ’a; sons: ’a tree_rec list }

let hgt rec 1 = { label=0; sons=[] } ; ;
val hgt_rec_1 : int tree_rec = {label=0; sons=[]}

let hgt rec 2 = { label=0; sons=[hgt rec 1] } ; ;
val hgt_rec_2 : int tree_rec = {label=0; sons=[{label=0; sons=[]}]}

We might think that an enumerated type with only one constructor is not useful, but
by default, Objective Caml does not accept recursive type abbreviations.
type ’a tree = ’a * ’a tree list ; ;
Characters 7-34:

The type abbreviation tree is cyclic

We can define values with such a structure, but they do not have the same type.
let tree 1 = (0,[]) ; ;
val tree_1 : int * ’a list = 0, []

let tree 2 = (0,[(1,[]); (2,[]); (3,[])]) ; ;
val tree_2 : int * (int * ’a list) list = 0, [1, []; 2, []; 3, []]

let tree 3 = (0,[tree 2; tree 1]) ; ;
val tree_3 : int * (int * (int * ’a list) list) list =

0, [0, [...; ...; ...]; 0, []]

In the same way, Objective Caml is not able to infer a type for a function whose
argument is a value of this form.
let max list = List.fold left max 0 ; ;
val max_list : int list -> int = <fun>

Cyclic Types 701

let rec height = function

Vertex (_,[]) → 1

| Vertex (_,sons) → 1 + (max list (List.map height sons)) ; ;
val height : ’a tree -> int = <fun>

let rec height2 = function

(_,[]) → 1

| (_,sons) → 1 + (max list (List.map height2 sons)) ; ;
Characters 95-99:

This expression has type ’a list but is here used with type

(’b * ’a list) list

The error message tells us that the function height2 could be typed, if we had type
equality between ’a and ’b * ’a list, and precisely this equality was denied to us
in the declaration of the type abbreviation tree.

However, object typing allows to build values, whose type is cyclic. Let us consider the
following function, and try to guess its type.
let f x = x#copy = x ; ;
The type of x is a class with method copy. The type of this method should be the
same as that of x, since equality is tested between them. So, if foo is the type of x, it
has the form: < copy : foo ; .. >. From what has been said above, the type of this
function is cyclic, and it should be rejected; but it is not:
let f x = x#copy = x ; ;
val f : (< copy : ’a; .. > as ’a) -> bool = <fun>

Objective Caml does accept this function, and notes the type cyclicity using as, which
identifies ’a with a type containing ’a.

In fact, the problems are the same, but by default, Objective Caml will not accept
such types unless objects are concerned. The function height is typable if it gives a
cyclicity on the type of an object.

let rec height a = match a#sons with

[] → 1

| l → 1 + (max list (List.map height l)) ; ;
val height : (< sons : ’a list; .. > as ’a) -> int = <fun>

Option -rectypes

With a compiler option, we can avoid this restriction to objects in cyclic types.

$ ocamlc -rectypes ...
$ ocamlopt -rectypes ...
$ ocaml -rectypes

702 Cyclic Types

If we take up the above examples in a toplevel started with this option, here is what
we get.

type ’a tree = ’a * ’a tree list ; ;
type ’a tree = ’a * ’a tree list

let rec height = function

(_,[]) → 1

| (_,sons) → 1 + (max list (List.map height sons)) ; ;
val height : (’b * ’a list as ’a) -> int = <fun>

The values tree 1, tree 2 and tree 3 previously defined don’t have the same type,
but they all have a type compatible with that of height.

height tree 1 ; ;
- : int = 1

height tree 2 ; ;
- : int = 2

height tree 3 ; ;
- : int = 3

The keyword as belongs to the type language, and as such, it can be used in a type
declaration.

Syntax : type nom = typedef as ’var ;;

We can use this syntax to define type tree.
type ’a tree = (’a * ’vertex list) as ’vertex ; ;
type ’a tree = ’a * ’a tree list

Warning
If this mode may be useful in some cases, it tends to
accept the typing of too many values, giving them types
that are not easy to read.

Without the option -rectypes, the function below would have been rejected by the
typing system.
let inclus l1 l2 =

let rec mem x = function

[] → false

| a :: l → (l=x) || (mem x a) (* an error on purpose: a and l inverted *)

in List.for all (fun x → mem x l2) l1 ; ;
val inclus : (’a list as ’a) list list -> (’b list as ’b) -> bool = <fun>

Although a quick examination of the type allows to conclude to an error, we no longer
have an error message to help us locating this error.

