
B
Objective Caml 3.04

Independently of the development of Objective Caml, several extensions of the language
appeared. One of these, named Olabl, was integrated with Objective Caml, starting
with version 3.00.

This appendix describes briefly the new features offered in the current version of Ob-
jective Caml at the time of this writing, that is. Objective Caml 3.04. This version can
be found on the CD-ROM accompanying this book. The new features include:

• labels;

• optional arguments;

• polymorphic constructors;

• the ocamlbrowser IDE;

• the LablTk library.

The reader is referred to the Objective Caml reference manual for a more detailed
description of these features.

Language Extensions

Objective Caml 3.04 brings three language extensions to Objective Caml: labels, op-
tional arguments, and polymorphic constructors. These extensions preserve backward
compatibility with the original language: a program written for version 2.04 keeps the
same semantics in version 3.04.

704 Objective Caml 3.04

Labels

A label is an annotation for the arguments of a function in its declaration and its
application. It is presented as a separate identifier of the function parameter (formal
or actual), enclosed between an initial symbol ’~’ and a final symbol ’:’.

Labels can appear in the declarations of functions:

Syntax : let f ~label:p = exp

in the anonymous declarations with the keyword fun :

Syntax : fun ~label:p -> exp

and in the actual parameter of a function:

Syntax : (f ~label:exp)

Labels in types The labels given to arguments of a functional expression appear in
its type and annotate the types of the arguments to which they refer. (The ’~’ symbol
in front of the label is omitted in types.)
let add ~op1:x ~op2:y = x + y ; ;
val add : op1:int -> op2:int -> int = <fun>

let mk triplet ~arg1:x ~arg2:y ~arg3:z = (x,y,z) ; ;
val mk_triplet : arg1:’a -> arg2:’b -> arg3:’c -> ’a * ’b * ’c = <fun>

If one wishes to give the same identifier to the label and the variable, as in ~x:x, it is
unnecessary to repeat the identifier; the shorter syntax ~x can be used instead.

Syntax : fun ~p –> exp

let mk triplet ~arg1 ~arg2 ~arg3 = (arg1,arg2,arg3) ; ;
val mk_triplet : arg1:’a -> arg2:’b -> arg3:’c -> ’a * ’b * ’c = <fun>

It is not possible to define labels in a declaration of a function by pattern matching;
consequently the keyword function cannot be used for a function with a label.

let f = function ~arg:x → x ; ;
Toplevel input:

#

let f = function ~arg:x -> x ;;

^^^^^

Syntax error

let f = fun ~arg:x → x ; ;
val f : arg:’a -> ’a = <fun>

Objective Caml 3.04 705

Labels in function applications When a function is defined with labeled param-
eters, applications of this function require that matching labels are provided on the
function arguments.
mk triplet ~arg1:’1’ ~arg2:2 ~arg3:3.0 ; ;
- : char * int * float = ’1’, 2, 3

mk triplet ’1’ 2 3.0 ; ;
- : char * int * float = ’1’, 2, 3

A consequence of this requirement is that the order of arguments having a label does
not matter, since one can identify them by their label. Thus, labeled arguments to a
function can be “commuted”, that is, passed in an order different from the function
definition.

mk triplet ~arg2:2 ~arg1:’1’ ~arg3:3.0 ; ;
- : char * int * float = ’1’, 2, 3

This feature is particularly useful for making a partial application on an argument that
is not the first in the declaration.
let triplet 0 0 = mk triplet ~arg2:0 ~arg3:0 ; ;
val triplet_0_0 : arg1:’a -> ’a * int * int = <fun>

triplet 0 0 ~arg1:2 ; ;
- : int * int * int = 2, 0, 0

Arguments that have no label, or that have the same label as another argument, do
not commute. In such a case, the application uses the first argument that has the given
label.

let test ~arg1:_ ~arg2:_ _ ~arg2:_ _ = () ; ;
val test : arg1:’a -> arg2:’b -> ’c -> arg2:’d -> ’e -> unit = <fun>

test ~arg2: () ; ; (* the first arg2: in the declaration *)

- : arg1:’a -> ’b -> arg2:’c -> ’d -> unit = <fun>

test () ; ; (* the first unlabeled argument in the declaration *)

- : arg1:’a -> arg2:’b -> arg2:’c -> ’d -> unit = <fun>

Legibility of code Besides allowing re-ordering of function arguments, labels are
also very useful to make the function interface more explicit. Consider for instance the
String.sub standard library function.
String.sub ; ;
- : string -> int -> int -> string = <fun>

In the type of this function, nothing indicates that the first integer argument is a
character position, while the second is the length of the string to be extracted. Objective
Caml 3.04 provides a “labelized” version of this function, where the purpose of the
different function arguments have been made explicit using labels.

706 Objective Caml 3.04

StringLabels.sub ; ;
- : string -> pos:int -> len:int -> string = <fun>

Clearly, the function StringLabels.sub takes as arguments a string, the position of
the first character, and the length of the string to be extracted.

Objective Caml 3.04 provides “labelized” versions of many standard library functions in
the modules ArrayLabels, ListLabels, StringLabels, UnixLabels, and MoreLabels.
Table B.1 gives the labeling conventions that were used.

label significance
pos: a position in a string or array
len: a length
buf: a string used as buffer
src: the source of an operation
dst: the destination of an operation
init: the initial value for an iterator
cmp: a comparison function
mode: an operation mode or a flag list

Figure B.1: Conventions for labels

Optional arguments

Objective Caml 3.04 allows the definition of functions with labeled optional arguments.
Such arguments are defined with a default value (the value given to the parameter if
the application does not give any other explicitly).

Syntax : fun ?name: (p = exp1) –> exp2

As in the case of regular labels, the argument label can be omitted if it is identical to
the argument identifier:

Syntax : fun ?(name = exp1) –> exp2

Optional arguments appear in the function type prefixed with the ? symbol.

let sp incr ?inc:(x=1) y = y := !y + x ; ;
val sp_incr : ?inc:int -> int ref -> unit = <fun>

The function sp incr behaves like the function incr from the Pervasives module.
let v = ref 4 in sp incr v ; v ; ;
- : int ref = {contents = 5}

However, one can specify a different increment from the default.
let v = ref 4 in sp incr ~inc:3 v ; v ; ;
- : int ref = {contents = 7}

Objective Caml 3.04 707

A function is applied by giving the default value to all the optional parameters until
the actual parameter is passed by the application. If the argument of the call is given
without a label, it is considered as being the first non-optional argument of the function.

let f ?(x1=0) ?(x2=0) x3 x4 = 1000*x1+100*x2+10*x3+x4 ; ;
val f : ?x1:int -> ?x2:int -> int -> int -> int = <fun>

f 3 ; ;
- : int -> int = <fun>

f 3 4 ; ;
- : int = 34

f ~x1:1 3 4 ; ;
- : int = 1034

f ~x2:2 3 4 ; ;
- : int = 234

An optional argument can be given without a default value, in this case it is considered
in the body of the function as being of the type ’a option; None is its default value.

Syntax : fun ?name:p –> exp

let print integer ?file:opt f n =

match opt f with

None → print int n

| Some f → let fic = open out f in

output string fic (string of int n) ;
output string fic "\n" ;
close out fic ; ;

val print_integer : ?file:string -> int -> unit = <fun>

By default, the function print integer displays its argument on standard output. If
it receives a file name with the label file, it outputs its integer argument to that file
instead.

Note
If the last parameter of a function is optional, it will have to be applied
explicitly.

let test ?x ?y n ?a ?b = n ; ;
val test : ?x:’a -> ?y:’b -> ’c -> ?a:’d -> ?b:’e -> ’c = <fun>

test 1 ; ;
- : ?a:’_a -> ?b:’_b -> int = <fun>

test 1 ~b:’x’ ; ;
- : ?a:’_a -> int = <fun>

test 1 ~a: () ~b:’x’ ; ;
- : int = 1

708 Objective Caml 3.04

Labels and objects

Labels can be used for the parameters of a method or an object’s constructor.

class point ?(x=0) ?(y=0) (col : Graphics.color) =

object

val pos = (x,y)

val color = col

method print ?dest:(file=stdout) () =

output string file "point (" ;
output string file (string of int (fst pos)) ;
output string file "," ;
output string file (string of int (snd pos)) ;
output string file ")\n"

end ; ;
class point :

?x:int ->

?y:int ->

Graphics.color ->

object

method print : ?dest:out_channel -> unit -> unit

val color : Graphics.color

val pos : int * int

end

let obj1 = new point ~x:1 ~y:2 Graphics.white

in obj1#print () ; ;
point (1,2)

- : unit = ()

let obj2 = new point Graphics.black

in obj2#print () ; ;
point (0,0)

- : unit = ()

Labels and optional arguments provide an alternative to method and constructor over-
loading often found in object-oriented languages, but missing from Objective Caml.

This emulation of overloading has some limitations. In particular, it is necessary that
at least one of the arguments is not optional. A dummy argument of type unit can
always be used.

class number ?integer ?real () =

object

val mutable value = 0.0

method print = print float value

initializer

match (integer,real) with

(None,None) | (Some _,Some _) → failwith "incorrect number"

| (None,Some f) → value <- f

Objective Caml 3.04 709

| (Some n,None) → value <- float of int n

end ; ;
class number :

?integer:int ->

?real:float ->

unit -> object method print : unit val mutable value : float end

let n1 = new number ~integer:1 () ; ;
val n1 : number = <obj>

let n2 = new number ~real:1.0 () ; ;
val n2 : number = <obj>

Polymorphic variants

The variant types of Objective Caml have two principal limitations. First, it is not
possible to extend a variant type with a new constructor. Also, a constructor can
belong to only one type. Objective Caml 3.04 features an alternate kind of variant
types, called polymorphic variants that do not have these two constraints.

Constructors for polymorphic variants are prefixed with a ‘ (backquote) character, to
distinguish them from regular constructors. Apart from this, the syntactic constraints
on polymorphic constructors are the same as for other constructors. In particular, the
identifier used to build the constructor must begin with a capital letter.

Syntax : ‘Name

ou

Syntax : ‘Name type

A group of polymorphic variant constructors forms a type, but this type does not need
to be declared before using the constructors.

let x = ‘Integer 3 ; ;
val x : [> ‘Integer of int] = ‘Integer 3

The type of x with the symbol [> indicates that the type contains at least the con-
structor ‘Integer int.

let int of = function

‘Integer n → n

| ‘Real r → int of float r ; ;
val int_of : [< ‘Integer of int | ‘Real of float] -> int = <fun>

Conversely, the symbol [< indicates that the argument of int of belongs to the type
that contains at most the constructors ‘Integer int and ‘Real float.

710 Objective Caml 3.04

It is also possible to define a polymorphic variant type by enumerating its constructors:

Syntax : type t = [‘Name1 | ‘Name2 | . . . | ‘Namen]

or for parameterized types:

Syntax : type (’a,’b,...) t = [‘Name1 | ‘Name2 | . . . | ‘Namen]

type value = [‘Integer of int | ‘Real of float] ; ;
type value = [‘Integer of int | ‘Real of float]

Constructors of polymorphic variants can take arguments of different types.
let v1 = ‘Number 2

and v2 = ‘Number 2.0 ; ;
val v1 : [> ‘Number of int] = ‘Number 2

val v2 : [> ‘Number of float] = ‘Number 2

However, v1 and v2 have different types.
v1=v2 ; ;
Toplevel input:

#

v1=v2 ;;

^^

This expression has type [> ‘Number of float] but is here used with type

[> ‘Number of int]

More generally, the constraints on the type of arguments for polymorphic variant con-
structors are accumulated in their type by the annotation &.

let test nul integer = function ‘Number n → n=0

and test nul real = function ‘Number r → r=0.0 ; ;
val test_nul_integer : [< ‘Number of int] -> bool = <fun>

val test_nul_real : [< ‘Number of float] -> bool = <fun>

let test nul x = (test nul integer x) || (test nul real x) ; ;
val test_nul : [< ‘Number of float & int] -> bool = <fun>

The type of test nul indicates that the only values accepted by this function are those
with the constructor ‘Number and an argument which is at the same time of type int
and of float. That is, the only acceptable values are of type ’a!
let f () = test nul (failwith "returns a value of type ’a") ; ;
val f : unit -> bool = <fun>

The types of the polymorphic variant constructor are themselves likely to be polymor-
phic.
let id = function ‘Ctor → ‘Ctor ; ;
val id : [< ‘Ctor] -> [> ‘Ctor] = <fun>

The type of the value returned from id is “the group of constructors that contains at
least ‘Ctor” therefore it is a polymorphic type which can instantiate to a more precise
type. In the same way, the argument of id is “the group of constructors that contains

Objective Caml 3.04 711

no more than ‘Ctor” which is also likely to be specified. Consequently, they follow the
general polymorphic type mechanism of Objective Caml knowing that they are likely
to be weakened.
let v = id ‘Ctor ; ;
val v : _[> ‘Ctor] = ‘Ctor

v, the result of the application is not polymorphic (as denoted by the character in
the name of the type variable).
id v ; ;
- : _[> ‘Ctor] = ‘Ctor

v is monomorphic and its type is a sub-type of “contains at least the constructor
‘Ctor”. Applying it with id will force its type to be a sub-type of“contains no more
than the constructor ‘Ctor”. Logically, it must now have the type “contains exactly
‘Ctor”. Let us check.
v ; ;
- : [‘Ctor] = ‘Ctor

As with object types, the types of polymorphic variant constructors can be open.
let is integer = function

‘Integer (n : int) → true

| _ → false ; ;
val is_integer : [> ‘Integer of int] -> bool = <fun>

is integer (‘Integer 3) ; ;
- : bool = true

is integer ‘Other ; ;
- : bool = false

All the constructors are accepted, but the constructor ‘Integer must have an integer
argument.
is integer (‘Integer 3.0) ; ;
Toplevel input:

#

is_integer (‘Integer 3.0) ;;

^^^^^^^^^^^^

This expression has type [> ‘Integer of float] but is here used with type

[> ‘Integer of int]

As with object types, the type of a constructor can be cyclic.
let rec long = function ‘Rec x → 1 + (long x) ; ;
val long : ([< ‘Rec of ’a] as ’a) -> int = <fun>

Finally, let us note that the type can be at the same time a sub-group and one of a
group of constructors. Starting with a a simple example:
let ex1 = function ‘C1 → ‘C2 ; ;
val ex1 : [< ‘C1] -> [> ‘C2] = <fun>

Now we identify the input and output types of the example by a second pattern.
let ex2 = function ‘C1 → ‘C2 | x → x ; ;
val ex2 : ([> ‘C2 | ‘C1] as ’a) -> ’a = <fun>

We thus obtain the open type which contains at least ‘C2 since the return type contains
at least ‘C2.
ex2 (‘C1 : [> ‘C1]) ; ; (* is a subtype of [<‘C2|‘C1| .. >‘C2] *)

712 Objective Caml 3.04

- : _[> ‘C2 | ‘C1] = ‘C2

ex2 (‘C1 : [‘C1]) ; ; (* is not a subtype of [<‘C2|‘C1| .. >‘C2] *)

Toplevel input:

ex2 (‘C1 : [‘C1]) ;; (* is not a subtype of [<‘C2|‘C1| .. >‘C2] *)

^^^

This expression has type [‘C1] but is here used with type [> ‘C2 | ‘C1]

LablTk Library

The interface to Tcl/Tk was integrated in the distribution of Objective Caml 3.04,
and is available for Unix and Windows. The installation provides one new command:
labltk, which launches a toplevel interactive loop integrating the LablTk library.

The LablTk library defines a large number of modules, and heavily uses the language
extensions of Objective Caml 3.04. A detailed presentation of this module falls out-
side the scope of this appendix, and we invite the interested reader to refer to the
documentation of Objective Caml 3.04.

There is also an interface with Gtk, written in class-based style, but it is not yet part
of the Objective Caml distribution. It should be compatible with Unix and Windows.

OCamlBrowser

OcamlBrowser is a code browser for Objective Caml, providing a LablTk-based graph-
ical user interface. It integrates a “navigator” allowing to browse various modules, to
look at their contents (names of values and types), and to edit them.

When launching OCamlBrowser by the command ocamlbrowser, the list of all the
compiled modules available (see figure B.2) is displayed. One can add more modules
by specifying a path to find them. From the menu File, one can launch a toplevel
interactive loop or an editor in a new window.

When one of the modules is clicked on, a new window opens to display its contents
(see figure B.3). By selecting a value, its type appears in bottom of the window.

In the main window, one can search on the name of a function. The result appears in
a new window. The figure B.4 shows the result of a search on the word create.

There are other possibilities that we let the user discover.

Objective Caml 3.04 713

Figure B.2: OCamlBrowser : the main window

Figure B.3: OCamlBrowser : module contents

Figure B.4: OCamlBrowser : search for create

714 Objective Caml 3.04

