
5
The Graphics

Interface

This chapter presents the Graphics library, which is included in the distribution of
the Objective Caml-language. This library is designed in such a way that it works
identically under the main graphical interfaces of the most commonly used operating
systems: Windows, MacOS, Unix with X-Windows. Graphics permits the realization
of drawings which may contain text and images, and it handles basic events like mouse
clicks or pressed keys.

The model of programming graphics applied is the “painter’s model:” the last touch of
color erases the preceding one. This is an imperative model where the graphics window
is a table of points which is physically modified by each graphics primitive. The inter-
actions with the mouse and the keyboard are a model of event-driven programming:
the primary function of the program is an infinite loop waiting for user interaction.
An event starts execution of a special handler, which then returns to the main loop to
wait for the next event.

Although the Graphics library is very simple, it is sufficient for introducing basic
concepts of graphical interfaces, and it also contains basic elements for developing
graphical interfaces that are rich and easy to use by the programmer.

Chapter overview

The first section explains how to make use of this library on different systems. The
second section introduces the basic notions of graphics programming: reference point,
plotting, filling, colors, bitmaps. The third section illustrates these concepts by describ-
ing and implementing functions for creating and drawing “boxes.” The fourth section
demonstrates the animation of graphical objects and their interaction with the back-
ground of the screen or other animated objects. The fifth section presents event-driven
programming, in other terms the skeleton of all graphical interfaces. Finally, the last

118 Chapter 5 : The Graphics Interface

section uses the library Graphics to construct a graphical interface for a calculator
(see page 86).

Using the Graphics Module

Utilization of the library Graphics differs depending on the system and the compilation
mode used. We will not cover applications other than usable under the interactive
toplevel of Objective Caml. Under the Windows and MacOS systems the interactive
working environment already preloads this library. To make it available under Unix, it
is necessary to create a new toplevel. This depends on the location of the X11 library.
If this library is placed in one of the usual search paths for C language libraries, the
command line is the following:

ocamlmktop -custom -o mytoplevel graphics.cma -cclib -lX11

It generates a new executablemytoplevel into which the library Graphics is integrated.
Starting the executable works as follows:

./mytoplevel

If, however, as under Linux, the library X11 is placed in another directory, this has to
be indicated to the command ocamlmktop:

ocamlmktop -custom -o mytoplevel graphics.cma -cclib \
-L/usr/X11/lib -cclib -lX11

In this example, the file libX11.a is searched in the directory /usr/X11/lib.

A complete description of the command ocamlmktop can be found in chapter 7.

Basic notions

Graphics programming is tightly bound to the technological evolution of hardware, in
particular to that of screens and graphics cards. In order to render images in sufficient
quality, it is necessary that the drawing be refreshed (redrawn) at regular and short
intervals, somewhat like in a cinema. There are basically two techniques for drawing on
the screen: the first makes use of a list of visible segments where only the useful part
of the drawing is drawn, the second displays all points of the screen (bitmap screen).
It is the last technique which is used on ordinary computers.

Bitmap screens can be seen as rectangles of accessible, in other terms, displayable
points. These points are called pixels, a word derived from picture element. They are
the basic elements for constructing images. The height and width of the main bitmap

Graphical display 119

is the resolution of the screen. The size of this bitmap therefore depends on the size
of each pixel. In monochrome (black/white) displays, a pixel can be encoded in one
bit. For screens that allow gray scales or for color displays, the size of a pixel depends
on the number of different colors and shades that a pixel may take. In a bitmap of
320x640 pixels with 256 colors per pixel, it is therefore necessary to encode a pixel in 8
bits, which requires video memory of: 480 ∗ 640 bytes = 307200 bytes ' 300KB. This
resolution is still used by certain MS-DOS programs.

The basic operations on bitmaps which one can find in the Graphics library are:

• coloration of pixels,

• drawing of pixels,

• drawing of forms: rectangles, ellipses,

• filling of closed forms: rectangles, ellipses, polygons,

• displaying text: as bitmap or as vector,

• manipulation or displacement of parts of the image.

All these operations take place at a reference point, the one of the bitmap. A certain
number of characteristics of these graphical operations like the width of strokes, the
joints of lines, the choice of the character font, the style and the motive of filling define
what we call a graphical context. A graphical operation always happens in a particular
graphical context, and its result depends on it. The graphical context of the Graphics
library does not contain anything except for the current point, the current color, the
current font and the size of the image.

Graphical display

The elements of the graphical display are: the reference point and the graphical context,
the colors, the drawings, the filling pattern of closed forms, the texts and the bitmaps.

Reference point and graphical context

The Graphics library manages a unique main window. The coordinates of the reference
point of the window range from point (0, 0) at the bottom left to the upper right corner
of the window. The main functions on this window are:

• open graph, of type string -> unit, which opens a window;

• close graph, of type unit -> unit, which closes it;

• clear graph, of type unit -> unit, which clears it.

The dimensions of the graphical window are given by the functions size x and size y.

The string argument of the function open graph depends on the window system of the
machine on which the program is executed and is therefore not platform independent.
The empty string, however, opens a window with default settings. It is possible to

120 Chapter 5 : The Graphics Interface

specify the size of the window: under X-Windows, " 200x300" yields a window which
is 200 pixels wide and 300 pixels high. Beware, the space at the beginning of the string
" 200x300" is required!

The graphical context contains a certain number of readable and/or modifiable param-
eters:

the current point: current point : unit -> int * int

moveto : int -> int -> unit

the current color: set color : color -> unit

the width of lines: set line width : int -> unit

the current character font: set font : string -> unit

the size of characters: set text size : int -> unit

Colors

Colors are represented by three bytes: each stands for the intensity value of a main color
in the RGB-model (red, green, blue), ranging from a minimum of 0 to a maximum of
255. The function rgb (of type int -> int -> int -> color) allows the generation
of a new color from these three components. If the three components are identical,
the resulting color is a gray which is more or less intense depending on the intensity
value. Black corresponds to the minimum intensity of each component (0 0 0) and
white is the maximum (255 255 255). Certain colors are predefined: black, white,
red, green, blue, yellow, cyan and magenta.

The variables foreground and background correspond to the color of the fore- and
the background respectively. Clearing the screen is equivalent to filling the screen with
the background color.

A color (a value of type color) is in fact an integer which can be manipulated to,
for example, decompose the color into its three components (from rgb) or to apply a
function to it that inverts it (inv color).
(* color == R * 256 * 256 + G * 256 + B *)

let from rgb (c : Graphics.color) =

let r = c / 65536 and g = c / 256 mod 256 and b = c mod 256

in (r,g,b); ;

val from_rgb : Graphics.color -> int * int * int = <fun>

let inv color (c : Graphics.color) =

let (r,g,b) = from rgb c

in Graphics.rgb (255-r) (255-g) (255-b); ;

val inv_color : Graphics.color -> Graphics.color = <fun>

The function point color, of type int -> int -> color, returns the color of a point
when given its coordinates.

Graphical display 121

Drawing and filling

A drawing function draws a line on the screen. The line is of the current width and
color. A filling function fills a closed form with the current color. The various line- and
filling functions are presented in figure 5.1.

drawing filling type
plot int -> int -> unit

lineto int -> int -> unit

fill rect int -> int -> int -> int -> unit

fill poly (int * int) array -> unit

draw arc fill arc int -> int -> int -> int -> int -> unit

draw ellipse fill ellipse int -> int -> int -> int -> unit

draw circle fill circle int -> int -> int -> unit

Figure 5.1: Drawing- and filling functions.

Beware, the function lineto changes the position of the current point to make drawing
of vertices more convenient.

Drawing polygons To give an example, we add drawing primitives which are not
predefined. A polygon is described by a table of its vertices.
let draw rect x0 y0 w h =

let (a,b) = Graphics.current point ()

and x1 = x0+w and y1 = y0+h

in

Graphics.moveto x0 y0;

Graphics.lineto x0 y1; Graphics.lineto x1 y1;

Graphics.lineto x1 y0; Graphics.lineto x0 y0;

Graphics.moveto a b; ;

val draw_rect : int -> int -> int -> int -> unit = <fun>

let draw poly r =

let (a,b) = Graphics.current point () in

let (x0,y0) = r.(0) in Graphics.moveto x0 y0;

for i = 1 to (Array.length r)-1 do

let (x,y) = r.(i) in Graphics.lineto x y

done;

Graphics.lineto x0 y0;

Graphics.moveto a b; ;

val draw_poly : (int * int) array -> unit = <fun>

122 Chapter 5 : The Graphics Interface

Please note that these functions take the same arguments as the predefined ones for
filling forms. Like the other functions for drawing forms, they do not change the current
point.

Illustrations in the painter’s model This example generates an illustration of a
token ring network (figure 5.2). Each machine is represented by a small circle. We place
the set of machines on a big circle and draw a line between the connected machines.
The current position of the token in the network is indicated by a small black disk.

The function net points generates the coordinates of the machines in the network.
The resulting data is stored in a table.
let pi = 3.1415927; ;

val pi : float = 3.1415927

let net points (x,y) l n =

let a = 2. *. pi /. (float n) in

let rec aux (xa,ya) i =

if i > n then []

else

let na = (float i) *. a in

let x1 = xa + (int of float (cos(na) *. l))

and y1 = ya + (int of float (sin(na) *. l)) in

let np = (x1,y1) in

np :: (aux np (i+1))

in Array.of list (aux (x,y) 1); ;

val net_points : int * int -> float -> int -> (int * int) array = <fun>

The function draw net displays the connections, the machines and the token.
let draw net (x,y) l n sc st =

let r = net points (x,y) l n in

draw poly r;

let draw machine (x,y) =

Graphics.set color Graphics.background;

Graphics.fill circle x y sc;

Graphics.set color Graphics.foreground;

Graphics.draw circle x y sc

in

Array.iter draw machine r;

Graphics.fill circle x y st; ;

val draw_net : int * int -> float -> int -> int -> int -> unit = <fun>

The following function call corresponds to the left drawing in figure 5.2.
draw net (140,20) 60.0 10 10 3; ;

- : unit = ()

save screen "IMAGES/tokenring.caa"; ;

Graphical display 123

- : unit = ()

We note that the order of drawing objects is important. We first plot the connections

Figure 5.2: Tokenring network.

then the nodes. The drawing of network nodes erases some part of the connecting lines.
Therefore, there is no need to calculate the point of intersection between the connection
segments and the circles of the vertices. The right illustration of figure 5.2 inverts the
order in which the objects are displayed. We see that the segments appear inside of
the circles representing the nodes.

Text

The functions for displaying texts are rather simple. The two functions draw char (of
type char -> unit) and draw string (of type string -> unit) display a character
and a character string respectively at the current point. After displaying, the latter is
modified. These functions do not change the current font and its current size.

Note
The displaying of strings may differ depending on the graphical interface.

The function text size takes a string as input and returns a pair of integers that
correspond to the dimensions of this string when it is displayed in the current font and
size.

Displaying strings vertically This example describes the function draw string v,
which displays a character string vertically at the current point. It is used in figure 5.3.
Each letter is displayed separately by changing the vertical coordinate.
let draw string v s =

124 Chapter 5 : The Graphics Interface

let (xi,yi) = Graphics.current point ()

and l = String.length s

and (_,h) = Graphics.text size s

in

Graphics.draw char s.[0];

for i=1 to l-1 do

let (_,b) = Graphics.current point ()

in Graphics.moveto xi (b-h);

Graphics.draw char s.[i]

done;

let (a,_) = Graphics.current point () in Graphics.moveto a yi; ;

val draw_string_v : string -> unit = <fun>

This function modifies the current point. After displaying, the point is placed at the
initial position offset by the width of one character.

The following program permits displaying a legend around the axes (figure 5.3)
#

Graphics.moveto 0 150; Graphics.lineto 300 150;

Graphics.moveto 2 130; Graphics.draw string "abscissa";

Graphics.moveto 150 0; Graphics.lineto 150 300;

Graphics.moveto 135 280; draw string v "ordinate"; ;

- : unit = ()

Figure 5.3: Legend around axes.

If we wish to realize vertical displaying of text, it is necessary to account for the
fact that the current point is modified by the function draw string v. To do this, we
define the function draw text v, which accepts the spacing between columns and a list
of words as parameters.

Graphical display 125

let draw text v n l =

let f s = let (a,b) = Graphics.current point ()

in draw string v s;

Graphics.moveto (a+n) b

in List.iter f l; ;

val draw_text_v : int -> string list -> unit = <fun>

If we need further text transformations like, for example, rotation, we will have to take
the bitmap of each letter and perform the rotation on this set of pixels.

Bitmaps

A bitmap may be represented by either a color matrix (color array array) or a value
of abstract type 1 image, which is declared in library Graphics. The names and types
of the functions for manipulating bitmaps are given in figure 5.4.

function type
make image color array array -> image

dump image image -> color array array

draw image image -> int -> int -> unit

get image int -> int -> int -> int -> image

blit image image -> int -> int -> unit

create image int -> int -> image

Figure 5.4: Functions for manipulating bitmaps.

The functions make image and dump image are conversion functions between types
image and color array array. The function draw image displays a bitmap starting
at the coordinates of its bottom left corner.

The other way round, one can capture a rectangular part of the screen to create an
image using the function get image and by indicating the bottom left corner and the
upper right one of the area to be captured. The function blit image modifies its first
parameter (of type image) and captures the region of the screen where the lower left
corner is given by the point passed as parameter. The size of the captured region is
the one of the image argument. The function create image allows initializing images
by specifying their size to use them with blit image.

The predefined color transp can be used to create transparent points in an image. This
makes it possible to display an image within a rectangular area only; the transparent
points do not modify the initial screen.

1. Abstract types hide the internal representation of their values. The declaration of such types will
be presented in chapter 14.

126 Chapter 5 : The Graphics Interface

Polarization of Jussieu This example inverts the color of points of a bitmap. To
do this, we use the function for color inversion presented on page 120, applying it to
each pixel of a bitmap.
let inv image i =

let inv vec = Array.map (fun c → inv color c) in

let inv mat = Array.map inv vec in

let inverted matrix = inv mat (Graphics.dump image i) in

Graphics.make image inverted matrix; ;

val inv_image : Graphics.image -> Graphics.image = <fun>

Given the bitmap jussieu, which is displayed in the left half of figure 5.5, we use the
function inv image and obtain a new “solarized” bitmap, which is displayed in the
right half of the same figure.

let f jussieu2 () = inv image jussieu1; ;

val f_jussieu2 : unit -> Graphics.image = <fun>

Figure 5.5: Inversion of Jussieu.

Example: drawing of boxes with relief patterns

In this example we will define a few utility functions for drawing boxes that carry relief
patterns. A box is a generic object that is useful in many cases. It is inscribed in a
rectangle which is characterized by a point of origin, a height and a width.

Graphical display 127

To give an impression of a box with a relief
pattern, it is sufficient to surround it with two
trapezoids in a light color and two others in a
somewhat darker shade.

color 1

color 2

color 3

Inverting the colors, one can give the im-
pression that the boxes are on top or at the
bottom.

Implementation We add the border width, the display mode (top, bottom, flat)
and the colors of its edges and of its bottom. This information is collected in a record.
type relief = Top | Bot | Flat; ;

type box config =

{ x:int; y:int; w:int; h:int; bw:int; mutable r:relief;

b1 col : Graphics.color;

b2 col : Graphics.color;

b col : Graphics.color}; ;
Only field r can be modified. We use the function draw rect defined at page 121,
which draws a rectangle.

For convenience, we define a function for drawing the outline of a box.
let draw box outline bcf col =

Graphics.set color col;

draw rect bcf.x bcf.y bcf.w bcf.h; ;

val draw_box_outline : box_config -> Graphics.color -> unit = <fun>

The function of displaying a box consists of three parts: drawing the first edge, drawing
the second edge and drawing the interior of the box.
let draw box bcf =

let x1 = bcf.x and y1 = bcf.y in

let x2 = x1+bcf.w and y2 = y1+bcf.h in

let ix1 = x1+bcf.bw and ix2 = x2-bcf.bw

and iy1 = y1+bcf.bw and iy2 = y2-bcf.bw in

let border1 g =

Graphics.set color g;

Graphics.fill poly

[| (x1,y1);(ix1,iy1);(ix2,iy1);(ix2,iy2);(x2,y2);(x2,y1) |]

128 Chapter 5 : The Graphics Interface

in

let border2 g =

Graphics.set color g;

Graphics.fill poly

[| (x1,y1);(ix1,iy1);(ix1,iy2);(ix2,iy2);(x2,y2);(x1,y2) |]

in

Graphics.set color bcf.b col;

(match bcf.r with

Top →
Graphics.fill rect ix1 iy1 (ix2-ix1) (iy2-iy1);

border1 bcf.b1 col;

border2 bcf.b2 col

| Bot →
Graphics.fill rect ix1 iy1 (ix2-ix1) (iy2-iy1);

border1 bcf.b2 col;

border2 bcf.b1 col

| Flat →
Graphics.fill rect x1 y1 bcf.w bcf.h);

draw box outline bcf Graphics.black; ;

val draw_box : box_config -> unit = <fun>

The outline of boxes is highlighted in black. Erasing a box fills the area it covers with
the background color.
let erase box bcf =

Graphics.set color bcf.b col;

Graphics.fill rect (bcf.x+bcf.bw) (bcf.y+bcf.bw)

(bcf.w-(2*bcf.bw)) (bcf.h-(2*bcf.bw)); ;

val erase_box : box_config -> unit = <fun>

Finally, we define a function for displaying a character string at the left, right or in the
middle of the box. We use the type position to describe the placement of the string.
type position = Left | Center | Right; ;

type position = | Left | Center | Right

let draw string in box pos str bcf col =

let (w, h) = Graphics.text size str in

let ty = bcf.y + (bcf.h-h)/2 in

(match pos with

Center → Graphics.moveto (bcf.x + (bcf.w-w)/2) ty

| Right → let tx = bcf.x + bcf.w - w - bcf.bw - 1 in

Graphics.moveto tx ty

| Left → let tx = bcf.x + bcf.bw + 1 in Graphics.moveto tx ty);

Graphics.set color col;

Graphics.draw string str; ;

val draw_string_in_box :

position -> string -> box_config -> Graphics.color -> unit = <fun>

Graphical display 129

Example: drawing of a game We illustrate the use of boxes by displaying the
position of a game of type “tic-tac-toe” as shown in figure 5.6. To simplify the creation
of boxes, we predefine colors.
let set gray x = (Graphics.rgb x x x); ;

val set_gray : int -> Graphics.color = <fun>

let gray1= set gray 100 and gray2= set gray 170 and gray3= set gray 240; ;

val gray1 : Graphics.color = 6579300

val gray2 : Graphics.color = 11184810

val gray3 : Graphics.color = 15790320

We define a function for creating a grid of boxes of same size.
let rec create grid nb col n sep b =

if n < 0 then []

else

let px = n mod nb col and py = n / nb col in

let nx = b.x +sep + px*(b.w+sep)

and ny = b.y +sep + py*(b.h+sep) in

let b1 = {b with x=nx; y=ny} in

b1 :: (create grid nb col (n-1) sep b); ;

val create_grid : int -> int -> int -> box_config -> box_config list = <fun>

And we create the vector of boxes:
let vb =

let b = {x=0; y=0; w=20;h=20; bw=2;

b1 col=gray1; b2 col=gray3; b col=gray2; r=Top} in

Array.of list (create grid 5 24 2 b); ;

val vb : box_config array =

[|{x=90; y=90; w=20; h=20; bw=2; r=Top; b1_col=6579300; b2_col=15790320;

b_col=11184810};

{x=68; y=90; w=20; h=20; bw=2; r=Top; b1_col=6579300; b2_col=15790320;

b_col=...};

...|]

Figure 5.6 corresponds to the following function calls:

Array.iter draw box vb;

draw string in box Center "X" vb.(5) Graphics.black;

draw string in box Center "X" vb.(8) Graphics.black;

draw string in box Center "O" vb.(12) Graphics.yellow;

draw string in box Center "O" vb.(11) Graphics.yellow; ;

- : unit = ()

130 Chapter 5 : The Graphics Interface

Figure 5.6: Displaying of boxes with text.

Animation

The animation of graphics on a screen reuses techniques of animated drawings. The
major part of a drawing does not change, only the animated part must modify the
color of its constituent pixels. One of the immediate problems we meet is the speed
of animation. It can vary depending on the computational complexity and on the
execution speed of the processor. Therefore, to be portable, an application containing
animated graphics must take into account the speed of the processor. To get smooth
rendering, it is advisable to display the animated object at the new position, followed
by the erasure of the old one and taking special care with the intersection of the old
and new regions.

Moving an object We simplify the problem of moving an object by choosing ob-
jects of a simple shape, namely rectangles. The remaining difficulty is knowing how to
redisplay the background of the screen once the object has been moved.

We try to make a rectangle move around in a closed space. The object moves at a
certain speed in directions X and Y. When it encounters a border of the graphical
window, it bounces back depending on the angle of impact. We assume a situation
without overlapping of the new and old positions of the object. The function calc pv
computes the new position and the new velocity from an old position (x,y), the size of
the object (sx,sy) and from the old speed (dx,dy), taking into account the borders
of the window.
let calc pv (x,y) (sx,sy) (dx,dy) =

let nx1 = x+dx and ny1 = y + dy

and nx2 = x+sx+dx and ny2 = y+sy+dy

and ndx = ref dx and ndy = ref dy

in

(if (nx1 < 0) || (nx2 >= Graphics.size x ()) then ndx := -dx);

Animation 131

(if (ny1 < 0) || (ny2 >= Graphics.size y ()) then ndy := -dy);

((x+ !ndx, y+ !ndy), (!ndx, !ndy)); ;

val calc_pv :

int * int -> int * int -> int * int -> (int * int) * (int * int) = <fun>

The function move rect moves the rectangle given by pos and size n times, the
trajectory being indicated by its speed and by taking into account the borders of the
space. The trace of movement which one can see in figure 5.7 is obtained by inversion
of the corresponding bitmap of the displaced rectangle.
let move rect pos size speed n =

let (x, y) = pos and (sx,sy) = size in

let mem = ref (Graphics.get image x y sx sy) in

let rec move aux x y speed n =

if n = 0 then Graphics.moveto x y

else

let ((nx,ny),n speed) = calc pv (x,y) (sx,sy) speed

and old mem = !mem in

mem := Graphics.get image nx ny sx sy;

Graphics.set color Graphics.blue;

Graphics.fill rect nx ny sx sy;

Graphics.draw image (inv image old mem) x y;

move aux nx ny n speed (n-1)

in move aux x y speed n; ;

val move_rect : int * int -> int * int -> int * int -> int -> unit = <fun>

The following code corresponds to the drawings in figure 5.7. The first is obtained on
a uniformly red background, the second by moving the rectangle across the image of
Jussieu.

let anim rect () =

Graphics.moveto 105 120;

Graphics.set color Graphics.white;

Graphics.draw string "Start";

move rect (140,120) (8,8) (8,4) 150;

let (x,y) = Graphics.current point () in

Graphics.moveto (x+13) y;

Graphics.set color Graphics.white;

Graphics.draw string "End"; ;

val anim_rect : unit -> unit = <fun>

anim rect () ; ;

- : unit = ()

The problem was simplified, because there was no intersection between two successive
positions of the moved object. If this is not the case, it is necessary to write a function
that computes this intersection, which can be more or less complicated depending on

132 Chapter 5 : The Graphics Interface

Figure 5.7: Moving an object.

the form of the object. In the case of a square, the intersection of two squares yields a
rectangle. This intersection has to be removed.

Events

The handling of events produced in the graphical window allows interaction between
the user and the program. Graphics supports the treating of events like keystrokes,
mouse clicks and movements of the mouse.

The programming style therefore changes the organization of the program. It becomes
an infinite loop waiting for events. After handling each newly triggered event, the pro-
gram returns to the infinite loop except for events that indicate program termination.

Types and functions for events

The main function for waiting for events is wait next event of type event list ->

status.

The different events are given by the sum type event.
type event = Button down | Button up | Key pressed | Mouse motion | Poll; ;

The four main values correspond to pressing and to releasing a mouse button, to
movement of the mouse and to keystrokes. Waiting for an event is a blocking operation
except if the constructor Poll is passed in the event list. This function returns a value
of type status:
type status =

{ mouse x : int;

mouse y : int;

Events 133

button : bool;

keypressed : bool;

key : char}; ;

This is a record containing the position of the mouse, a Boolean which indicates whether
a mouse button is being pressed, another Boolean for the keyboard and a character
which corresponds to the pressed key. The following functions exploit the data con-
tained in the event record:

• mouse pos: unit -> int * int: returns the position of the mouse with respect
to the window. If the mouse is placed elsewhere, the coordinates are outside the
borders of the window.

• button down: unit -> bool: indicates pressing of a mouse button.

• read key: unit -> char: fetches a character typed on the keyboard; this oper-
ation blocks.

• key pressed: unit -> bool: indicates whether a key is being pressed on the
keyboard; this operation does not block.

The handling of events supported by Graphics is indeed minimal for developing inter-
active interfaces. Nevertheless, the code is portable across various graphical systems
like Windows, MacOS or X-Windows. This is the reason why this library does not take
into account different mouse buttons. In fact, the Mac does not even possess more than
one. Other events, such as exposing a window or changing its size are not accessible
and are left to the control of the library.

Program skeleton

All programs implementing a graphical user interface make use of a potentially infinite
loop waiting for user interaction. As soon as an action arrives, the program executes
the job associated with this action. The following function possesses five parameters
of functionals. The first two serve for starting and closing the application. The next
two arguments handle keyboard and mouse events. The last one permits handling of
exceptions that escape out of the different functions of the application. We assume that
the events associated with terminating the application raise the exception End.
exception End; ;

exception End

let skel f init f end f key f mouse f except =

f init () ;

try

while true do

try

let s = Graphics.wait next event

[Graphics.Button down; Graphics.Key pressed]

in if s.Graphics.keypressed then f key s.Graphics.key

else if s.Graphics.button

then f mouse s.Graphics.mouse x s.Graphics.mouse y

134 Chapter 5 : The Graphics Interface

with

End → raise End

| e → f except e

done

with

End → f end () ; ;

val skel :

(unit -> ’a) ->

(unit -> unit) ->

(char -> unit) -> (int -> int -> unit) -> (exn -> unit) -> unit = <fun>

Here, we use the skeleton to implement a mini-editor. Touching a key displays the
typed character. A mouse click changes the current point. The character ’&’ exits the
program. The only difficulty in this program is line breaking. We assume as simplifi-
cation that the height of characters does not exceed twelve pixels.
let next line () =

let (x,y) = Graphics.current point ()

in if y>12 then Graphics.moveto 0 (y-12)

else Graphics.moveto 0 y; ;

val next_line : unit -> unit = <fun>

let handle char c = match c with

’&’ → raise End

| ’\n’ → next line ()

| ’\r’ → next line ()

| _ → Graphics.draw char c; ;

val handle_char : char -> unit = <fun>

let go () = skel

(fun () → Graphics.clear graph () ;

Graphics.moveto 0 (Graphics.size y () -12))

(fun () → Graphics.clear graph ())

handle char

(fun x y → Graphics.moveto x y)

(fun e → ()); ;

val go : unit -> unit = <fun>

This program does not handle deletion of characters by pressing the key DEL.

Example: telecran

Telecran is a little drawing game for training coordination of movements. A point
appears on a slate. This point can be moved in directions X and Y by using two
control buttons for these axes without ever releasing the pencil. We try to simulate
this behavior to illustrate the interaction between a program and a user. To do this
we reuse the previously described skeleton. We will use certain keys of the keyboard
to indicate movement along the axes.

Events 135

We first define the type state, which is a record describing the size of the slate in
terms of the number of positions in X and Y, the current position of the point and the
scaling factor for visualization, the color of the trace, the background color and the
color of the current point.
type state = {maxx:int; maxy:int; mutable x : int; mutable y :int;

scale:int;

bc : Graphics.color;

fc: Graphics.color; pc : Graphics.color}; ;

The function draw point displays a point given its coordinates, the scaling factor and
its color.
let draw point x y s c =

Graphics.set color c;

Graphics.fill rect (s*x) (s*y) s s; ;

val draw_point : int -> int -> int -> Graphics.color -> unit = <fun>

All these functions for initialization, handling of user interaction and exiting the pro-
gram receive a parameter corresponding to the state. The first four functions are defined
as follows:
let t init s () =

Graphics.open graph (" " ^ (string of int (s.scale*s.maxx)) ^

"x" ^ (string of int (s.scale*s.maxy)));

Graphics.set color s.bc;

Graphics.fill rect 0 0 (s.scale*s.maxx+1) (s.scale*s.maxy+1);

draw point s.x s.y s.scale s.pc; ;

val t_init : state -> unit -> unit = <fun>

let t end s () =

Graphics.close graph () ;

print string "Good bye..."; print newline () ; ;

val t_end : ’a -> unit -> unit = <fun>

let t mouse s x y = () ; ;

val t_mouse : ’a -> ’b -> ’c -> unit = <fun>

let t except s ex = () ; ;

val t_except : ’a -> ’b -> unit = <fun>

The function t init opens the graphical window and displays the current point, t end
closes this window and displays a message, t mouse and t except do not do anything.
The program handles neither mouse events nor exceptions which may accidentally arise
during program execution. The important function is the one for handling the keyboard
t key:
let t key s c =

draw point s.x s.y s.scale s.fc;

(match c with

’8’ → if s.y < s.maxy then s.y <- s.y + 1;

| ’2’ → if s.y > 0 then s.y <- s.y - 1

136 Chapter 5 : The Graphics Interface

| ’4’ → if s.x > 0 then s.x <- s.x - 1

| ’6’ → if s.x < s.maxx then s.x <- s.x + 1

| ’c’ → Graphics.set color s.bc;

Graphics.fill rect 0 0 (s.scale*s.maxx+1) (s.scale*s.maxy+1);

Graphics.clear graph ()

| ’e’ → raise End

| _ → ());

draw point s.x s.y s.scale s.pc; ;

val t_key : state -> char -> unit = <fun>

It displays the current point in the color of the trace. Depending on the character
passed, it modifies, if possible, the coordinates of the current point (characters: ’2’,
’4’, ’6’, ’8’), clears the screen (character: ’c’) or raises the exception End (character:
’e’), then it displays the new current point. Other characters are ignored. The choice
of characters for moving the cursor comes from the layout of the numeric keyboard:
the chosen keys correspond to the indicated digits and to the direction arrows. It is
therefore useful to activate the numeric keyboard for the ergonomics of the program.

We finally define a state and apply the skeleton function in the following way:
let stel = {maxx=120; maxy=120; x=60; y=60;

scale=4; bc=Graphics.rgb 130 130 130;

fc=Graphics.black; pc=Graphics.red}; ;
val stel : state =

{maxx=120; maxy=120; x=60; y=60; scale=4; bc=8553090; fc=0; pc=16711680}

let slate () =

skel (t init stel) (t end stel) (t key stel)

(t mouse stel) (t except stel); ;

val slate : unit -> unit = <fun>

Calling function slate displays the graphical window, then it waits for user interaction
on the keyboard. Figure 5.8 shows a drawing created with this program.

A Graphical Calculator

Let’s consider the calculator example as described in the preceding chapter on imper-
ative programming (see page 86). We will give it a graphical interface to make it more
usable as a desktop calculator.

The graphical interface materializes the set of keys (digits and functions) and an area
for displaying results. Keys can be activated using the graphical interface (and the
mouse) or by typing on the keyboard. Figure 5.9 shows the interface we are about to
construct.

We reuse the functions for drawing boxes as described on page 126. We define the
following type:

A Graphical Calculator 137

Figure 5.8: Telecran.

Figure 5.9: Graphical calculator.

type calc state =

{ s : state; k : (box config * key * string) list; v : box config } ; ;

It contains the state of the calculator, the list of boxes corresponding to the keys
and the visualization box. We plan to construct a calculator that is easily modifiable.
Therefore, we parameterize the construction of the interface with an association list:
let descr calc =

[(Digit 0,"0"); (Digit 1,"1"); (Digit 2,"2"); (Equals, "=");

(Digit 3,"3"); (Digit 4,"4"); (Digit 5,"5"); (Plus, "+");

138 Chapter 5 : The Graphics Interface

(Digit 6,"6"); (Digit 7,"7"); (Digit 8,"8"); (Minus, "-");

(Digit 9,"9"); (Recall,"RCL"); (Div, "/"); (Times, "*");

(Off,"AC"); (Store, "STO"); (Clear,"CE/C")

] ; ;

Generation of key boxes At the beginning of this description we construct a list
of key boxes. The function gen boxes takes as parameters the description (descr),
the number of the column (n), the separation between boxes (wsep), the separation
between the text and the borders of the box (wsepint) and the size of the board
(wbord). This function returns the list of key boxes as well as the visualization box.
To calculate these placements, we define the auxiliary functions max xy for calculating
the maximal size of a list of complete pairs and max lbox for calculating the maximal
positions of a list of boxes.
let gen xy vals comp o =

List.fold left (fun a (x,y) → comp (fst a) x,comp (snd a) y) o vals ; ;

val gen_xy : (’a * ’a) list -> (’b -> ’a -> ’b) -> ’b * ’b -> ’b * ’b = <fun>

let max xy vals = gen xy vals max (min int,min int); ;

val max_xy : (int * int) list -> int * int = <fun>

let max boxl l =

let bmax (mx,my) b = max mx b.x, max my b.y

in List.fold left bmax (min int,min int) l ; ;

val max_boxl : box_config list -> int * int = <fun>

Here is the principal function gen boxes for creating the interface.
let gen boxes descr n wsep wsepint wbord =

let l l = List.length descr in

let nb lig = if l l mod n = 0 then l l / n else l l / n + 1 in

let ls = List.map (fun (x,y) → Graphics.text size y) descr in

let sx,sy = max xy ls in

let sx,sy= sx+wsepint ,sy+wsepint in

let r = ref [] in

for i=0 to l l-1 do

let px = i mod n and py = i / n in

let b = { x = wsep * (px+1) + (sx+2*wbord) * px ;

y = wsep * (py+1) + (sy+2*wbord) * py ;

w = sx; h = sy ; bw = wbord;

r=Top;

b1 col = gray1; b2 col = gray3; b col =gray2}
in r:= b::!r

done;

let mpx,mpy = max boxl !r in

let upx,upy = mpx+sx+wbord+wsep,mpy+sy+wbord+wsep in

let (wa,ha) = Graphics.text size " 0" in

let v = { x=(upx-(wa+wsepint +wbord))/2 ; y= upy+ wsep;

w=wa+wsepint; h = ha +wsepint; bw = wbord *2; r=Flat ;

A Graphical Calculator 139

b1 col = gray1; b2 col = gray3; b col =Graphics.black}
in

upx,(upy+wsep+ha+wsepint+wsep+2*wbord),v,

List.map2 (fun b (x,y) → b,x,y) (List.rev !r) descr; ;

val gen_boxes :

(’a * string) list ->

int ->

int ->

int -> int -> int * int * box_config * (box_config * ’a * string) list =

<fun>

Interaction Since we would also like to reuse the skeleton proposed on page 133
for interaction, we define the functions for keyboard and mouse control, which are
integrated in this skeleton. The function for controlling the keyboard is very simple. It
passes the translation of a character value of type key to the function transition of
the calculator and then displays the text associated with the calculator state.
let f key cs c =

transition cs.s (translation c);

erase box cs.v;

draw string in box Right (string of int cs.s.vpr) cs.v Graphics.white ; ;

val f_key : calc_state -> char -> unit = <fun>

The control of the mouse is a bit more complex. It requires verification that the position
of the mouse click is actually in one of the key boxes. For this we first define the auxiliary
function mem, which verifies membership of a position within a rectangle.
let mem (x,y) (x0,y0,w,h) =

(x >= x0) && (x< x0+w) && (y>=y0) && (y<y0+h); ;

val mem : int * int -> int * int * int * int -> bool = <fun>

let f mouse cs x y =

try

let b,t,s =

List.find (fun (b,_,_) →
mem (x,y) (b.x+b.bw,b.y+b.bw,b.w,b.h)) cs.k

in

transition cs.s t;

erase box cs.v;

draw string in box Right (string of int cs.s.vpr) cs.v Graphics.white

with Not found → () ; ;

val f_mouse : calc_state -> int -> int -> unit = <fun>

The function f mouse looks whether the position of the mouse during the click is really-
dwell within one of the boxes corresponding to a key. If it is, it passes the corresponding
key to the transition function and displays the result, otherwise it will not do anything.

140 Chapter 5 : The Graphics Interface

The function f exc handles the exceptions which can arise during program execution.
let f exc cs ex =

match ex with

Division by zero →
transition cs.s Clear;

erase box cs.v;

draw string in box Right "Div 0" cs.v (Graphics.red)

| Invalid key → ()

| Key off → raise End

| _ → raise ex; ;

val f_exc : calc_state -> exn -> unit = <fun>

In the case of a division by zero, it restarts in the initial state of the calculator and
displays an error message on its screen. Invalid keys are simply ignored. Finally, the
exception Key off raises the exception End to terminate the loop of the skeleton.

Initialization and termination The initialization of the calculator requires calcu-
lation of the window size. The following function creates the graphical information of
the boxes from a key/text association and returns the size of the principal window.
let create e k =

Graphics.close graph () ;

Graphics.open graph " 10x10";

let mx,my,v,lb = gen boxes k 4 4 5 2 in

let s = {lcd=0; lka = false; loa = Equals; vpr = 0; mem = 0} in

mx,my,{s=s; k=lb;v=v}; ;
val create_e : (key * string) list -> int * int * calc_state = <fun>

The initialization function makes use of the result of the preceding function.
let f init mx my cs () =

Graphics.close graph () ;

Graphics.open graph (" "^(string of int mx)^"x"^(string of int my));

Graphics.set color gray2;

Graphics.fill rect 0 0 (mx+1) (my+1);

List.iter (fun (b,_,_) → draw box b) cs.k;

List.iter

(fun (b,_,s) → draw string in box Center s b Graphics.black) cs.k ;

draw box cs.v;

erase box cs.v;

draw string in box Right "hello" cs.v (Graphics.white); ;

val f_init : int -> int -> calc_state -> unit -> unit = <fun>

Finally the termination function closes the graphical window.
let f end e () = Graphics.close graph () ; ;

val f_end : ’a -> unit -> unit = <fun>

Exercises 141

The function go is parameterized by a description and starts the interactive loop.
let go descr =

let mx,my,e = create e descr in

skel (f init mx my e) (f end e) (f key e) (f mouse e) (f exc e); ;

val go : (key * string) list -> unit = <fun>

The call to go descr calc corresponds to the figure 5.9.

Exercises

Polar coordinates

Coordinates as used in the library Graphics are Cartesian. There a line segment is
represented by its starting point (x0,y0) and its end point (x1,y1). It can be useful
to use polar coordinates instead. Here a line segment is described by its point of origin
(x0,y0), a length (radius) (r) and an angle (a). The relation between Cartesian and
Polar coordinates is defined by the following equations:

{
x1 = x0 + r ∗ cos(a)
y1 = y0 + r ∗ sin(a)

The following type defines the polar coordinates of a line segment:
type seg pol = {x:float; y:float; r:float; a:float}; ;
type seg_pol = { x: float; y: float; r: float; a: float }

1. Write the function to cart that converts polar coordinates to Cartesian ones.

2. Write the function draw seg which displays a line segment defined by polar
coordinates in the reference point of Graphics.

3. One of the motivations behind polar coordinates is to be able to easily apply
transformations to line segments. A translation only modifies the point of origin,
a rotation only affects the angle field and modifying the scale only changes the
length field. Generally, one can represent a transformation as a triple of floats:
the first represents the translation (we do not consider the case of translating
the second point of the line segment here), the second the rotation and the third
the scaling factor. Define the function app trans which takes a line segment in
polar coordinates and a triple of transformations and returns the new segment.

4. One can construct recursive drawings by iterating transformations. Write the
function draw r which takes as arguments a line segment s, a number of itera-
tions n, a list of transformations and displays all the segments resulting from the
transformations on s iterated up to n.

5. Verify that the following program does produce the images in figure 5.10.
let pi = 3.1415927 ; ;

142 Chapter 5 : The Graphics Interface

let s = {x=100.; y= 0.; a= pi /. 2.; r = 100.} ; ;

draw r s 6 [(-.pi/.2.),0.6,1.; (pi/.2.), 0.6,1.0] ; ;

Graphics.clear graph () ; ;

draw r s 6 [(-.pi /. 6.), 0.6, 0.766;

(-.pi /. 4.), 0.55, 0.333;

(pi /. 3.), 0.4, 0.5] ; ;

Figure 5.10: Recursive drawings.

Bitmap editor

We will attempt to write a small bitmap editor (similar to the command bitmap in
X-window). For this we represent a bitmap by its dimensions (width and height), the
pixel size and a two-dimensional table of booleans.

1. Define a type bitmap state describing the information necessary for containing
the values of the pixels, the size of the bitmap and the colors of displayed and
erased points.

2. Write a function for creating bitmaps (create bitmap) and for displaying bitmaps
(draw bitmap) .

3. Write the functions read bitmap and write bitmap which respectively read
and write in a file passed as parameter following the ASCII format of X-window.
If the file does not exist, the function for reading creates a new bitmap using the
function create bitmap. A displayed pixel is represented by the character #, the
absence of a pixel by the character -. Each line of characters represents a line of
the bitmap. One can test the program using the functions atobm and bmtoa of
X-window, which convert between this ASCII format and the format of bitmaps
created by the command bitmap. Here is an example.
###################-------------#######---------######

###################---------------###-------------##--

###-----###-----###---------------###-------------#---

##------###------##----------------###-----------##---

#-------###-------#-----------------###---------##----

Exercises 143

#-------###-------#-----------------###--------##-----

--------###--------------------------###-------#------

--------###-------###############-----###----##-------

--------###-------###---------###------###--##--------

--------###-------###----------##-------###-#---------

--------###-------###-----------#-------#####---------

--------###-------###-----------#--------###----------

--------###-------###--------------------####---------

--------###-------###--------------------####---------

--------###-------###------#-----------##---###-------

--------###-------###------#----------##----###-------

--------###-------##########----------#------###------

--------###-------##########---------##-------###-----

--------###-------###------#--------##--------###-----

--------###-------###------#-------##----------###----

--------###-------###--------------#------------###---

------#######-----###-----------#######--------#######

------------------###---------------------------------

------------------###-----------#---------------------

------------------###-----------#---------------------

------------------###----------##---------------------

------------------###---------###---------------------

------------------###############---------------------

4. We reuse the skeleton for interactive loops on page 133 to construct the graph-
ical interface of the editor. The human-computer interface is very simple. The
bitmap is permanently displayed in the graphical window. A mouse click in one
of the slots of the bitmap inverts its color. This change is reflected on the screen.
Pressing the key ’S’ saves the bitmap in a file. The key ’Q’ terminates the pro-
gram.
• Write a function start of type bitmap state -> unit -> unit which

opens a graphical window and displays the bitmap passed as parameter.
• Write a function stop that closes the graphical window and exits the pro-

gram.
• Write a function mouse of type bitmap state -> int -> int -> unit

which modifies the pixel state corresponding to the mouse click and displays
the change.

• Write a function key of type string -> bitmap state -> char -> unit

which takes as arguments the name of a file, a bitmap and the char of the
pressed key and executes the associated actions: saving to a file for the key
’S’ and raising of the exception End for the key ’Q’.

5. Write a function go which takes the name of a file as parameter, loads the
bitmap, displays it and starts the interactive loop.

Earth worm

The earth worm is a small, longish organism of a certain size which grows over time
while eating objects in a world. The earth worm moves constantly in one direction.
The only actions allowing a player to control it are changes in direction. The earth
worm vanishes if it touches a border of the world or if it passes over a part of its body.
It is most often represented by a vector of coordinates with two principal indices: its
head and its tail. A move will therefore be computed from the new coordinates of its
head, will display it and erase the tail. A growth step only modifies its head without
affecting the tail of the earth worm.

1. Write the Objective Caml type or types for representing an earth worm and
the world where it evolves. One can represent an earth worm by a queue of its
coordinates.

144 Chapter 5 : The Graphics Interface

2. Write a function for initialization and displaying an earth worm in a world.

3. Modify the function skel of the skeleton of the program which causes an ac-
tion at each execution of the interactive loop, parameterized by a function. The
treatment of keyboard events must not block.

4. Write a function run which advances the earth worm in the game. This function
raises the exception Victory (if the worm reaches a certain size) and Loss if it
hits a full slot or a border of the world.

5. Write a function for keyboard interaction which modifies the direction of the
earth worm.

6. Write the other utility functions for handling interaction and pass them to the
new skeleton of the program.

7. Write the initiating function which starts the application.

Summary

This chapter has presented the basic notions of graphics programming and event-driven
programming using the Graphics library in the distribution of Objective Caml. Af-
ter having explained the basic graphical elements (colors, drawing, filling, text and
bitmaps) we have approached the problem of animating them. The mechanism of han-
dling events in Graphics was then described in a way that allowed the introduction of
a general method of handling user interaction. This was accomplished by taking a game
as model for event-driven programming. To improve user interactions and to provide
interactive graphical components to the programmer, we have developed a new library
called Awi, which facilitates the construction of graphical interfaces. This library was
used for writing the interface to the imperative calculator.

To learn more

Although graphics programming is naturally event-driven, the associated style of pro-
gramming being imperative, it is not only possible but also often useful to introduce
more functional operators to manipulate graphical objects. A good example comes
from the use of the MLgraph library,

Link: http://www.pps.jussieu.fr/˜cousinea/MLgraph/mlgraph.html

which implements the graphical model of PostScript and proposes functional operators
to manipulate images. It is described in [CC92, CS94] and used later in [CM98] for the
optimized placement of trees to construct drawings in the style of Escher.

One interesting characteristic of the Graphics library is that it is portable to the
graphical interfaces of Windows, MacOS and Unix. The notion of virtual bitmaps can
be found in several languages like Le Lisp and more recently in Java. Unfortunately,
the Graphics library in Objective Caml does not possess interactive components for

To learn more 145

the construction of interfaces. One of the applications described in part II of this book
contains the first bricks of the Awi library. It is inspired by the Abstract Windowing
Toolkit of the first versions of Java. One can perceive that it is relatively easy to extend
the functionality of this library thanks to the existence of functional values in the lan-
guage. Therefore chapter 16 compares the adaptation of object oriented programming
and functional and modular programming for the construction of graphical interfaces.
The example of Awi is functional and imperative, but it is also possible to only use
the functional style. This is typically the case for purely functional languages. We cite
the systems Fran and Fudget developed in Haskell and derivatives. The system Fran
permits construction of interactive animations in 2D and 3D, which means with events
between animated objects and the user.

Link: http://www.research.microsoft.com/˜conal/fran/

The Fudget library is intended for the construction of graphical interfaces.

Link: http://www.cs.chalmers.se/ComputingScience/Research/Functional/Fudgets/

One of the difficulties when one wants to program a graphical interface for ones appli-
cation is to know which of the numerous existing libraries to choose. It is not sufficient
to determine the language and the system to fix the choice of the tool. For Objective
Caml there exist several more or less complete ones:

• the encapsulation of libX, for X-Windows;

• the librt library, also for X-Windows;

• ocamltk, an adaptation of Tcl/Tk, portable;

• mlgtk, an adaptation of Gtk, portable.

We find the links to these developments in the “Caml Hump”:

Link: http://caml.inria.fr/hump.html

Finally, we have only discussed programming in 2D. The tendency is to add one dimen-
sion. Functional languages must also respond to this necessity, perhaps in the model
of VRML or the Java 3D-extension. In purely functional languages the system Fran
offers interesting possibilities of interaction between sprites. More closely to Objective
Caml one can use the VRcaML library or the development environment SCOL.

The VRcaML library was developed in the manner of MLgraph and integrates a part of
the graphical model of VRML in Objective Caml.

Link: http://www.pps.jussieu.fr/˜emmanuel/Public/enseignement/VRcaML

One can therefore construct animated scenes in 3D. The result is a VRML-file that
can be directly visualized.

Still in the line of Caml, the language SCOL is a functional communication language
with important libraries for 2D and 3D manipulations, which is intended as environ-
ment for people with little knowledge in computer science.

146 Chapter 5 : The Graphics Interface

Link: http://www.cryo-networks.com

The interest in the language SCOL and its development environment is to be able
to create distributed applications, e.g. client-server, thus facilitating the creation of
Internet sites. We present distributed programming in Objective Caml in chapter 20.

