
4
Functional and

Imperative Styles

Functional and imperative programming languages are primarily distinguished by the
control over program execution and the data memory management.

• A functional program computes an expression. This computation results in a
value. The order in which the operations needed for this computation occur does
not matter, nor does the physical representation of the data manipulated, because
the result is the same anyway. In this setting, deallocation of memory is managed
implicitly by the language itself: it relies on an automatic garbage collector or
GC; see chapter 9.

• An imperative program is a sequence of instructions modifying a memory state.
Each execution step is enforced by rigid control structures that indicate the
next instruction to be executed. Imperative programs manipulate pointers or
references to values more often than the values themselves. Hence, the memory
space needed to store values must be allocated and reclaimed explicitly, which
sometimes leads to errors in accessing memory. Nevertheless, nothing prevents
use of a GC.

Imperative languages provide greater control over execution and the memory represen-
tation of data. Being closer to the actual machine, the code can be more efficient, but
loses in execution safety. Functional programming, offering a higher level of abstrac-
tion, achieves a better level of execution safety: Typing (dynamic or static) may be
stricter in this case, thus avoiding operations on incoherent values. Automatic storage
reclamation, in exchange for giving up efficiency, ensures the current existence of the
values being manipulated.

Historically, the two programming paradigms have been seen as belonging to differ-
ent universes: symbolic applications being suitable for the former, and numerical ap-
plications being suitable for the latter. But certain things have changed, especially
techniques for compiling functional programming languages, and the efficiency of GCs.
From another side, execution safety has become an important, sometimes the predom-
inant criterion in the quality of an application. Also familiar is the “selling point” of

92 Chapter 4 : Functional and Imperative Styles

the Java language, according to which efficiency need not preempt assurance, espe-
cially if efficiency remains reasonably good. And this idea is spreading among software
producers.

Objective Caml belongs to this class. It combines the two programming paradigms,
thus enlarging its domain of application by allowing algorithms to be written in either
style. It retains, nevertheless, a good degree of execution safety because of its static
typing, its GC, and its exception mechanism. Exceptions are a first explicit execution
control structure; they make it possible to break out of a computation or restart it. This
trait is at the boundary of the two models, because although it does not replace the
result of a computation, it can modify the order of execution. Introducing physically
mutable data can alter the behavior of the purely functional part of the language.
For instance, the order in which the arguments to a function are evaluated can be
determined, if that evaluation causes side effects. For this reason, such languages are
called “impure functional languages.” One loses in level of abstraction, because the
programmer must take account of the memory model, as well as the order of events
in running the program. This is not always negative, especially for the efficiency of
the code. On the other hand, the imperative aspects change the type system of the
language: some functional programs, correctly typed in theory, are no longer in fact
correctly typed because of the introduction of references. However, such programs can
easily be rewritten.

Plan of the Chapter

This chapter provides a comparison between the functional and imperative models in
the Objective Caml language, at the level both of control structure and of the memory
representation of values. The mixture of these two styles allows new data structures to
be created. The first section studies this comparison by example. The second section
discusses the ingredients in the choice between composition of functions and sequencing
of instructions, and in the choice between sharing and copying values. The third section
brings out the interest of mixing these two styles to create mutable functional data,
thus permitting data to be constructed without being completely evaluated. The fourth
section describes streams, potentially infinite sequences of data, and their integration
into the language via pattern-matching.

Comparison between Functional and

Imperative

Character strings (of Objective Caml type string) and linked lists (of Objective Caml
type ’a list) will serve as examples to illustrate the differences between “functional”
and “imperative.”

Comparison between Functional and Imperative 93

The Functional Side

The function map (see page 26) is a classic ingredient in functional languages. In a
purely functional style, it is written:
let rec map f l = match l with

[] → []

| h :: q → (f h) :: (map f q) ; ;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

It recursively constructs a list by applying f to the elements of the list given as argu-
ment, independently specifying its head (f h) and its tail (map f q). In particular,
the program does not stipulate which of the two will be computed first.

Moreover, the physical representation of lists need not be known to the programmer
to write such a function. In particular, problems of allocating and sharing data are
managed implicitly by the system and not by the programmer. An example illustrating
this follows:
let example = ["one" ; "two" ; "three"] ; ;

val example : string list = ["one"; "two"; "three"]

let result = map (function x → x) example ; ;

val result : string list = ["one"; "two"; "three"]

The lists example and result contain equal values:
example = result ; ;

- : bool = true

These two values have exactly the same structure even though their representation in
memory is different, as one learns by using the test for physical equality:
example == result ; ;

- : bool = false

(List.tl example) == (List.tl result) ; ;

- : bool = false

The Imperative Side

Let us continue the previous example, and modify a string in the list result.
(List.hd result).[1] <- ’s’ ; ;

- : unit = ()

result ; ;

- : string list = ["ose"; "two"; "three"]

example ; ;

- : string list = ["ose"; "two"; "three"]

Evidently, this operation has modified the list example. Hence, it is necessary to know
the physical structure of the two lists being manipulated, as soon as we use imperative
aspects of the language.

94 Chapter 4 : Functional and Imperative Styles

Let us now observe how the order of evaluating the arguments of a function can amount
to a trap in an imperative program. We define a mutable list structure with primitive
functions for creation, modification, and access:
type ’a ilist = { mutable c : ’a list } ; ;

type ’a ilist = { mutable c: ’a list }

let icreate () = { c = [] }
let iempty l = (l.c = [])

let icons x y = y.c <- x :: y.c ; y

let ihd x = List.hd x.c

let itl x = x.c <- List.tl x.c ; x ; ;

val icreate : unit -> ’a ilist = <fun>

val iempty : ’a ilist -> bool = <fun>

val icons : ’a -> ’a ilist -> ’a ilist = <fun>

val ihd : ’a ilist -> ’a = <fun>

val itl : ’a ilist -> ’a ilist = <fun>

let rec imap f l =

if iempty l then icreate ()

else icons (f (ihd l)) (imap f (itl l)) ; ;

val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>

Despite having reproduced the general form of the map of the previous paragraph, with
imap we get a distinctly different result:
let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;

val example : string ilist = {c=["one"; "two"; "three"]}

imap (function x → x) example ; ;

Uncaught exception: Failure("hd")

What has happened? Just that the evaluation of (itl l) has taken place before the
evaluation of (ihd l), so that on the last iteration of imap, the list referenced by l

became the empty list before we examined its head. The list example is henceforth
definitely empty even though we have not obtained any result:
example ; ;

- : string ilist = {c=[]}

The flaw in the function imap arises from a mixing of the genres that has not been
controlled carefully enough. The choice of order of evaluation has been left to the
system. We can reformulate the function imap, making explicit the order of evaluation,
by using the syntactic construction let .. in ..

let rec imap f l =

if iempty l then icreate ()

else let h = ihd l in icons (f h) (imap f (itl l)) ; ;

val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>

let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;

val example : string ilist = {c=["one"; "two"; "three"]}

imap (function x → x) example ; ;

Comparison between Functional and Imperative 95

- : string ilist = {c=["one"; "two"; "three"]}

However, the original list has still been lost:
example ; ;

- : string ilist = {c=[]}

Another way to make the order of evaluation explicit is to use the sequencing operator
and a looping structure.
let imap f l =

let l res = icreate ()

in while not (iempty l) do

ignore (icons (f (ihd l)) l res) ;

ignore (itl l)

done ;

{ l res with c = List.rev l res.c } ; ;

val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>

let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;

val example : string ilist = {c=["one"; "two"; "three"]}

imap (function x → x) example ; ;

- : string ilist = {c=["one"; "two"; "three"]}

The presence of ignore emphasizes the fact that it is not the result of the functions
that counts here, but their side effects on their argument. In addition, we had to put
the elements of the result back in the right order (using the function List.rev).

Recursive or Iterative

People often mistakenly associate recursive with functional and iterative with impera-
tive. A purely functional program cannot be iterative because the value of the condition
of a loop never varies. By contrast, an imperative program may be recursive: the orig-
inal version of the function imap is an example.

Calling a function conserves the values of its arguments during its computation. If it
calls another function, the latter conserves its own arguments in addition. These values
are conserved on the execution stack. When the call returns, these values are popped
from the stack. The memory space available for the stack being bounded, it is possible
to encounter the limit when using a recursive function with calls too deeply nested. In
this case, Objective Caml raises the exception Stack overflow.

let rec succ n = if n = 0 then 1 else 1 + succ (n-1) ; ;

val succ : int -> int = <fun>

succ 100000 ; ;

Stack overflow during evaluation (looping recursion?).

96 Chapter 4 : Functional and Imperative Styles

In the iterative version succ iter, the stack space needed for a call does not depend
on its argument.
let succ iter n =

let i = ref 0 in

for j=0 to n do incr i done ;

!i ; ;

val succ_iter : int -> int = <fun>

succ iter 100000 ; ;

- : int = 100001

The following recursive version has a priori the same depth of calls, yet it executes
successfully with the same argument.
let succ tr n =

let rec succ aux n accu =

if n = 0 then accu else succ aux (n-1) (accu+1)

in

succ aux 1 n ; ;

val succ_tr : int -> int = <fun>

succ tr 100000 ; ;

- : int = 100001

This function has a special form of recursive call, called tail recursion, in which the
result of this call will be the result of the function without further computation. It
is therefore unnecessary to have stored the values of the arguments to the function
while computing the recursive call. When Objective Caml can observe that a call is
tail recursive, it frees the arguments on the stack before making the recursive call. This
optimization allows recursive functions that do not increase the size of the stack.

Many languages detect tail recursive calls, but it is indispensable in a functional lan-
guage, where naturally many tail recursive calls are used.

Which Style to Choose?

This is no matter of religion or esthetics; a priori neither style is prettier or holier than
the other. On the contrary, one style may be more adequate than the other depending
on the problem to be solved.

The first rule to apply is the rule of simplicity. Whether the algorithm to use imple-
mented is written in a book, or whether its seed is in the mind of the programmer, the
algorithm is itself described in a certain style. It is natural to use the same style when
implementing it.

The second criterion of choice is the efficiency of the program. One may say that an
imperative program (if well written) is more efficient that its functional analogue, but
in very many cases the difference is not enough to justify complicating the code to

Which Style to Choose? 97

adopt an imperative style where the functional style would be natural. The function
map in the previous section is a good example of a problem naturally expressed in the
functional style, which gains nothing from being written in the imperative style.

Sequence or Composition of Functions

We have seen that as soon as a program causes side effects, it is necessary to determine
precisely the order of evaluation for the elements of the program. This can be done in
both styles:

functional: using the fact that Objective Caml is a strict language, which means
that the argument is evaluated before applying the function. The expression (f
(g x)) is computed by first evaluating (g x), and then passing the result as
argument to f. With more complex expressions, we can name an intermediate
result with the let in construction, but the idea remains the same: let aux=(g
x) in (f aux).

imperative: using sequences or other control structures (loops). In this case, the
result is not the value returned by a function, but its side effects on memory:
aux:=(g x) ; (f !aux).

Let us examine this choice of style on an example. The quick sort algorithm, applied
to a vector, is described recursively as follows:

1. Choose a pivot: This is the index of an element of the vector;

2. Permute around the pivot: Permute the elements of the vector so elements less
than the value at the pivot have indices less than the pivot, and vice versa;

3. sort the subvectors obtained on each side of the pivot, using the same algorithm:
The subvector preceding the pivot and the subvector following the pivot.

The choice of algorithm, namely to modify a vector so that its elements are sorted,
incites us to use an imperative style at least to manipulate the data.

First, we define a function to permute two elements of a vector:
let permute element vec n p =

let aux = vec.(n) in vec.(n) <- vec.(p) ; vec.(p) <- aux ; ;

val permute_element : ’a array -> int -> int -> unit = <fun>

The choice of a good pivot determines the efficiency of the algorithm, but we will use the
simplest possible choice here: return the index of the first element of the (sub)vector.
let choose pivot vec start finish = start ; ;

val choose_pivot : ’a -> ’b -> ’c -> ’b = <fun>

Let us write the algorithm that we would like to use to permute the elements of the
vector around the pivot.

98 Chapter 4 : Functional and Imperative Styles

1. Place the pivot at the beginning of the vector to be permuted;

2. Initialize i to the index of the second element of the vector;

3. Initialize j to the index of the last element of the vector;

4. If the element at index j is greater than the pivot, permute it with the element
at index i and increment i; otherwise, decrement j;

5. While i < j, repeat the previous operation;

6. At this stage, every element with index < i (or equivalently, j) is less than the
pivot, and all others are greater; if the element with index i is less than the pivot,
permute it with the pivot; otherwise, permute its predecessor with the pivot.

In implementing this algorithm, it is natural to adopt imperative control structures.
let permute pivot vec start finish ind pivot =

permute element vec start ind pivot ;

let i = ref (start+1) and j = ref finish and pivot = vec.(start) in

while !i < !j do

if vec.(!j) >= pivot then decr j

else

begin

permute element vec !i !j ;

incr i

end

done ;

if vec.(!i) > pivot then decr i ;

permute element vec start !i ;

!i

; ;

val permute_pivot : ’a array -> int -> int -> int -> int = <fun>

In addition to its effects on the vector, this function returns the index of the pivot as
its result.

All that remains is to put together the different stages and add the recursion on the
sub-vectors.
let rec quick vec start finish =

if start < finish

then

let pivot = choose pivot vec start finish in

let place pivot = permute pivot vec start finish pivot in

quick (quick vec start (place pivot-1)) (place pivot+1) finish

else vec ; ;

val quick : ’a array -> int -> int -> ’a array = <fun>

We have used the two styles here. The chosen pivot serves as argument to the per-
mutation around this pivot, and the index of the pivot after the permutation is an
argument to the recursive call. By contrast, the vector obtained after the permutation
is not returned by the permute pivot function; instead, this result is produced by side

Which Style to Choose? 99

effect. However, the quick function returns a vector, and the sorting of sub-vectors is
obtained by composition of recursive calls.

The main function is:
let quicksort vec = quick vec 0 ((Array.length vec)-1) ; ;

val quicksort : ’a array -> ’a array = <fun>

It is a polymorphic function because the order relation < on vector elements is itself
polymorphic.
let t1 = [|4;8;1;12;7;3;1;9|] ; ;

val t1 : int array = [|4; 8; 1; 12; 7; 3; 1; 9|]

quicksort t1 ; ;

- : int array = [|1; 1; 3; 4; 7; 8; 9; 12|]

t1 ; ;

- : int array = [|1; 1; 3; 4; 7; 8; 9; 12|]

let t2 = [|"the"; "little"; "cat"; "is"; "dead"|] ; ;

val t2 : string array = [|"the"; "little"; "cat"; "is"; "dead"|]

quicksort t2 ; ;

- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]

t2 ; ;

- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]

Shared or Copy Values

When the values that we manipulate are not mutable, it does not matter whether they
are shared or not.
let id x = x ; ;

val id : ’a -> ’a = <fun>

let a = [1; 2; 3] ; ;

val a : int list = [1; 2; 3]

let b = id a ; ;

val b : int list = [1; 2; 3]

Whether b is a copy of the list a or the very same list makes no difference, because
these are intangible values anyway. But if we put modifiable values in place of integers,
we need to know whether modifying one value causes a change in the other.

The implementation of polymorphism in Objective Caml causes immediate values to be
copied, and structured values to be shared. Even though arguments are always passed
by value, only the pointer to a structured value is copied. This is the case even in the
function id:
let a = [| 1 ; 2 ; 3 |] ; ;

val a : int array = [|1; 2; 3|]

let b = id a ; ;

val b : int array = [|1; 2; 3|]

a.(1) <- 4 ; ;

- : unit = ()

a ; ;

100 Chapter 4 : Functional and Imperative Styles

- : int array = [|1; 4; 3|]

b ; ;

- : int array = [|1; 4; 3|]

We have here a genuine programming choice to decide which is the most efficient way
to represent a data structure. On one hand, using mutable values allows manipulations
in place, which means without allocation, but requires us to make copies sometimes
when immutable data would have allowed sharing. We illustrate this here with two
ways to implement lists.
type ’a list immutable = LInil | LIcons of ’a * ’a list immutable ; ;

type ’a list mutable = LMnil | LMcons of ’a * ’a list mutable ref ; ;

The immutable lists are strictly equivalent to lists built into Objective Caml, while
the mutable lists are closer to the style of C, in which a cell is a value together with a
reference to the following cell.

With immutable lists, there is only one way to write concatenation, and it requires
duplicating the structure of the first list; by contrast, the second list may be shared
with the result.
let rec concat l1 l2 = match l1 with

LInil → l2

| LIcons (a,l11) → LIcons(a, (concat l11 l2)) ; ;

val concat : ’a list_immutable -> ’a list_immutable -> ’a list_immutable =

<fun>

let li1 = LIcons(1, LIcons(2, LInil))

and li2 = LIcons(3, LIcons(4, LInil)) ; ;

val li1 : int list_immutable = LIcons (1, LIcons (2, LInil))

val li2 : int list_immutable = LIcons (3, LIcons (4, LInil))

let li3 = concat li1 li2 ; ;

val li3 : int list_immutable =

LIcons (1, LIcons (2, LIcons (3, LIcons (4, LInil))))

li1==li3 ; ;

- : bool = false

let tlLI l = match l with

LInil → failwith "Liste vide"

| LIcons(_,x) → x ; ;

val tlLI : ’a list_immutable -> ’a list_immutable = <fun>

tlLI(tlLI(li3)) == li2 ; ;

- : bool = true

From these examples, we see that the first cells of li1 and li3 are distinct, while the
second half of li3 is exactly li2.

With mutable lists, we have a choice between modifying arguments (function concat share)
and creating a new value (function concat copy).
let rec concat copy l1 l2 = match l1 with

LMnil → l2

| LMcons (x,l11) → LMcons(x, ref (concat copy !l11 l2)) ; ;

Which Style to Choose? 101

val concat_copy : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =

<fun>

This first solution, concat copy, gives a result similar to the previous function, concat.
A second solution shares its arguments with its result fully:
let concat share l1 l2 =

match l1 with

LMnil → l2

| _ → let rec set last = function

LMnil → failwith "concat_share : impossible case!!"

| LMcons(_,l) → if !l=LMnil then l:=l2 else set last !l

in

set last l1 ;

l1 ; ;

val concat_share : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =

<fun>

Concatenation with sharing does not require any allocation, and therefore does not
use the constructor LMcons. Instead, it suffices to cause the last cell of the first list
to point to the second list. However, this version of concatenation has the potential
weakness that it alters arguments passed to it.
let lm1 = LMcons(1, ref (LMcons(2, ref LMnil)))

and lm2 = LMcons(3, ref (LMcons(4, ref LMnil))) ; ;

val lm1 : int list_mutable =

LMcons (1, {contents=LMcons (2, {contents=LMnil})})

val lm2 : int list_mutable =

LMcons (3, {contents=LMcons (4, {contents=LMnil})})

let lm3 = concat share lm1 lm2 ; ;

val lm3 : int list_mutable =

LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})

We do indeed obtain the expected result for lm3. However, the value bound to lm1 has
been modified.
lm1 ; ;

- : int list_mutable =

LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})

This may therefore have consequences on the rest of the program.

How to Choose your Style

In a purely functional program, side effects are forbidden, and this excludes mutable
data structures, exceptions, and input/output. We prefer, though, a less restrictive
definition of the functional style, saying that functions that do not modify their global
environment may be used in a functional style. Such a function may manipulate mu-
table values locally, and may therefore be written in an imperative style, but must
not modify global variables, nor its arguments. We permit them to raise exceptions in
addition. Viewed from outside, these functions may be considered “black boxes.” Their
behavior matches a function written in a purely functional style, apart from being able
of breaking control flow by raising an exception. In the same spirit, a mutable value
which can no longer be modified after initialization may be used in a functional style.

102 Chapter 4 : Functional and Imperative Styles

On the other hand, a program written in an imperative style still benefits from the
advantages provided by Objective Caml: static type safety, automatic memory man-
agement, the exception mechanism, parametric polymorphism, and type inference.

The choice between the imperative and functional styles depends on the application to
be developed. We may nevertheless suggest some guidelines based on the character of
the application, and the criteria considered important in the development process.

• choice of data structures: The choice whether to use mutable data structures
follows from the style of programming adopted. Indeed, the functional style is es-
sentially incompatible with modifying mutable values. By contrast, constructing
and traversing objects are the same whatever their status. This touches the same
issue as “modification in place vs copying” on page 99; we return to it again in
discussing criteria of efficiency.

• required data structures: If a program must modify mutable data structures,
then the imperative style is the only one possible. If, on the other hand, you
just have to traverse values, then adopting the functional style guarantees the
integrity of the data.
Using recursive data structures requires the use of functions that are themselves
recursive. Recursive functions may be defined using either of the two styles, but
it is often easier to understand the creation of a value following a recursive defi-
nition, which corresponds to a functional approach, than to repeat the recursive
processing on this element. The functional style allows us to define generic iter-
ators over the structure of data, which factors out the work of development and
makes it faster.

• criteria of efficiency: Modification in place is far more efficient than creating a
value. When code efficiency is the preponderant criterion, it will usually tip the
balance in favor of the imperative style. We note however that the need to avoid
sharing values may turn out to be a very hard task, and in the end costlier than
copying the values to begin with.
Being purely functional has a cost. Partial application and using functions passed
as arguments from other functions has an execution cost greater than total appli-
cation of a function whose declaration is visible. Using this eminently functional
feature must thus be avoided in those portions of a program where efficiency is
crucial.

• development criteria: the higher level of abstraction of functional programs
permits them to be written more quickly, leading to code that is more compact
and contains fewer errors than the equivalent imperative code, which is generally
more verbose. The functional style is better suited to the constraints imposed by
developing substantial applications. Since each function is not dependent upon
its evaluation context, functional can be easily divided into small units that can
be examined separately; as a consequence, the code is easier to read.
Programs written using the functional style are more easily reusable because of
its better modularity, and because functions may be passed as arguments to other
functions.

Mixing Styles 103

These remarks show that it is often a good idea to mix the two programming styles
within the same application. The functional programming style is faster to develop and
confers a simpler organization to an application. However, portions whose execution
time is critical repay being developed in a more efficient imperative style.

Mixing Styles

As we have mentioned, a language offering both functional and imperative character-
istics allows the programmer to choose the more appropriate style for each part of the
implementation of an algorithm. One can indeed use both aspects in the same function.
This is what we will now illustrate.

Closures and Side Effects

The convention, when a function causes a side effect, is to treat it as a procedure and
to return the value (), of type unit. Nevertheless, in some cases, it can be useful to
cause the side effect within a function that returns a useful value. We have already
used this mixture of the styles in the function permute pivot of quicksort.

The next example is a symbol generator that creates a new symbol each time that it
is called. It simply uses a counter that is incremented at every call.
let c = ref 0; ;

val c : int ref = {contents=0}

let reset symb = function () → c:=0 ; ;

val reset_symb : unit -> unit = <fun>

let new symb = function s → c:=!c+1 ; s^(string of int !c) ; ;

val new_symb : string -> string = <fun>

new symb "VAR" ; ;

- : string = "VAR1"

new symb "VAR" ; ;

- : string = "VAR2"

reset symb () ; ;

- : unit = ()

new symb "WAR" ; ;

- : string = "WAR1"

new symb "WAR" ; ;

- : string = "WAR2"

The reference c may be hidden from the rest of the program by writing:
let (reset s , new s) =

let c = ref 0

in let f1 () = c := 0

and f2 s = c := !c+1 ; s^(string of int !c)

in (f1,f2) ; ;

104 Chapter 4 : Functional and Imperative Styles

val reset_s : unit -> unit = <fun>

val new_s : string -> string = <fun>

This declaration creates a pair of functions that share the variable c, which is local to
this declaration. Using these two functions produces the same behavior as the previous
definitions.
new s "VAR"; ;

- : string = "VAR1"

new s "VAR"; ;

- : string = "VAR2"

reset s () ; ;

- : unit = ()

new s "WAR"; ;

- : string = "WAR1"

new s "WAR"; ;

- : string = "WAR2"

This example permits us to illustrate the way that closures are represented. A closure
may be considered as a pair containing the code (that is, the function part) as one
component and the local envoronment containing the values of the free variables of
the function. Figure 4.1 shows the memory representation of the closures reset s and
new s.

environment code

newt_s

fun s -> ...

{contents=0}

c

c fun () -> c:=0

code

reset_s

environment

Figure 4.1: Memory representation of closures.

These two closures share the same environment, containing the value of c. When either
one modifies the reference c, it modifies the contents of an area of memory that is shared
with the other closure.

Mixing Styles 105

Physical Modifications and Exceptions

Exceptions make it possible to escape from situations in which the computation cannot
proceed. In this case, an exception handler allows the calculation to continue, knowing
that one branch has failed. The problem with side effects comes from the state of the
modifiable data when the exception was raised. One cannot be sure of this state if
there have been physical modifications in the branch of the calculation that has failed.

Let us define the increment function (++) analogous to the operator in C:
let (++) x = x:=!x+1; x; ;

val ++ : int ref -> int ref = <fun>

The following example shows a little computation where division by zero occurs to-
gether with
let x = ref 2; ;

val x : int ref = {contents=2}

(* 1 *)

!((++) x) * (1/0) ; ;

Uncaught exception: Division_by_zero

x; ;

- : int ref = {contents=2}

(* 2 *)

(1/0) * !((++) x) ; ;

Uncaught exception: Division_by_zero

x; ;

- : int ref = {contents=3}

The variable x is not modified during the computation of the expression in (∗1∗), while
it is modified in the computation of (∗2∗). Unless one saves the initial values, the form
try .. with .. must not have a with .. part that depends on modifiable variables
implicated in the expression that raised the exception.

Modifiable Functional Data Structures

In functional programming a program (in particular, a function expression) may also
serve as a data object that may be manipulated, and one way to see this is to write
association lists in the form of function expressions. In fact, one may view association
lists of type (’a * ’b) list as partial functions taking a key chosen from the set ’a
and returning a value in the set of associated values ’b. Each association list is then a
function of type ’a -> ’b.

The empty list is the everywhere undefined function, which one simulates by raising
an exception:
let nil assoc = function x → raise Not found ; ;

val nil_assoc : ’a -> ’b = <fun>

We next write the function add assoc which adds an element to a list, meaning that
it extends the function for a new entry:

106 Chapter 4 : Functional and Imperative Styles

let add assoc (k,v) l = function x → if x = k then v else l x ; ;

val add_assoc : ’a * ’b -> (’a -> ’b) -> ’a -> ’b = <fun>

let l = add assoc (’1’, 1) (add assoc (’2’, 2) nil assoc) ; ;

val l : char -> int = <fun>

l ’2’ ; ;

- : int = 2

l ’x’ ; ;

Uncaught exception: Not_found

We may now re-write the function mem assoc:
let mem assoc k l = try (l k) ; true with Not found → false ; ;

val mem_assoc : ’a -> (’a -> ’b) -> bool = <fun>

mem assoc ’2’ l ; ;

- : bool = true

mem assoc ’x’ l ; ;

- : bool = false

By contrast, writing a function to remove an element from a list is not trivial, because
one no longer has access to the values captured by the closures. To accomplish the
same purpose we mask the former value by raising the exception Not found.
let rem assoc k l = function x → if x=k then raise Not found else l x ; ;

val rem_assoc : ’a -> (’a -> ’b) -> ’a -> ’b = <fun>

let l = rem assoc ’2’ l ; ;

val l : char -> int = <fun>

l ’2’ ; ;

Uncaught exception: Not_found

Clearly, one may also create references and work by side effect on such values. However,
one must take some care.
let add assoc again (k,v) l = l := (function x → if x=k then v else !l x) ; ;

val add_assoc_again : ’a * ’b -> (’a -> ’b) ref -> unit = <fun>

The resulting value for l is a function that points at itself and therefore loops. This
annoying side effect is due to the fact that the dereferencing !l is within the scope of
the closure function x →. The value of !l is not evaluated during compilation, but
at run-time. At that time, l points to the value that has already been modified by
add assoc. We must therefore correct our definition using the closure created by our
original definition of add assoc:
let add assoc again (k, v) l = l := add assoc (k, v) !l ; ;

val add_assoc_again : ’a * ’b -> (’a -> ’b) ref -> unit = <fun>

let l = ref nil assoc ; ;

val l : (’_a -> ’_b) ref = {contents=<fun>}

add assoc again (’1’,1) l ; ;

- : unit = ()

Mixing Styles 107

add assoc again (’2’,2) l ; ;

- : unit = ()

!l ’1’ ; ;

- : int = 1

!l ’x’ ; ;

Uncaught exception: Not_found

Lazy Modifiable Data Structures

Combining imperative characteristics with a functional language produces good tools
for implementing computer languages. In this subsection, we will illustrate this idea by
implementing data structures with deferred evaluation. A data structure of this kind
is not completely evaluated. Its evaluation progresses according to the use made of it.

Deferred evaluation, which is often used in purely functional languages, is simulated
using function values, possibly modifiable. There are at least two purposes for manip-
ulating incompletely evaluated data structures: first, so as to calculate only what is
effectively needed in the computation; and second, to be able to work with potentially
infinite data structures.

We define the type vm, whose members contain either an already calculated value
(constructor Imm) or else a value to be calculated (constructor Deferred):
type ’a v =

Imm of ’a

| Deferred of (unit → ’a); ;

type ’a vm = {mutable c : ’a v }; ;

A computation is deferred by encapsulating it in a closure. The evaluation function for
deferred values must return the value if it has already been calculated, and otherwise,
if the value is not already calculated, it must evaluate it and then store the result.
let eval e = match e.c with

Imm a → a

| Deferred f → let u = f () in e.c <- Imm u ; u ; ;

val eval : ’a vm -> ’a = <fun>

The operations of deferring evaluation and activating it are also called freezing and
thawing a value.

We could also write the conditional control structure in the form of a function:
let if deferred c e1 e2 =

if eval c then eval e1 else eval e2; ;

val if_deferred : bool vm -> ’a vm -> ’a vm -> ’a = <fun>

108 Chapter 4 : Functional and Imperative Styles

Here is how to use it in a recursive function such as factorial:
let rec facr n =

if deferred

{c=Deferred(fun () → n = 0)}
{c=Deferred(fun () → 1)}
{c=Deferred(fun () → n*(facr(n-1)))}; ;

val facr : int -> int = <fun>

facr 5; ;

- : int = 120

The classic form of if can not be written in the form of a function. In fact, if we define
a function if function this way:
let if function c e1 e2 = if c then e1 else e2; ;

val if_function : bool -> ’a -> ’a -> ’a = <fun>

then the three arguments of if function are evaluated at the time they are passed
to the function. So the function fact loops, because the recursive call fact(n-1) is
always evaluated, even when n has the value 0.
let rec fact n = if function (n=0) 1 (n*fact(n-1)) ; ;

val fact : int -> int = <fun>

fact 5 ; ;

Stack overflow during evaluation (looping recursion?).

Module Lazy

The implementation difficulty for frozen values is due to the conflict between the eager
evaluation strategy of Objective Caml and the need to leave expressions unevaluated.
Our attempt to redefine the conditional illustrated this. More generally, it is impossible
to write a function that freezes a value in producing an object of type vm:
let freeze e = { c = Deferred (fun () → e) }; ;
val freeze : ’a -> ’a vm = <fun>

When this function is applied to arguments, the Objective Caml evaluation strategy
evaluates the expression e passed as argument before constructing the closure fun ()
→ e. The next example shows this:
freeze (print string "trace"; print newline () ; 4*5); ;

trace

- : int vm = {c=Deferred <fun>}

This is why the following syntactic form was introduced.

Syntax : lazy expr

Warning This form is a language extension that may evolve in
future versions.

Mixing Styles 109

When the keyword lazy is applied to an expression, it constructs a value of a type
declared in the module Lazy:
let x = lazy (print string "Hello"; 3*4) ; ;

val x : int Lazy.status ref = {contents=Lazy.Delayed <fun>}

The expression (print string "Hello") has not been evaluated, because no message
has been printed. The function force of module Lazy allows one to force evaluation:
Lazy.force x ; ;

Hello- : int = 12

Now the value x has altered:
x ; ;

- : int Lazy.t = {contents=Lazy.Value 12}

It has become the value of the expression that had been frozen, namely 12.

For another call to the function force, it’s enough to return the value already calcu-
lated:
Lazy.force x ; ;

- : int = 12

The string "Hello" is no longer prefixed.

“Infinite” Data Structures

The second reason to defer evaluation is to be able to construct potentially infinite
data structures such as the set of natural numbers. Because it might take a long time
to construct them all, the idea here is to compute only the first one and to know how
to pass to the next element.

We define a generic data structure ’a enum which will allow us to enumerate the
elements of a set.
type ’a enum = { mutable i : ’a; f :’a → ’a } ; ;

type ’a enum = { mutable i: ’a; f: ’a -> ’a }

let next e = let x = e.i in e.i <- (e.f e.i) ; x ; ;

val next : ’a enum -> ’a = <fun>

Now we can get the set of natural numbers by instantiating the fields of this structure:

let nat = { i=0; f=fun x → x + 1 }; ;
val nat : int enum = {i=0; f=<fun>}

next nat; ;

- : int = 0

next nat; ;

- : int = 1

next nat; ;

- : int = 2

Another example gives the elements of the Fibonnacci sequence, which has the defini-

110 Chapter 4 : Functional and Imperative Styles

tion:

u0 = 1
u1 = 1
un+2 = un + un+1

The function to compute the successor must take account of the current value, (un−1),
but also of the preceding one (un−2). For this, we use the state c in the following
closure:
let fib = let fx = let c = ref 0 in fun v → let r = !c + v in c:=v ; r

in { i=1 ; f=fx } ; ;

val fib : int enum = {i=1; f=<fun>}

for i=0 to 10 do print int (next fib); print string " " done ; ;

1 1 2 3 5 8 13 21 34 55 89 - : unit = ()

Streams of Data

Streams are (potentially infinite) sequences containing elements of the same kind. The
evaluation of a part of a stream is done on demand, whenever it is needed by the
current computation. A stream is therefore a lazy data structure.

The stream type is an abstract data type; one does not need to know how it is imple-
mented. We manipulate objects of this type using constructor functions and destructor
(or selector) functions. For the convenience of the user, Objective Caml has simple syn-
tactic constructs to construct streams and to access their elements.

Warning Streams are an extension of the language, not part of
the stable core of Objective Caml.

Construction

The syntactic sugar to construct streams is inspired by that for lists and arrays. The
empty stream is written:
[< >] ; ;

- : ’a Stream.t = <abstr>

One may construct a stream by enumerating its elements, preceding each one with an
with a single quote (character ’):
[< ’0; ’2; ’4 >] ; ;

- : int Stream.t = <abstr>

Expressions not preceded by an apostrophe are considered to be sub-streams:
[< ’0; [< ’1; ’2; ’3 >]; ’4 >] ; ;

- : int Stream.t = <abstr>

let s1 = [< ’1; ’2; ’3 >] in [< s1; ’4 >] ; ;

Streams of Data 111

- : int Stream.t = <abstr>

let concat stream a b = [< a ; b >] ; ;

val concat_stream : ’a Stream.t -> ’a Stream.t -> ’a Stream.t = <fun>

concat stream [< ’"if"; ’"c";’"then";’"1" >] [< ’"else";’"2" >] ; ;

- : string Stream.t = <abstr>

The Stream module also provides other construction functions. For instance, the func-
tions of channel and of string return a stream containing a sequence of characters,
received from an input stream or a string.
Stream.of channel ; ;

- : in_channel -> char Stream.t = <fun>

Stream.of string ; ;

- : string -> char Stream.t = <fun>

The deferred computation of streams makes it possible to manipulate infinite data
structures in a way similar to the type ’a enum defined on page 109. We define the
stream of natural numbers by its first element and a function calculating the stream
of elements to follow:
let rec nat stream n = [< ’n ; nat stream (n+1) >] ; ;

val nat_stream : int -> int Stream.t = <fun>

let nat = nat stream 0 ; ;

val nat : int Stream.t = <abstr>

Destruction and Matching of Streams

The primitive next permits us to evaluate, retrieve, and remove the first element of a
stream, all at once:
for i=0 to 10 do

print int (Stream.next nat) ;

print string " "

done ; ;

0 1 2 3 4 5 6 7 8 9 10 - : unit = ()

Stream.next nat ; ;

- : int = 11

When the stream is exhausted, an exception is raised.
Stream.next [< >] ; ;

Uncaught exception: Stream.Failure

To manipulate streams, Objective Caml offers a special-purpose matching construct
called destructive matching. The value matched is calculated and removed from the
stream. There is no notion of exhaustive match for streams, and, since the data type
is lazy and potentially infinite, one may match less than the whole stream. The syntax
for matching is:

112 Chapter 4 : Functional and Imperative Styles

Syntax : match expr with parser [< ’p1 . . . >] -> expr1 | . . .

The function next could be written:
let next s = match s with parser [< ’x >] → x ; ;

val next : ’a Stream.t -> ’a = <fun>

next nat; ;

- : int = 12

Note that the enumeration of natural numbers picks up where we left it previously.

As with function abstraction, there is a syntactic form matching a function parameter
of type Stream.t.

Syntax : parser p -¿ . . .

The function next can thus be rewritten:
let next = parser [<’x>] → x ; ;

val next : ’a Stream.t -> ’a = <fun>

next nat ; ;

- : int = 13

It is possible to match the empty stream, but take care: the stream pattern [<>]
matches every stream. In fact, a stream s is always equal to the stream [< [<>]; s

>]. For this reason, one must reverse the usual order of matching:
let rec it stream f s =

match s with parser

[< ’x ; ss >] → f x ; it stream f ss

| [<>] → () ; ;

val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>

let print int1 n = print int n ; print string" " ; ;

val print_int1 : int -> unit = <fun>

it stream print int1 [<’1; ’2; ’3>] ; ;

1 2 3 - : unit = ()

Since matching is destructive, one can equivalently write:
let rec it stream f s =

match s with parser

[< ’x >] → f x ; it stream f s

| [<>] → () ; ;

val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>

it stream print int1 [<’1; ’2; ’3>] ; ;

1 2 3 - : unit = ()

Although streams are lazy, they want to be helpful, and never refuse to furnish a first
element; when it has been supplied once it is lost. This has consequences for matching.
The following function is an attempt (destined to fail) to display pairs from a stream
of integers, except possibly for the last element.
let print int2 n1

n2 =

Streams of Data 113

print string "(" ; print int n1 ; print string "," ;

print int n2 ; print string ")" ; ;

val print_int2 : int -> int -> unit = <fun>

let rec print stream s =

match s with parser

[< ’x; ’y >] → print int2 x y; print stream s

| [< ’z >] → print int1 z; print stream s

| [<>] → print newline () ; ;

val print_stream : int Stream.t -> unit = <fun>

print stream [<’1; ’2; ’3>]; ;

(1,2)Uncaught exception: Stream.Error("")

The first two two members of the stream were displayed properly, but during the
evaluation of the recursive call (print stream [<3>]), the first pattern found a value
for x, which was thereby consumed. There remained nothing more for y. This was what
caused the error. In fact, the second pattern is useless, because if the stream is not
empty, then first pattern always begins evaluation.

To obtain the desired result, we must sequentialize the matching:
let rec print stream s =

match s with parser

[< ’x >]

→ (match s with parser

[< ’y >] → print int2 x y; print stream s

| [<>] → print int1 x; print stream s)

| [<>] → print newline () ; ;

val print_stream : int Stream.t -> unit = <fun>

print stream [<’1; ’2; ’3>]; ;

(1,2)3

- : unit = ()

If matching fails on the first element of a pattern however, then we again have the
familiar behavior of matching:
let rec print stream s =

match s with parser

[< ’1; ’y >] → print int2 1 y; print stream s

| [< ’z >] → print int1 z; print stream s

| [<>] → print newline () ; ;

val print_stream : int Stream.t -> unit = <fun>

print stream [<’1; ’2; ’3>] ; ;

(1,2)3

- : unit = ()

114 Chapter 4 : Functional and Imperative Styles

The Limits of Matching

Because it is destructive, matching streams differs from matching on sum types. We
will now illustrate how radically different it can be.

We can quite naturally write a function to compute the sum of the elements of a stream:

let rec sum s =

match s with parser

[< ’n; ss >] → n+(sum ss)

| [<>] → 0 ; ;

val sum : int Stream.t -> int = <fun>

sum [<’1; ’2; ’3; ’4>] ; ;

- : int = 10

However, we can just as easily consume the stream from the inside, naming the partial
result:
let rec sum s =

match s with parser

[< ’n; r = sum >] → n+r

| [<>] → 0 ; ;

val sum : int Stream.t -> int = <fun>

sum [<’1; ’2; ’3; ’4>] ; ;

- : int = 10

We will examine some other important uses of streams in chapter 11, which is devoted
to lexical and syntactic analysis. In particular, we will see how consuming a stream
from the inside may be profitably used.

Exercises

Binary Trees

We represent binary trees in the form of vectors. If a tree a has height h, then the
length of the vector will be 2(h+1)− 1. If a node has position i, then the left subtree of
this node lies in the interval of indices [i+1 , i+1+2h], and its right subtree lies in the
interval [i+1+2h +1 , 2(h+1)−1]. This representation is useful when the tree is almost
completely filled. The type ’a of labels for nodes in the tree is assumed to contain a
special value indicating that the node does not exist. Thus, we represent labeled trees
by the by vectors of type ’a array.

1. Write a function , taking as input a binary tree of type ’a bin tree (defined
on page 50) and an array (which one assumes to be large enough). The function
stores the labels contained in the tree in the array, located according to the
discipline described above.

2. Write a function to create a leaf (tree of height 0).

Summary 115

3. Write a function to construct a new tree from a label and two other trees.
4. Write a conversion function from the type ’a bin tree to an array.
5. Define an infix traversal function for these trees.
6. Use it to display the tree.
7. What can you say about prefix traversal of these trees?

Spelling Corrector

The exercise uses the lexical tree , from the exercise of chapter 2, page 63, to build a
spelling corrector.

1. Construct a dictionary from a file in ASCII in which each line contains one word.
For this, one will write a function which takes a file name as argument and
returns the corresponding dictionary.

2. Write a function words that takes a character string and constructs the list
of words in this string. The word separators are space, tab, apostrophe, and
quotation marks.

3. Write a function verify that takes a dictionary and a list of words, and returns
the list of words that do not occur in the dictionary.

4. Write a function occurrences that takes a list of words and returns a list of
pairs associating each word with the number of its occurrences.

5. Write a function spellcheck that takes a dictionary and the name of a file con-
taining the text to analyze. It should return the list of incorrect words, together
with their number of occurrences.

Set of Prime Numbers

We would like now to construct the infinite set of prime numbers (without calculating
it completely) using lazy data structures.

1. Define the predicate divisible which takes an integer and an initial list of prime
numbers, and determines whether the number is divisible by one of the integers
on the list.

2. Given an initial list of prime numbers, write the function next that returns the
smallest number not on the list.

3. Define the value setprime representing the set of prime numbers, in the style of
the type ’a enum on page 109. It will be useful for this set to retain the integers
already found to be prime.

Summary

This chapter has compared the functional and imperative programming styles. They
differ mainly in the control of execution (implicit in functional and explicit in impera-

116 Chapter 4 : Functional and Imperative Styles

tive programming), and in the representation in memory of data (sharing or explicitly
copied in the imperative case, irrelevant in the functional case). The implementation
of algorithms must take account of these differences. The choice between the two styles
leads in fact to mixing them. This mixture allows us to clarify the representation of clo-
sures, to optimize crucial parts of applications, and to create mutable functional data.
Physical modification of values in the environment of a closure permits us to better
understand what a functional value is. The mixture of the two styles gives powerful
implementation tools. We used them to construct potentially infinite values.

To Learn More

The principal consequences of adding imperative traits to a functional language are:

• To determine the evaluation strategy (strict evaluation);

• to add implementation constraints, especially for the GC (see Chapter 9);

• For statically typed languages, to make their type system more complex;

• To offer different styles of programming in the same language, permitting us to
program in the style appropriate to the algorithm at hand, or possibly in a mixed
style.

This last point is important in Objective Caml where we need the same parametric
polymorphism for functions written in either style. For this, certain purely functional
programs are no longer typable after the addition. Wright’s article ([Wri95]) explains
the difficulties of polymorphism in languages with imperative aspects. Objective Caml
adopts the solution that he advocates. The classification of different kinds of poly-
morphism in the presence of physical modification is described well in the thesis of
Emmanuel Engel ([Eng98]).

These consequences make the job of programming a bit harder, and learning the lan-
guage a bit more difficult. But because the language is richer for this reason and above
all offers the choice of style, the game is worth the candle. For example, strict evalua-
tion is the rule, but it is possible to implement basic mechanisms for lazy evaluation,
thanks to the mixture of the two styles. Most purely functional languages use a lazy
evaluation style. Among languages close to ML, we would mention Miranda, LazyML,
and Haskell. The first two are used at universities for teaching and research. By con-
trast, there are significant applications written in Haskell. The absence of controllable
side effects necessitates an additional abstraction for input/output called monads. One
can read works on Haskell (such as [Tho99]) to learn more about this subject. Streams
are a good example of the mixture of functional and imperative styles. Their use in
lexical and syntactic analysis is described in Chapter 11.

