
6
Applications

The reason to prefer one programming language over another lies in the ease of de-
veloping and maintaining robust applications. Therefore, we conclude the first part of
this book, which dealt with a general presentation of the Objective Caml language, by
demonstrating its use in a number of applications.

The first application implements a few functions which are used to write database
queries. We emphasize the use of list manipulations and the functional programming
style. The user has access to a set of functions with which it is easy to write and
run queries using the Objective Caml language directly. This application shows the
programmer how he can easily provide the user with most of the query tools that the
user should need.

The second application is an interpreter for a tiny BASIC1. This kind of imperative
language fueled the success of the first microcomputers. Twenty years later, they seem
to be very easy to design. Although BASIC is an imperative language, the implemen-
tation of the interpreter uses the functional features of Objective Caml, especially for
the evaluation of commands. Nevertheless, the lexer and parser for the language use a
mutable structure.

The third application is a one-player game, Minesweeper, which is fairly well-known
since it is bundled with the standard installation of Windows systems. The goal of
the game is to uncover a bunch of hidden mines by repeatedly uncovering a square,
which then indicates the number of mines around itself. The implementation uses the
imperative features of the language, since the data structure used is a two-dimensional
array which is modified after each turn of the game. This application uses the Graphics
module to draw the game board and to interact with the player. However, the automatic
uncovering of some squares will be written in a more functional style.
This latter application uses functions from the Graphics module described in chapter

1. which means “Beginner’s All purpose Symbolic Instruction Code”.

148 Chapter 6 : Applications

5 (see page 117) as well as some functions from the Random and Sys modules (see
chapter 8, pages 216 and 234).

Database queries

The implementation of a database, its interface, and its query language is a project far
too ambitious for the scope of this book and for the Objective Caml knowledge of the
reader at this point. However, restricting the problem and using the functional pro-
gramming style at its best allows us to create an interesting tool for query processing.
For instance, we show how to use iterators as well as partial application to formulate
and execute queries. We also show the use of a data type encapsulating functional
values.

For this application, we use as an example a database on the members of an association.
It is presumed to be stored in the file association.dat.

Data format

Most database programs use a “proprietary” format to store the data they manipulate.
However, it is usually possible to store the data as some text that has the following
structure:

• the database is a list of cards separated by carriage-returns;

• each card is a list of fields separated by some given character, ’:’ in our case;

• a field is a string which contains no carriage-return nor the character ’:’;

• the first card is the list of the names associated with the fields, separated by the
character ’|’.

The association data file starts with:

Num|Lastname|Firstname|Address|Tel|Email|Pref|Date|Amount

0:Chailloux:Emmanuel:Université P6:0144274427:ec@lip6.fr:email:25.12.1998:100.00

1:Manoury:Pascal:Laboratoire PPS::pm@lip6.fr:mail:03.03.1997:150.00

2:Pagano:Bruno:Cristal:0139633963::mail:25.12.1998:150.00

3:Baro:Sylvain::0144274427:baro@pps.fr:email:01.03.1999:50.00

The meaning of the fields is the following:

• Num is the member number;

• Lastname, Firstname, Address, Tel, and Email are obvious;

• Pref indicates the means by which the member wishes to be contacted: by mail
(mail), by email (email), or by phone (tel);

• Date and Amount are the date and the amount of the last membership fee received,
respectively.

Database queries 149

We need to decide what represention the program should use internally for a database.
We could use either a list of cards or an array of cards. On the one hand, a list has
the nice property of being easily modified: adding and removing a card are simple
operations. On the other hand, an array allows constant access time to any card. Since
our goal is to work on all the cards and not on some of them, each query accesses
all the cards. Thus a list is a good choice. The same issue arises concerning the cards
themselves: should they be lists or arrays of strings? This time an array is a good
choice, since the format of a card is fixed for the whole database. It not possible to add
a new field. Since a query might access only a few fields, it is important for this access
to be fast.

The most natural solution for a card would be to use an array indexed by the names
of the fields. Since such a type is not available in Objective Caml, we can use an array
(indexed by integers) and a function associating a field name with the array index
corresponding to the field.
type data card = string array ; ;

type data base = { card index : string → int ; data : data card list } ; ;

Access to the field named n of a card dc of the database db is implemented by the
function:
let field db n (dc : data card) = dc.(db.card index n) ; ;

val field : data_base -> string -> data_card -> string = <fun>

The type of dc has been set to data card to constrain the function field to only
accept string arrays and not arrays of other types.

Here is a small example:
let base ex =

{ data = [[|"Chailloux"; "Emmanuel"|] ; [|"Manoury"; "Pascal"|]] ;

card index = function "Lastname"→0 | "Firstname"→1

| _->raise Not found } ; ;

val base_ex : data_base =

{card_index=<fun>;

data=[[|"Chailloux"; "Emmanuel"|]; [|"Manoury"; "Pascal"|]]}

List.map (field base ex "Lastname") base ex.data ; ;

- : string list = ["Chailloux"; "Manoury"]

The expression field base ex "Lastname" evaluates to a function which takes a card
and returns the value of its "Lastname" field. The library function List.map applies
the function to each card of the database base ex, and returns the list of the results:
a list of the "Lastname" fields of the database.

This example shows how we wish to use the functional style in our program. Here, the
partial application of field allows us to define an access function for a given field,
which we can use on any number of cards. This also shows us that the implementation
of the field function is not very efficient, since although we are always accessing the
same field, its index is computed for each access. The following implementation is
better:

150 Chapter 6 : Applications

let field base name =

let i = base.card index name in fun (card : data card) → card.(i) ; ;

val field : data_base -> string -> data_card -> string = <fun>

Here, after applying the function to two arguments, the index of the field is computed
and is used for any subsequent application.

Reading a database from a file

As seen from Objective Caml, a file containing a database is just a list of lines. The
first work that needs to be done is to read each line as a string, split it into smaller
parts according to the separating character, and then extract the corresponding data
as well as the field indexing function.

Tools for processing a line

We need a function split that splits a string at every occurrence of some separating
character. This function uses the function suffix which returns the suffix of a string
s after some position i. To do this, we use three predefined functions:

• String.length returns the length of a string;

• String.sub returns the substring of s starting at position i and of length l;

• String.index from computes the position of the first occurrence of character c
in the string s, starting at position n.

let suffix s i = try String.sub s i ((String.length s)-i)

with Invalid argument("String.sub") → "" ; ;

val suffix : string -> int -> string = <fun>

let split c s =

let rec split from n =

try let p = String.index from s n c

in (String.sub s n (p-n)) :: (split from (p+1))

with Not found → [suffix s n]

in if s="" then [] else split from 0 ; ;

val split : char -> string -> string list = <fun>

The only remarkable characteristic in this implementation is the use of exceptions,
specifically the exception Not found.

Computing the data base structure There is no difficulty in creating an array
of strings from a list of strings, since this is what the of list function in the Array
module does. It might seem more complicated to compute the index function from a
list of field names, but the List module provides all the needed tools.

Database queries 151

Starting from a list of strings, we need to code a function that associates each string
with an index corresponding to its position in the list.
let mk index list names =

let rec make enum a b = if a > b then [] else a :: (make enum (a+1) b) in

let list index = (make enum 0 ((List.length list names) - 1)) in

let assoc index name = List.combine list names list index in

function name → List.assoc name assoc index name ; ;

val mk_index : ’a list -> ’a -> int = <fun>

To create the association function between field names and indexes, we combine
the list of indexes and the list of names to obtain a list of associations of the type
string * int list. To look up the index associated with a name, we use the func-
tion assoc from the List library. The function mk index returns a function that takes
a name and calls assoc on this name and the previously built association list.

It is now possible to create a function that reads a file of the given format.
let read base filename =

let channel = open in filename in

let split line = split ’:’ in

let list names = split ’|’ (input line channel) in

let rec read file () =

try

let data = Array.of list (split line (input line channel)) in

data :: (read file ())

with End of file → close in channel ; []

in

{ card index = mk index list names ; data = read file () } ; ;

val read_base : string -> data_base = <fun>

The auxiliary function read file reads records from the file, and works recursively on
the input channel. The base case of the recursion corresponds to the end of the file,
signaled by the End of file exception. In this case, the empty list is returned after
closing the channel.

The association’s file can now be loaded:
let base ex = read base "association.dat" ; ;

val base_ex : data_base =

{card_index=<fun>;

data=

[[|"0"; "Chailloux"; "Emmanuel"; "Universit\233 P6"; "0144274427";

"ec@lip6.fr"; "email"; "25.12.1998"; "100.00"|];

[|"1"; "Manoury"; "Pascal"; "Laboratoire PPS"; ...|]; ...]}

General principles for database processing

The effectiveness and difficulty of processing the data in a database is proportional to
the power and complexity of the query language. Since we want to use Objective Caml
as query language, there is no limit a priori on the requests we can express! However,

152 Chapter 6 : Applications

we also want to provide some simple tools to manipulate cards and their data. This
desire for simplicity requires us to limit the power of the Objective Caml language,
through the use of general goals and principles for database processing.

The goal of database processing is to obtain a state of the database. Building such a
state may be decomposed into three steps:

1. selecting, according to some given criterion, a set of cards;

2. processing each of the selected cards;

3. processing all the data collected on the cards.

Figure 6.1 illustrates this decomposition.

Selection of

a card
Processing

cards to process

Processing the results

Figure 6.1: Processing a request.

According to this decomposition, we need three functions of the following types:

1. (data card -> bool) -> data card list -> data card list

2. (data card -> ’a) -> data card list -> ’a list

3. (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Objective Caml provides us with three higher-order function, also known as iterators,
introduced page 219, that satisfy our specification:
List.find all ; ;

- : (’a -> bool) -> ’a list -> ’a list = <fun>

List.map ; ;

- : (’a -> ’b) -> ’a list -> ’b list = <fun>

List.fold right ; ;

- : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

We will be able to use them to implement the three steps of building a state by choosing
the functions they take as an argument.

Database queries 153

For some special requests, we will also use:
List.iter ; ;

- : (’a -> unit) -> ’a list -> unit = <fun>

Indeed, if the required processing consists only of displaying some data, there is nothing
to compute.

In the next paragraphs, we are going to see how to define functions expressing simple
selection criteria, as well as simple queries. We conclude this section with a short
example using these functions according to the principles stated above.

Selection criteria

Concretely, the boolean function corresponding to the selection criterion of a card is
a boolean combination of properties of some or all of the fields of the card. Each field
of a card, even though it is a string, can contain some information of another type: a
float, a date, etc.

Selection criteria on a field

Selecting on some field is usually done using a function of the type data base -> ’a

-> string -> data card -> bool. The ’a type parameter corresponds to the type
of the information contained in the field. The string argument corresponds to the
name of the field.

String fields We define two simple tests on strings: equality with another string,
and non-emptiness.
let eq sfield db s n dc = (s = (field db n dc)) ; ;

val eq_sfield : data_base -> string -> string -> data_card -> bool = <fun>

let nonempty sfield db n dc = ("" <> (field db n dc)) ; ;

val nonempty_sfield : data_base -> string -> data_card -> bool = <fun>

Float fields To implement tests on data of type float, it is enough to translate
the string representation of a decimal number into its float value. Here are some
examples obtained from a generic function tst ffield:
let tst ffield r db v n dc = r v (float of string (field db n dc)) ; ;

val tst_ffield :

(’a -> float -> ’b) -> data_base -> ’a -> string -> data_card -> ’b = <fun>

let eq ffield = tst ffield (=) ; ;

let lt ffield = tst ffield (<) ; ;

let le ffield = tst ffield (<=) ; ;

(* etc. *)

These three functions have type:

data base -> float -> string -> data card -> bool.

154 Chapter 6 : Applications

Dates This kind of information is a little more complex to deal with, as it depends
on the representation format of dates, and requires that we define date comparison.

We decide to represent dates in a card as a string with format dd.mm.yyyy. In order
to be able to define additional comparisons, we also allow the replacement of the
day, month or year part with the underscore character (’_’). Dates are compared
according to the lexicographic order of lists of integers of the form [year; month; day].
To express queries such as: “is before July 1998”, we use the date pattern: " .07.1998".
Comparing a date with a pattern is accomplished with the function tst dfield which
analyses the pattern to create the ad hoc comparison function. To define this generic
test function on dates, we need a few auxiliary functions.

We first code two conversion functions from dates (ints of string) and date patterns
(ints of dpat) to lists of ints. The character ’_’ of a pattern will be replaced by the
integer 0:
let split date = split ’.’ ; ;

val split_date : string -> string list = <fun>

let ints of string d =

try match split date d with

[d;m;y] → [int of string y; int of string m; int of string d]

| _ → failwith "Bad date format"

with Failure("int_of_string") → failwith "Bad date format" ; ;

val ints_of_string : string -> int list = <fun>

let ints of dpat d =

let int of stringpat = function "_" → 0 | s → int of string s

in try match split date d with

[d;m;y] → [int of stringpat y; int of stringpat m;

int of stringpat d]

| _ → failwith "Bad date format"

with Failure("int_of_string") → failwith "Bad date pattern" ; ;

val ints_of_dpat : string -> int list = <fun>

Given a relation r on integers, we now code the test function. It simply consists of
implementing the lexicographic order, taking into account the particular case of 0:
let rec app dtst r d1 d2 = match d1, d2 with

[] , [] → false

| (0 :: d1) , (_::d2) → app dtst r d1 d2

| (n1 :: d1) , (n2 :: d2) → (r n1 n2) || ((n1 = n2) && (app dtst r d1 d2))

| _, _ → failwith "Bad date pattern or format" ; ;

val app_dtst : (int -> int -> bool) -> int list -> int list -> bool = <fun>

We finally define the generic function tst dfield which takes as arguments a relation
r, a database db, a pattern dp, a field name nm, and a card dc. This function checks
that the pattern and the field from the card satisfy the relation.
let tst dfield r db dp nm dc =

Database queries 155

r (ints of dpat dp) (ints of string (field db nm dc)) ; ;

val tst_dfield :

(int list -> int list -> ’a) ->

data_base -> string -> string -> data_card -> ’a = <fun>

We now apply it to three relations.
let eq dfield = tst dfield (=) ; ;

let le dfield = tst dfield (<=) ; ;

let ge dfield = tst dfield (>=) ; ;

These three functions have type:
data base -> string -> string -> data card -> bool.

Composing criteria

The tests we have defined above all take as first arguments a database, a value, and
the name of a field. When we write a query, the value of these three arguments are
known. For instance, when we work on the database base ex, the test “is before July
1998” is written
ge dfield base ex "_.07.1998" "Date" ; ;

- : data_card -> bool = <fun>

Thus, we can consider a test as a function of type data card -> bool. We want to
obtain boolean combinations of the results of such functions applied to a given card.
To this end, we implement the iterator:
let fold funs b c fs dc =

List.fold right (fun f → fun r → c (f dc) r) fs b ; ;

val fold_funs : ’a -> (’b -> ’a -> ’a) -> (’c -> ’b) list -> ’c -> ’a = <fun>

Where b is the base value, the function c is the boolean operator, fs is the list of test
functions on a field, and dc is a card.

We can obtain the conjunction and the disjunction of a list of tests with:
let and fold fs = fold funs true (&) fs ; ;

val and_fold : (’a -> bool) list -> ’a -> bool = <fun>

let or fold fs = fold funs false (or) fs ; ;

val or_fold : (’a -> bool) list -> ’a -> bool = <fun>

We easily define the negation of a test:
let not fun f dc = not (f dc) ; ;

val not_fun : (’a -> bool) -> ’a -> bool = <fun>

For instance, we can use these combinators to define a selection function for cards
whose date field is included in a given range:
let date interval db d1 d2 =

and fold [(le dfield db d1 "Date"); (ge dfield db d2 "Date")] ; ;

val date_interval : data_base -> string -> string -> data_card -> bool =

156 Chapter 6 : Applications

<fun>

Processing and computation

It is difficult to guess how a card might be processed, or the data that would result
from that processing. Nevertheless, we can consider two common cases: numerical com-
putation and data formatting for printing. Let’s take an example for each of these two
cases.

Data formatting

In order to print, we wish to create a string containing the name of a member of the
association, followed by some information.

We start with a function that reverses the splitting of a line using a given separating
character:
let format list c =

let s = String.make 1 c in

List.fold left (fun x y → if x="" then y else x^s^y) "" ; ;

val format_list : char -> string list -> string = <fun>

In order to build the list of fields we are interested in, we code the function extract
that returns the fields associated with a given list of names in a given card:
let extract db ns dc =

List.map (fun n → field db n dc) ns ; ;

val extract : data_base -> string list -> data_card -> string list = <fun>

We can now write the line formatting function:
let format line db ns dc =

(String.uppercase (field db "Lastname" dc))

^" "^(field db "Firstname" dc)

^"\t"^(format list ’\t’ (extract db ns dc))

^"\n" ; ;

val format_line : data_base -> string list -> data_card -> string = <fun>

The argument ns is the list of requested fields. In the resulting string, fields are sepa-
rated by a tab (’\t’) and the string is terminated with a newline character.

We display the list of last and first names of all members with:
List.iter print string (List.map (format line base ex []) base ex.data) ; ;

CHAILLOUX Emmanuel

MANOURY Pascal

PAGANO Bruno

BARO Sylvain

- : unit = ()

Database queries 157

Numerical computation

We want to compute the total amount of received fees for a given set of cards. This is
easily done by composing the extraction and conversion of the correct field with the
addition. To get nicer code, we define an infix composition operator:
let (++) f g x = g (f x) ; ;

val ++ : (’a -> ’b) -> (’b -> ’c) -> ’a -> ’c = <fun>

We use this operator in the following definition:
let total db dcs =

List.fold right ((field db "Amount") ++ float of string ++ (+.)) dcs 0.0 ; ;

val total : data_base -> data_card list -> float = <fun>

We can now apply it to the whole database:
total base ex base ex.data ; ;

- : float = 450

An example

To conclude, here is a small example of an application that uses the principles described
in the paragraphs above.

We expect two kinds of queries on our database:

• a query returning two lists, the elements of the first containing the name of a
member followed by his mail address, the elements of the other containing the
name of the member followed by his email address, according to his preferences.

• another query returning the state of received fees for a given period of time. This
state is composed of the list of last and first names, dates and amounts of the
fees as well as the total amount of the received fees.

List of addresses

To create these lists, we first select the relevant cards according to the field "Pref",
then we use the formatting function format line:
let mail addresses db =

let dcs = List.find all (eq sfield db "mail" "Pref") db.data in

List.map (format line db ["Mail"]) dcs ; ;

val mail_addresses : data_base -> string list = <fun>

let email addresses db =

let dcs = List.find all (eq sfield db "email" "Pref") db.data in

List.map (format line db ["Email"]) dcs ; ;

val email_addresses : data_base -> string list = <fun>

158 Chapter 6 : Applications

State of received fees

Computing the state of the received fees uses the same technique: selection then pro-
cessing. In this case however the processing part is twofold: line formatting followed by
the computation of the total amount.
let fees state db d1 d2 =

let dcs = List.find all (date interval db d1 d2) db.data in

let ls = List.map (format line db ["Date";"Amount"]) dcs in

let t = total db dcs in

ls, t ; ;

val fees_state : data_base -> string -> string -> string list * float = <fun>

The result of this query is a tuple containing a list of strings with member information,
and the total amount of received fees.

Main program

The main program is essentially an interactive loop that displays the result of queries
asked by the user through a menu. We use here an imperative style, except for the
display of the results which uses an iterator.
let main () =

let db = read base "association.dat" in

let finished = ref false in

while not !finished do

print string" 1: List of mail addresses\n";

print string" 2: List of email addresses\n";

print string" 3: Received fees\n";

print string" 0: Exit\n";

print string"Your choice: ";

match read int () with

0 → finished := true

| 1 → (List.iter print string (mail addresses db))

| 2 → (List.iter print string (email addresses db))

| 3

→ (let d1 = print string"Start date: "; read line () in

let d2 = print string"End date: "; read line () in

let ls, t = fees state db d1 d2 in

List.iter print string ls;

print string"Total: "; print float t; print newline ())

| _ → ()

done;

print string"bye\n" ; ;

val main : unit -> unit = <fun>

This example will be extended in chapter 21 with an interface using a web browser.

BASIC interpreter 159

Further work

A natural extension of this example would consist of adding type information to every
field of the database. This information would be used to define generic comparison
operators with type data base -> ’a -> string -> data card -> bool where the
name of the field (the third argument) would trigger the correct conversion and test
functions.

BASIC interpreter

The application described in this section is a program interpreter for Basic. Thus, it is
a program that can run other programs written in Basic. Of course, we will only deal
with a restricted language, which contains the following commands:

• PRINT expression
Prints the result of the evaluation of the expression.

• INPUT variable
Prints a prompt (?), reads an integer typed in by the user, and
assigns its value to the variable.

• LET variable = expression
Assigns the result of the evaluation of expression to the variable.

• GOTO line number
Continues execution at the given line.

• IF condition THEN line number
Continues execution at the given line if the condition is true.

• REM any string
One-line comment.

Every line of a Basic program is labelled with a line number, and contains only one
command. For instance, a program that computes and then prints the factorial of an
integer given by the user is written:

5 REM inputting the argument
10 PRINT " factorial of:"
20 INPUT A
30 LET B = 1
35 REM beginning of the loop
40 IF A <= 1 THEN 80
50 LET B = B * A
60 LET A = A - 1
70 GOTO 40
75 REM prints the result
80 PRINT B

We also wish to write a small text editor, working as a toplevel interactive loop. It
should be able to add new lines, display a program, execute it, and display the result.

160 Chapter 6 : Applications

Execution of the program is started with the RUN command. Here is an example of the
evaluation of this program:

> RUN
factorial of: ? 5

120

The interpreter is implemented in several distinct parts:

Description of the abstract syntax : describes the definition of data types to rep-
resent Basic programs, as well as their components (lines, commands, expressions,
etc.).

Program pretty printing : consists of transforming the internal representation of
Basic programs to strings, in order to display them.

Lexing and parsing : accomplish the inverse transformation, that is, transform a
string into the internal representation of a Basic program (the abstract syntax).

Evaluation : is the heart of the interpreter. It controls and runs the program. As
we will see, functional languages, such as Objective Caml, are particularly well
adapted for this kind of problem.

Toplevel interactive loop : glues together all the previous parts.

Abstract syntax

Figure 6.2 introduces the concrete syntax, as a BNF grammar, of the Basic we will
implement. This kind of description for language syntaxes is described in chapter 11,
page 295.

We can see that the way expressions are defined does not ensure that a well formed
expression can be evaluated. For instance, 1+"hello" is an expression, and yet it is
not possible to evaluate it. This deliberate choice lets us simplify both the abstract
syntax and the parsing of the Basic language. The price to pay for this choice is that
a syntactically correct Basic program may generate a runtime error because of a type
mismatch.

Defining Objective Caml data types for this abstract syntax is easy, we simply translate
the concrete syntax into a sum type:
type unr op = UMINUS | NOT ; ;

type bin op = PLUS | MINUS | MULT | DIV | MOD

| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF

| AND | OR ; ;

type expression =

ExpInt of int

| ExpVar of string

| ExpStr of string

BASIC interpreter 161

Unary Op ::= − | !

Binary Op ::= + | − | ∗ | / | %
| = | < | > | <= | >= | <>

| & | ′ | ′

Expression ::= integer
| variable
| "string"

| Unary Op Expression

| Expression Binary Op Expression

| (Expression)

Command ::= REM string
| GOTO integer
| LET variable = Expression

| PRINT Expression

| INPUT variable
| IF Expression THEN integer

Line ::= integer Command

Program ::= Line

| Line Program

Phrase ::= Line | RUN | LIST | END

Figure 6.2: BASIC Grammar.

| ExpUnr of unr op * expression

| ExpBin of expression * bin op * expression ; ;

type command =

Rem of string

| Goto of int

| Print of expression

| Input of string

| If of expression * int

| Let of string * expression ; ;

type line = { num : int ; cmd : command } ; ;

type program = line list ; ;

162 Chapter 6 : Applications

We also define the abstract syntax for the commands for the small program editor:
type phrase = Line of line | List | Run | PEnd ; ;

It is convenient to allow the programmer to skip some parentheses in arithmetic ex-
pressions. For instance, the expression 1 + 3 ∗ 4 is usually interpreted as 1 + (3 ∗ 4). To
this end, we associate an integer with each operator of the language:
let priority uop = function NOT → 1 | UMINUS → 7

let priority binop = function

MULT | DIV → 6

| PLUS | MINUS → 5

| MOD → 4

| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF → 3

| AND | OR → 2 ; ;

val priority_uop : unr_op -> int = <fun>

val priority_binop : bin_op -> int = <fun>

These integers indicate the priority of the operators. They will be used to print and
parse programs.

Program pretty printing

To print a program, one needs to be able to convert abstract syntax program lines into
strings.

Converting operators is easy:
let pp binop = function

PLUS → "+" | MULT → "*" | MOD → "%" | MINUS → "-"

| DIV → "/" | EQUAL → " = " | LESS → " < "

| LESSEQ → " <= " | GREAT → " > "

| GREATEQ → " >= " | DIFF → " <> " | AND → " & " | OR → " | "

let pp unrop = function UMINUS → "-" | NOT → "!" ; ;

val pp_binop : bin_op -> string = <fun>

val pp_unrop : unr_op -> string = <fun>

Expression printing needs to take into account operator priority to print as few paren-
theses as possible. For instance, parentheses are put around a subexpression at the right
of an operator only if the subexpression’s main operator has a lower priority that the
main operator of the whole expression. Also, arithmetic operators are left-associative,
thus the expression 1− 2− 3 is interpreted as (1− 2)− 3.

To deal with this, we use two auxiliary functions ppl and ppr to print left and right
subtrees, respectively. These functions take two arguments: the tree to print and the
priority of the enclosing operator, which is used to decide if parentheses are necessary.
Left and right subtrees are distinguished to deal with associativity. If the current
operator priority is the same than the enclosing operator priority, left trees do not
need parentheses whereas right ones may require them, as in 1− (2− 3) or 1− (2 + 3).

The initial tree is taken as a left subtree with minimal priority (0). The expression
pretty printing function pp expression is:

BASIC interpreter 163

let parenthesis x = "(" ^ x ^ ")"; ;

val parenthesis : string -> string = <fun>

let pp expression =

let rec ppl pr = function

ExpInt n → (string of int n)

| ExpVar v → v

| ExpStr s → "\"" ^ s ^ "\""

| ExpUnr (op,e) →
let res = (pp unrop op)^(ppl (priority uop op) e)

in if pr=0 then res else parenthesis res

| ExpBin (e1,op,e2) →
let pr2 = priority binop op

in let res = (ppl pr2 e1)^(pp binop op)^(ppr pr2 e2)

(* parenthesis if priority is not greater *)

in if pr2 >= pr then res else parenthesis res

and ppr pr exp = match exp with

(* right subtrees only differ for binary operators *)

ExpBin (e1,op,e2) →
let pr2 = priority binop op

in let res = (ppl pr2 e1)^(pp binop op)^(ppr pr2 e2)

in if pr2 > pr then res else parenthesis res

| _ → ppl pr exp

in ppl 0 ; ;

val pp_expression : expression -> string = <fun>

Command pretty printing uses the expression pretty printing function. Printing a line
consists of printing the line number before the command.
let pp command = function

Rem s → "REM " ^ s

| Goto n → "GOTO " ^ (string of int n)

| Print e → "PRINT " ^ (pp expression e)

| Input v → "INPUT " ^ v

| If (e,n) → "IF "^(pp expression e)^" THEN "^(string of int n)

| Let (v,e) → "LET " ^ v ^ " = " ^ (pp expression e) ; ;

val pp_command : command -> string = <fun>

let pp line l = (string of int l.num) ^ " " ^ (pp command l.cmd) ; ;

val pp_line : line -> string = <fun>

Lexing

Lexing and parsing do the inverse transformation of printing, going from a string to
a syntax tree. Lexing splits the text of a command line into independent lexical units
called lexemes, with Objective Caml type:
type lexeme = Lint of int

| Lident of string

164 Chapter 6 : Applications

| Lsymbol of string

| Lstring of string

| Lend ; ;

A particular lexeme denotes the end of an expression: Lend. It is not present in the
text of the expression, but is created by the lexing function (see the lexer function,
page 165).

The string being lexed is kept in a record that contains a mutable field indicating the
position after which lexing has not been done yet. Since the size of the string is used
several times and does not change, it is also stored in the record:
type string lexer = {string:string; mutable current:int; size:int } ; ;

This representation lets us define the lexing of a string as the application of a function
to a value of type string lexer returning a value of type lexeme. Modifying the
current position in the string is done as a side effect.

let init lex s = { string=s; current=0 ; size=String.length s } ; ;

val init_lex : string -> string_lexer = <fun>

let forward cl = cl.current <- cl.current+1 ; ;

val forward : string_lexer -> unit = <fun>

let forward n cl n = cl.current <- cl.current+n ; ;

val forward_n : string_lexer -> int -> unit = <fun>

let extract pred cl =

let st = cl.string and pos = cl.current in

let rec ext n = if n<cl.size && (pred st.[n]) then ext (n+1) else n in

let res = ext pos

in cl.current <- res ; String.sub cl.string pos (res-pos) ; ;

val extract : (char -> bool) -> string_lexer -> string = <fun>

The following functions extract a lexeme from the string and modify the current po-
sition. The two functions extract int and extract ident extract an integer and an
identifier, respectively.
let extract int =

let is int = function ’0’..’9’ → true | _ → false

in function cl → int of string (extract is int cl)

let extract ident =

let is alpha num = function

’a’..’z’ | ’A’..’Z’ | ’0’ .. ’9’ | ’_’ → true

| _ → false

in extract is alpha num ; ;

val extract_int : string_lexer -> int = <fun>

val extract_ident : string_lexer -> string = <fun>

The lexer function uses the two previous functions to extract a lexeme.
exception LexerError ; ;

exception LexerError

BASIC interpreter 165

let rec lexer cl =

let lexer char c = match c with

’ ’

| ’\t’ → forward cl ; lexer cl

| ’a’..’z’

| ’A’..’Z’ → Lident (extract ident cl)

| ’0’..’9’ → Lint (extract int cl)

| ’"’ → forward cl ;

let res = Lstring (extract ((<>) ’"’) cl)

in forward cl ; res

| ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’ | ’|’ | ’!’ | ’=’ | ’(’ | ’)’ →
forward cl; Lsymbol (String.make 1 c)

| ’<’

| ’>’ → forward cl;

if cl.current >= cl.size then Lsymbol (String.make 1 c)

else let cs = cl.string.[cl.current]

in (match (c,cs) with

(’<’,’=’) → forward cl; Lsymbol "<="

| (’>’,’=’) → forward cl; Lsymbol ">="

| (’<’,’>’) → forward cl; Lsymbol "<>"

| _ → Lsymbol (String.make 1 c))

| _ → raise LexerError

in

if cl.current >= cl.size then Lend

else lexer char cl.string.[cl.current] ; ;

val lexer : string_lexer -> lexeme = <fun>

The lexer function is very simple: it matches the current character of a string and,
based on its value, extracts the corresponding lexeme and modifies the current position
to the start of the next lexeme. The code is simple because, for all characters except
two, the current character defines which lexeme to extract. In the more complicated
cases of ’<’, we need to look at the next character, which might be a ’=’ or a ’>’,
producing two different lexemes. The same problem arises with ’>’.

Parsing

The only difficulty in parsing our language comes from expressions. Indeed, knowing
the beginning of an expression is not enough to know its structure. For instance, having
parsed the beginning of an expression as being 1 + 2 + 3, the resulting syntax tree for
this part depends on the rest of the expression: its structure is different when it is
followed by +4 or ∗4 (see figure 6.3). However, since the tree structure for 1 + 2 is the
same in both cases, it can be built. As the position of +3 in the structure is not fully
known, it is temporarily stored.

To build the abstract syntax tree, we use a pushdown automaton similar to the one
built by yacc (see page 303). Lexemes are read one by one and put on a stack until

166 Chapter 6 : Applications

4

3

2 1

+

+

+

4 3

*

2 1

+

+

Figure 6.3: Basic: abstract syntax tree examples.

there is enough information to build the expression. They are then removed from the
stack and replaced by the expression. This latter operation is called reduction.

The stack elements have type:
type exp elem =

Texp of expression (* expression *)

| Tbin of bin op (* binary operator *)

| Tunr of unr op (* unary operator *)

| Tlp (* left parenthesis *) ; ;

Right parentheses are not stored on the stack as only left parentheses matter for
reduction.

Figure 6.4 illustrates the way the stack is used to parse the expression (1 + 2 ∗ 3) + 4.
The character above the arrow is the current character of the string.

We define an exception for syntax errors.
exception ParseError ; ;

The first step consists of transforming symbols into operators:
let unr symb = function

"!" → NOT | "-" → UMINUS | _ → raise ParseError

let bin symb = function

"+" → PLUS | "-" → MINUS | "*" → MULT | "/" → DIV | "%" → MOD

| "=" → EQUAL | "<" → LESS | "<=" → LESSEQ | ">" → GREAT

| ">=" → GREATEQ | "<>" → DIFF | "&" → AND | "|" → OR

| _ → raise ParseError

let tsymb s = try Tbin (bin symb s) with ParseError → Tunr (unr symb s) ; ;

val unr_symb : string -> unr_op = <fun>

val bin_symb : string -> bin_op = <fun>

val tsymb : string -> exp_elem = <fun>

The reduce function implements stack reduction. There are two cases to consider,
whether the stack starts with:

BASIC interpreter 167

(

(

1

1

(

+

+

1

(

2

(

+

2

* 3)

(1+2*3)

(1+2*3)

*

*

(1+2*3)

4

(1+2*3)

4

*

(1+2*3)*4

(

1

+

2

*

(

1

+

2

3

1

*

end

Figure 6.4: Basic: abstract syntax tree construction example.

• an expression followed by a unary operator,

• an expression followed by a binary operator and an expression.

Moreover, reduce takes an argument indicating the minimal priority that an operator
should have to trigger reduction. To avoid this reduction condition, it suffices to give
the minimal value, zero, as the priority.
let reduce pr = function

(Texp e) :: (Tunr op) :: st when (priority uop op) >= pr

→ (Texp (ExpUnr (op,e))) :: st

| (Texp e1) :: (Tbin op) :: (Texp e2) :: st when (priority binop op) >= pr

→ (Texp (ExpBin (e2,op,e1))) :: st

| _ → raise ParseError ; ;

val reduce : int -> exp_elem list -> exp_elem list = <fun>

Notice that expression elements are stacked as they are read. Thus it is necessary to
swap them when they are arguments of a binary operator.

The main function of our parser is stack or reduce that, according to the lexeme
given in argument, puts it on the stack or triggers a reduction.
let rec stack or reduce lex stack = match lex , stack with

Lint n , _ → (Texp (ExpInt n)) :: stack

| Lident v , _ → (Texp (ExpVar v)) :: stack

168 Chapter 6 : Applications

| Lstring s , _ → (Texp (ExpStr s)) :: stack

| Lsymbol "(" , _ → Tlp :: stack

| Lsymbol ")" , (Texp e) :: Tlp :: st → (Texp e) :: st

| Lsymbol ")" , _ → stack or reduce lex (reduce 0 stack)

| Lsymbol s , _

→ let symbol =

if s<>"-" then tsymb s

(* remove the ambiguity of the ‘‘-’’ symbol *)

(* according to the last exp element put on the stack *)

else match stack

with (Texp _)::_ → Tbin MINUS

| _ → Tunr UMINUS

in (match symbol with

Tunr op → (Tunr op) :: stack

| Tbin op →
(try stack or reduce lex (reduce (priority binop op)

stack)

with ParseError → (Tbin op) :: stack)

| _ → raise ParseError)

| _ , _ → raise ParseError ; ;

val stack_or_reduce : lexeme -> exp_elem list -> exp_elem list = <fun>

Once all lexemes are defined and stacked, the function reduce all builds the abstract
syntax tree with the elements remaining in the stack. If the expression being parsed is
well formed, only one element should remain in the stack, containing the tree for this
expression.
let rec reduce all = function

| [] → raise ParseError

| [Texp x] → x

| st → reduce all (reduce 0 st) ; ;

val reduce_all : exp_elem list -> expression = <fun>

The parse exp function is the main expression parsing function. It reads a string,
extracts its lexemes and passes them to the stack or reduce function. Parsing stops
when the current lexeme satisfies a predicate that is given as an argument.
let parse exp stop cl =

let p = ref 0 in

let rec parse one stack =

let l = (p:=cl.current ; lexer cl)

in if not (stop l) then parse one (stack or reduce l stack)

else (cl.current <- !p ; reduce all stack)

in parse one [] ; ;

val parse_exp : (lexeme -> bool) -> string_lexer -> expression = <fun>

Notice that the lexeme that made the parsing stop is not used to build the expression.
It is thus necessary to modify the current position to its beginning (variable p) to parse
it later.

BASIC interpreter 169

We can now parse a command line:
let parse cmd cl = match lexer cl with

Lident s → (match s with

"REM" → Rem (extract (fun _ → true) cl)

| "GOTO" → Goto (match lexer cl with

Lint p → p

| _ → raise ParseError)

| "INPUT" → Input (match lexer cl with

Lident v → v

| _ → raise ParseError)

| "PRINT" → Print (parse exp ((=) Lend) cl)

| "LET" →
let l2 = lexer cl and l3 = lexer cl

in (match l2 ,l3 with

(Lident v,Lsymbol "=") → Let (v,parse exp ((=) Lend) cl)

| _ → raise ParseError)

| "IF" →
let test = parse exp ((=) (Lident "THEN")) cl

in (match ignore (lexer cl) ; lexer cl with

Lint n → If (test,n)

| _ → raise ParseError)

| _ → raise ParseError)

| _ → raise ParseError ; ;

val parse_cmd : string_lexer -> command = <fun>

Finally, we implement the function to parse commands typed by the user:
let parse str =

let cl = init lex str

in match lexer cl with

Lint n → Line { num=n ; cmd=parse cmd cl }
| Lident "LIST" → List

| Lident "RUN" → Run

| Lident "END" → PEnd

| _ → raise ParseError ; ;

val parse : string -> phrase = <fun>

Evaluation

A Basic program is a list of lines. Execution starts at the first line. Interpreting a
program line consists of executing the task corresponding to its command. There are
three different kinds of commands: input-output (PRINT and INPUT), variable dec-
laration or modification (LET), and flow control (GOTO and IF. . . THEN). Input-
output commands interact with the user and use the corresponding Objective Caml
functions.

170 Chapter 6 : Applications

Variable declaration and modification commands need to know how to compute the
value of an arithmetic expression and the memory location to store the result. Expres-
sion evaluation returns an integer, a boolean, or a string. Their type is value.
type value = Vint of int | Vstr of string | Vbool of bool ; ;

Variable declaration should allocate some memory to store the associated value. Sim-
ilarly, variable modification requires the modification of the associated value. Thus,
evaluation of a Basic program uses an environment that stores the association be-
tween a variable name and its value. It is represented by an association list of tuples
(name,value):
type environment = (string * value) list ; ;

The variable name is used to access its value. Variable modification modifies the asso-
ciation.

Flow control commands, conditional or unconditional, specify the number of the next
line to execute. By default, it is the next line. To do this, it is necessary to remember
the number of the current line.

The list of commands representing the program being edited under the toplevel is not
an efficient data structure for running the program. Indeed, it is then necessary to look
at the whole list of lines to find the line indicated by a flow control command (If and
goto). Replacing the list of lines with an array of commands allows direct access to the
command following a flow control command, using the array index instead of the line
number in the flow control command. This solution requires some preprocessing called
assembly before executing a RUN command. For reasons that will be detailed shortly, a
program after assembly is not represented as an array of commands but as an array of
lines:
type code = line array ; ;

As in the calculator example of previous chapters, the interpreter uses a state that is
modified for each command evaluation. At each step, we need to remember the whole
program, the next line to interpret and the values of the variables. The program being
interpreted is not exactly the one that was entered in the toplevel: instead of a list of
commands, it is an array of commands. Thus the state of a program during execution
is:
type state exec = { line:int ; xprog:code ; xenv:environment } ; ;

Two different reasons may lead to an error during the evaluation of a line: an error
while computing an expression, or branching to an absent line. They must be dealt with
so that the interpreter exits nicely, printing an error message. We define an exception
as well as a function to raise it, indicating the line where the error occurred.
exception RunError of int

let runerr n = raise (RunError n) ; ;

exception RunError of int

val runerr : int -> ’a = <fun>

BASIC interpreter 171

Assembly Assembling a program that is a list of numbered lines (type program) con-
sists of transforming this list into an array and modifying the flow control commands.
This last modification only needs an association table between line numbers and array
indexes. This is easily provided by storing lines (with their line numbers), instead of
commands, in the array: to find the association between a line number and the index
in the array, we look the line number up in the array and return the corresponding
index. If no line is found with this number, the index returned is -1.
exception Result lookup index of int ; ;

exception Result_lookup_index of int

let lookup index tprog num line =

try

for i=0 to (Array.length tprog)-1 do

let num i = tprog.(i).num

in if num i=num line then raise (Result lookup index i)

else if num i>num line then raise (Result lookup index (-1))

done ;

(-1)

with Result lookup index i → i ; ;

val lookup_index : line array -> int -> int = <fun>

let assemble prog =

let tprog = Array.of list prog in

for i=0 to (Array.length tprog)-1 do

match tprog.(i).cmd with

Goto n → let index = lookup index tprog n

in tprog.(i) <- { tprog.(i) with cmd = Goto index }
| If(c,n) → let index = lookup index tprog n

in tprog.(i) <- { tprog.(i) with cmd = If (c,index) }
| _ → ()

done ;

tprog ; ;

val assemble : line list -> line array = <fun>

Expression evaluation The evaluation function does a depth-first traversal on the
abstract syntax tree, and executes the operations indicated at each node.

The RunError exception is raised in case of type inconsistency, division by zero, or an
undeclared variable.
let rec eval exp n envt expr = match expr with

ExpInt p → Vint p

| ExpVar v → (try List.assoc v envt with Not found → runerr n)

| ExpUnr (UMINUS,e) →
(match eval exp n envt e with

Vint p → Vint (-p)

| _ → runerr n)

| ExpUnr (NOT,e) →

172 Chapter 6 : Applications

(match eval exp n envt e with

Vbool p → Vbool (not p)

| _ → runerr n)

| ExpStr s → Vstr s

| ExpBin (e1,op,e2)

→ match eval exp n envt e1 , op , eval exp n envt e2 with

Vint v1 , PLUS , Vint v2 → Vint (v1 + v2)

| Vint v1 , MINUS , Vint v2 → Vint (v1 - v2)

| Vint v1 , MULT , Vint v2 → Vint (v1 * v2)

| Vint v1 , DIV , Vint v2 when v2<>0 → Vint (v1 / v2)

| Vint v1 , MOD , Vint v2 when v2<>0 → Vint (v1 mod v2)

| Vint v1 , EQUAL , Vint v2 → Vbool (v1 = v2)

| Vint v1 , DIFF , Vint v2 → Vbool (v1 <> v2)

| Vint v1 , LESS , Vint v2 → Vbool (v1 < v2)

| Vint v1 , GREAT , Vint v2 → Vbool (v1 > v2)

| Vint v1 , LESSEQ , Vint v2 → Vbool (v1 <= v2)

| Vint v1 , GREATEQ , Vint v2 → Vbool (v1 >= v2)

| Vbool v1 , AND , Vbool v2 → Vbool (v1 && v2)

| Vbool v1 , OR , Vbool v2 → Vbool (v1 || v2)

| Vstr v1 , PLUS , Vstr v2 → Vstr (v1 ^ v2)

| _ , _ , _ → runerr n ; ;

val eval_exp : int -> (string * value) list -> expression -> value = <fun>

Command evaluation To evaluate a command, we need a few additional functions.

We add an association to an environment by removing a previous association for the
same variable name if there is one:
let rec add v e env = match env with

[] → [v,e]

| (w,f) :: l → if w=v then (v,e) :: l else (w,f) :: (add v e l) ; ;

val add : ’a -> ’b -> (’a * ’b) list -> (’a * ’b) list = <fun>

A function that prints the value of an integer or string is useful for evaluation of the
PRINT command.
let print value v = match v with

Vint n → print int n

| Vbool true → print string "true"

| Vbool false → print string "false"

| Vstr s → print string s ; ;

val print_value : value -> unit = <fun>

BASIC interpreter 173

The execution of a command corresponds to a transition from one state to another.
More precisely, the environment is modified if the command is an assignment. Further-
more, the next line to execute is always modified. As a convention, if the next line to
execute does not exist, we set its value to -1
let next line state =

let n = state.line+1 in

if n < Array.length state.xprog then n else -1 ; ;

val next_line : state_exec -> int = <fun>

let eval cmd state =

match state.xprog.(state.line).cmd with

Rem _ → { state with line = next line state }
| Print e → print value (eval exp state.line state.xenv e) ;

print newline () ;

{ state with line = next line state }
| Let(v,e) → let ev = eval exp state.line state.xenv e

in { state with line = next line state ;

xenv = add v ev state.xenv }
| Goto n → { state with line = n }
| Input v → let x = try read int ()

with Failure "int_of_string" → 0

in { state with line = next line state;

xenv = add v (Vint x) state.xenv }
| If (t,n) → match eval exp state.line state.xenv t with

Vbool true → { state with line = n }
| Vbool false → { state with line = next line state }
| _ → runerr state.line ; ;

val eval_cmd : state_exec -> state_exec = <fun>

On each call of the transition function eval cmd, we look up the current line, run it,
then set the number of the next line to run as the current line. If the last line of the
program is reached, the current line is given the value -1. This will tell us when to
stop.

Program evaluation We recursively apply the transition function until we reach a
state where the current line number is -1.
let rec run state =

if state.line = -1 then state else run (eval cmd state) ; ;

val run : state_exec -> state_exec = <fun>

Finishing touches

The only thing left to do is to write a small editor and to plug together all the functions
we wrote in the previous sections.

174 Chapter 6 : Applications

The insert function adds a new line in the program at the requested place.
let rec insert line p = match p with

[] → [line]

| l :: prog →
if l.num < line.num then l :: (insert line prog)

else if l.num=line.num then line :: prog

else line :: l :: prog ; ;

val insert : line -> line list -> line list = <fun>

The print prog function prints the source code of a program.
let print prog prog =

let print line x = print string (pp line x) ; print newline () in

print newline () ;

List.iter print line prog ;

print newline () ; ;

val print_prog : line list -> unit = <fun>

The one command function processes the insertion of a line or the execution of a com-
mand. It modifies the state of the toplevel loop, which consists of a program and an
environment. This state, represented by the loop state type, is different from the
evaluation state.
type loop state = { prog:program; env:environment } ; ;

exception End ; ;

let one command state =

print string "> " ; flush stdout ;

try

match parse (input line stdin) with

Line l → { state with prog = insert l state.prog }
| List → (print prog state.prog ; state)

| Run

→ let tprog = assemble state.prog in

let xstate = run { line = 0; xprog = tprog; xenv = state.env } in

{state with env = xstate.xenv }
| PEnd → raise End

with

LexerError → print string "Illegal character\n"; state

| ParseError → print string "syntax error\n"; state

| RunError n →
print string "runtime error at line ";

print int n ;

print string "\n";

state ; ;

val one_command : loop_state -> loop_state = <fun>

BASIC interpreter 175

The main function is the go function, which starts the toplevel loop of our Basic.
let go () =

try

print string "Mini-BASIC version 0.1\n\n";

let rec loop state = loop (one command state) in

loop { prog = [] ; env = [] }
with End → print string "See you later...\n"; ;

val go : unit -> unit = <fun>

The loop is implemented by the local function loop. It stops when the End exception
is raised by the one command function.

Example: C+/C-

We return to the example of the C+/C- game described in chapter 3, page 78. Here is
the Basic program corresponding to that Objective Caml program:

10 PRINT "Give the hidden number: "
20 INPUT N
30 PRINT "Give a number: "
40 INPUT R
50 IF R = N THEN 110
60 IF R < N THEN 90
70 PRINT "C-"
80 GOTO 30
90 PRINT "C+"
100 GOTO 30
110 PRINT "CONGRATULATIONS"

And here is a sample run of this program.

> RUN
Give the hidden number:
64
Give a number:
88
C-
Give a number:
44
C+
Give a number:
64
CONGRATULATIONS

176 Chapter 6 : Applications

Further work

The Basic we implemented is minimalist. If you want to go further, the following
exercises hint at some possible extensions.

1. Floating-point numbers: as is, our language only deals with integers, strings and
booleans. Add floats, as well as the corresponding arithmetic operations in the
language grammar. We need to modify not only parsing, but also evaluation,
taking into account the implicit conversions between integers and floats.

2. Arrays: Add to the syntax the command DIM var[x] that declares an array var
of size x, and the expression var[i] that references the ith element of the array
var.

3. Toplevel directives: Add the toplevel directives SAVE "file name" and LOAD
"file name" that save a Basic program to the hard disk, and load a Basic pro-
gram from the hard disk, respectively.

4. Sub-program: Add sub-programs. The GOSUB line number command calls a sub-
program by branching to the given line number while storing the line from where
the call is made. The RETURN command resumes execution at the line following
the last GOSUB call executed, if there is one, or exits the program otherwise.
Adding sub-programs requires evaluation to manage not only the environement
but also a stack containing the return addresses of the current GOSUB calls. The
GOSUB command adds the possibility of defining recursive sub-programs.

Minesweeper

Let us briefly recall the object of this game: to explore a mine field without stepping
on one. A mine field is a two dimensional array (a matrix) where some cells contain
hidden mines while others are empty. At the beginning of the game, all the cells are
closed and the player must open them one after another. The player wins when he
opens all the cells that are empty.

Every turn, the player may open a cell or flag it as containing a mine. If he opens
a cell that contains a mine, it blows up and the player loses. If the cell is empty, its
appearance is modified and the number of mines in the 8 neighbor cells is displayed
(thus at most 8). If the player decides to flag a cell, he cannot open it until he removes
the flag.

We split the implementation of the game into three parts.

1. The abstract game, including the internal representation of the mine field as well
as the functions manipulating this representation.

2. The graphical part of the game, including the function for displaying cells.

3. The interaction between the program and the player.

Minesweeper 177

Figure 6.5: Screenshot.

The abstract mine field

This part deals with the mine field as an abstraction only, and does not address its
display.

Configuration A mine field is defined by its dimensions and the number of mines it
contains. We group these three pieces of data in a record and define a default configu-
ration: 10× 10 cells and 15 mines.
type config = {

nbcols : int ;

nbrows : int ;

nbmines : int }; ;
let default config = { nbcols=10; nbrows=10; nbmines=15 } ; ;

The mine field It is natural to represent the mine field as a two dimensional array.
However, it is still necessary to specify what the cells are, and what information their
encoding should provide. The state of a cell should answer the following questions:

178 Chapter 6 : Applications

• is there a mine in this cell?

• is this cell opened (has it been seen)?

• is this cell flagged?

• how many mines are there in neighbor cells?

The last item is not mandatory, as it is possible to compute it when it is needed.
However, it is simpler to do this computation once at the beginning of the game.

We represent a cell with a record that contains these four pieces of data.
type cell = {

mutable mined : bool ;

mutable seen : bool ;

mutable flag : bool ;

mutable nbm : int

} ; ;

The two dimensional array is an array of arrays of cells:
type board = cell array array ; ;

An iterator In the rest of the program, we often need to iterate a function over all
the cells of the mine field. To do it generically, we define the operator iter cells that
applies the function f, given as an argument, to each cell of the board defined by the
configuration cf.
let iter cells cf f =

for i=0 to cf.nbcols-1 do for j=0 to cf.nbrows-1 do f (i,j) done done ; ;

val iter_cells : config -> (int * int -> ’a) -> unit = <fun>

This is a good example of a mix between functional and imperative programming styles,
as we use a higher order function (a function taking another function as an argument)
to iterate a function that operates through side effects (as it returns no value).

Initialization We randomly choose which cells are mines. If c and r are respectively
the number of columns and rows of the mine field, and m the number of mines, we
need to generate m different numbers between 1 and c× r. We suppose that m ≤ c× r
to define the algorithm, but the program using it will need to check this condition.

The straightforward algorithm consists of starting with an empty list, picking a random
number and putting it in the list if it is not there already, and repeating this until the
list contains m numbers. We use the following functions from the Random and Sys
modules:

• Random.int: int -> int, picks a number between 0 and n−1 (n is the argument)
according to a random number generator;

• Random.init: int -> unit, initializes the random number generator;

Minesweeper 179

• Sys.time: unit -> float, returns the number of milliseconds of processor time
the program used since it started. This function will be used to initialize the
random number generator with a different seed for each game.

The modules containing these functions are described in more details in chapter 8,
pages 216 and 234.

The random mine placement function receives the number of cells (cr) and the number
of mines to place (m), and returns a list of linear positions for the m mines.
let random list mines cr m =

let cell list = ref []

in while (List.length !cell list) < m do

let n = Random.int cr in

if not (List.mem n !cell list) then cell list := n :: !cell list

done ;

!cell list ; ;

val random_list_mines : int -> int -> int list = <fun>

With such an implementation, there is no upper bound on the number of steps the
function takes to terminate. If the random number generator is reliable, we can only
insure that the probability it does not terminate is zero. However, all experimental uses
of this function have never failed to terminate. Thus, even though it is not guaranteed
that it will terminate, we will use it to generate the list of mined cells.

We need to initialize the random number generator so that each run of the game does
not use the same mine field. We use the processor time since the beginning of the
program execution to initialize the random number generator.
let generate seed () =

let t = Sys.time () in

let n = int of float (t*.1000.0)

in Random.init(n mod 100000) ; ;

val generate_seed : unit -> unit = <fun>

In practice, a given program very often takes the same execution time, which results
in a similar result for generate seed for each run. We ought to use the Unix.time
function (see chapter 18).

We very often need to know the neighbors of a given cell, during the initialization of
the mine field as well as during the game. Thus we write a neighbors function. This
function must take into account the side and corner cells that have fewer neighbors
than the middle ones (function valid).
let valid cf (i,j) = i>=0 && i<cf.nbcols && j>=0 && j<cf.nbrows ; ;

val valid : config -> int * int -> bool = <fun>

let neighbors cf (x,y) =

let ngb = [x-1,y-1; x-1,y; x-1,y+1; x,y-1; x,y+1; x+1,y-1; x+1,y; x+1,y+1]

in List.filter (valid cf) ngb ; ;

val neighbors : config -> int * int -> (int * int) list = <fun>

The initialize board function creates the initial mine field. It proceeds in four steps:

180 Chapter 6 : Applications

1. generation of the list of mined cells;

2. creation of a two dimensional array containing different cells;

3. setting of mined cells in the board;

4. computation of the number of mines in neighbor cells for each cell that is not
mined.

The function initialize board uses a few local functions that we briefly describe.

cell init : creates an initial cell value;

copy cell init : puts a copy of the initial cell value in a cell of the board;

set mined : puts a mine in a cell;

count mined adj : computes the number of mines in the neighbors of a given cell;

set count : updates the number of mines in the neighbors of a cell if it is not mined.

let initialize board cf =

let cell init () = { mined=false; seen=false; flag=false; nbm=0 } in

let copy cell init b (i,j) = b.(i).(j) <- cell init () in

let set mined b n = b.(n / cf.nbrows).(n mod cf.nbrows).mined <- true

in

let count mined adj b (i,j) =

let x = ref 0 in

let inc if mined (i,j) = if b.(i).(j).mined then incr x

in List.iter inc if mined (neighbors cf (i,j)) ;

!x

in

let set count b (i,j) =

if not b.(i).(j).mined

then b.(i).(j).nbm <- count mined adj b (i,j)

in

let list mined = random list mines (cf.nbcols*cf.nbrows) cf.nbmines in

let board = Array.make matrix cf.nbcols cf.nbrows (cell init ())

in iter cells cf (copy cell init board) ;

List.iter (set mined board) list mined ;

iter cells cf (set count board) ;

board ; ;

val initialize_board : config -> cell array array = <fun>

Opening a cell During a game, when the player opens a cell whose neighbors are
empty (none contains a mine), he knows that he can open the neighboring cells without
risk, and he can keep opening cells as long as he opens cells without any mined neighbor.
In order to relieve the player of this boring process (as it is not challenging at all), our

Minesweeper 181

Minesweeper opens all these cells itself. To this end, we write the function cells to see
that returns a list of all the cells to open when a given cell is opened.

The algorithm needed is simple to state: if the opened cell has some neighbors that
contain a mine, then the list of cells to see consists only of the opened cell; otherwise,
the list of cells to see consists of the neighbors of the opened cell, as well as the lists of
cells to see of these neighbors. The difficulty is in writing a program that does not loop,
as every cell is a neighbor of any of its neighbors. We thus need to avoid processing
the same cell twice.
To remember which cells were processed, we use the array of booleans visited. Its
size is the same as the mine field. The value true for a cell of this array denotes that
it was already visited. We recurse only on cells that were not visited.

We use the auxiliary function relevant that computes two sublists from the list of
neighbors of a cell. Each one of these lists only contains cells that do not contain a mine,
that are not opened, that are not flagged by the player, and that were not visited. The
first sublist is the list of neighboring cells who have at least one neighbor containing a
mine; the second sublist is the list of neighboring cells whose neighbors are all empty.
As these lists are computed, all these cells are marked as visited. Notice that flagged
cells are not processed, as a flag is meant to prevent opening a cell.

The local function cells to see rec implements the recursive search loop. It takes as
an argument the list of cells to visit, updates it, and returns the list of cells to open.
This function is called with the list consisting only of the cell being opened, after it is
marked as visited.
let cells to see bd cf (i,j) =

let visited = Array.make matrix cf.nbcols cf.nbrows false in

let rec relevant = function

[] → ([],[])

| ((x,y) as c) :: t →
let cell=bd.(x).(y)

in if cell.mined || cell.flag || cell.seen || visited.(x).(y)

then relevant t

else let (l1,l2) = relevant t

in visited.(x).(y) <- true ;

if cell.nbm=0 then (l1,c :: l2) else (c :: l1,l2)

in

let rec cells to see rec = function

[] → []

| ((x,y) as c) :: t →
if bd.(x).(y).nbm<>0 then c :: (cells to see rec t)

else let (l1,l2) = relevant (neighbors cf c)

in (c :: l1) @ (cells to see rec (l2 @ t))

in visited.(i).(j) <- true ;

cells to see rec [(i,j)] ; ;

val cells_to_see :

cell array array -> config -> int * int -> (int * int) list = <fun>

182 Chapter 6 : Applications

At first sight, the argument of cells to see rec may grow between two consecutive
calls, although the recursion is based on this argument. It is legitimate to wonder if
this function always terminates.
The way the visited array is used guarantees that a visited cell cannot be in the
result of the relevant function. Also, all the cells to visit come from the result of the
relevant function. As the relevant function marks as visited all the cells it returns,
it returns each cell at most once, thus a cell may be added to the list of cells to visit at
most once. The number of cells being finite, we deduce that the function terminates.

Except for graphics, we are done with our Minesweeper. Let us take a look at the
programming style we have used. Mutable structures (arrays and mutable record fields)
make us use an imperative style of loops and assignments. However, to deal with
auxiliary issues, we use lists that are processed by functions written in a functional
style. Actually, the programming style is a consequence of the data structure that it
manipulates. The function cells to see is a good example: it processes lists, and it
is natural to write it in a functional style. Nevertheless, we use an array to remember
the cells that were already processed, and we update this array imperatively. We could
use a purely functional style by using a list of visited cells instead of an array, and
check if a cell is in the list to see if it was visited. However, the cost of such a choice
is important (looking up an element in a list is linear in the size of the list, whereas
accessing an array element takes constant time) and it does not make the program
simpler.

Displaying the Minesweeper game

This part depends on the data structures representing the state of the game (see
page 177). It consists of displaying the different components of the Minesweeper win-
dow, as shown in figure 6.6. To this end, we use the box drawing functions seen on
page 126.

The following parameters characterize the components of the graphical window.

let b0 = 3 ; ;

let w1 = 15 ; ;

let w2 = w1 ; ;

let w4 = 20 + 2*b0 ; ;

let w3 = w4*default config.nbcols + 2*b0 ; ;

let w5 = 40 + 2*b0 ; ;

let h1 = w1 ; ;

let h2 = 30 ; ;

let h3 = w5+20 + 2*b0 ; ;

let h4 = h2 ; ;

let h5 = 20 + 2*b0 ; ;

let h6 = w5 + 2*b0 ; ;

We use them to extend the basic configuration of our Minesweeper board (value of type
config). Below, we define a record type window config. The cf field contains the basic
configuration. We associate a box with every component of the display: main window
(field main box), mine field (field field box), dialog window (field dialog box) with
two sub-boxes (fields d1 box and d2 box), flagging button (field flag box) and current
cell (field current box).
type window config = {

cf : config ;

Minesweeper 183

l4

l1 l2

h1

h6

l3

l5
h2

h3

h4

h5

Figure 6.6: The main window of Minesweeper.

main box : box config ;

field box : box config ;

dialog box : box config ;

d1 box : box config ;

d2 box : box config ;

flag box : box config ;

mutable current box : box config ;

cell : int*int → (int*int) ;

coor : int*int → (int*int)

} ; ;

Moreover, a record of type window config contains two functions:

• cell: takes the coordinates of a cell and returns the coordinates of the corre-
sponding box;

• coor: takes the coordinates of a pixel of the window and returns the coordinates
of the corresponding cell.

184 Chapter 6 : Applications

Configuration We now define a function that builds a graphical configuration (of
type window config) according to a basic configuration (of type config) and the pa-
rameters above. The values of the parameters of some components depend on the value
of the parameters of other components. For instance, the global box width depends on
the mine field width, which, in turn, depends on the number of columns. To avoid
computing the same value several times, we incrementally create the components. This
initialization phase of a graphical configuration is always a little tedious when there is
no adequate primitive or tool available.
let make box x y w h bw r =

{ x=x; y=y; w=w; h=h; bw=bw; r=r; b1 col=gray1; b2 col=gray3; b col=gray2 } ; ;

val make_box : int -> int -> int -> int -> int -> relief -> box_config =

<fun>

let make wcf cf =

let wcols = b0 + cf.nbcols*w4 + b0

and hrows = b0 + cf.nbrows*h5 + b0 in

let main box = let gw = (b0 + w1 + wcols + w2 + b0)

and gh = (b0 + h1 + hrows + h2 + h3 + h4 + b0)

in make box 0 0 gw gh b0 Top

and field box = make box w1 h1 wcols hrows b0 Bot in

let dialog box = make box ((main box.w - w3) / 2)

(b0+h1+hrows+h2)

w3 h3 b0 Bot

in

let d1 box = make box (dialog box.x + b0) (b0 + h1 + hrows + h2)

((w3-w5)/2-(2*b0)) (h3-(2*b0)) 5 Flat in

let flag box = make box (d1 box.x + d1 box.w)

(d1 box.y + (h3-h6) / 2) w5 h6 b0 Top in

let d2 box = make box (flag box.x + flag box.w)

d1 box.y d1 box.w d1 box.h 5 Flat in

let current box = make box 0 0 w4 h5 b0 Top

in { cf = cf;

main box = main box; field box=field box; dialog box=dialog box;

d1 box=d1 box;

flag box=flag box; d2 box=d2 box; current box = current box;

cell = (fun (i,j) → (w1+b0+w4*i , h1+b0+h5*j)) ;

coor = (fun (x,y) → ((x-w1)/w4 , (y-h1)/h5)) } ; ;

val make_wcf : config -> window_config = <fun>

Cell display We now need to write the functions to display the cells in their different
states. A cell may be open or closed and may contain some information. We always
display (the box corresponding with) the current cell in the game configuration (field
cc bcf).

We thus write two functions modifying the configuration of the current cell; one closing
it, the other opening it.
let close ccell wcf i j =

Minesweeper 185

let x,y = wcf.cell (i,j)

in wcf.current box <- {wcf.current box with x=x; y=y; r=Top} ; ;

val close_ccell : window_config -> int -> int -> unit = <fun>

let open ccell wcf i j =

let x,y = wcf.cell (i,j)

in wcf.current box <- {wcf.current box with x=x; y=y; r=Flat} ; ;

val open_ccell : window_config -> int -> int -> unit = <fun>

Depending on the game phase, we may need to display some information on the cells.
We write, for each case, a specialized function.

• Display of a closed cell:
let draw closed cc wcf i j =

close ccell wcf i j;

draw box wcf.current box ; ;

val draw_closed_cc : window_config -> int -> int -> unit = <fun>

• Display of an opened cell with its number of neighbor mines:
let draw num cc wcf i j n =

open ccell wcf i j ;

draw box wcf.current box ;

if n<>0 then draw string in box Center (string of int n)

wcf.current box Graphics.white ; ;

val draw_num_cc : window_config -> int -> int -> int -> unit = <fun>

• Display of a cell containing a mine:
let draw mine cc wcf i j =

open ccell wcf i j ;

let cc = wcf.current box

in draw box wcf.current box ;

Graphics.set color Graphics.black ;

Graphics.fill circle (cc.x+cc.w/2) (cc.y+cc.h/2) (cc.h/3) ; ;

val draw_mine_cc : window_config -> int -> int -> unit = <fun>

• Display of a flagged cell containing a mine:
let draw flag cc wcf i j =

close ccell wcf i j ;

draw box wcf.current box ;

draw string in box Center "!" wcf.current box Graphics.blue ; ;

val draw_flag_cc : window_config -> int -> int -> unit = <fun>

• Display of a wrongly flagged cell:
let draw cross cc wcf i j =

let x,y = wcf.cell (i,j)

and w,h = wcf.current box.w, wcf.current box.h in

let a=x+w/4 and b=x+3*w/4

186 Chapter 6 : Applications

and c=y+h/4 and d=y+3*h/4

in Graphics.set color Graphics.red ;

Graphics.set line width 3 ;

Graphics.moveto a d ; Graphics.lineto b c ;

Graphics.moveto a c ; Graphics.lineto b d ;

Graphics.set line width 1 ; ;

val draw_cross_cc : window_config -> int -> int -> unit = <fun>

During the game, the choice of the display function to use is done by:
let draw cell wcf bd i j =

let cell = bd.(i).(j)

in match (cell.flag, cell.seen , cell.mined) with

(true,_,_) → draw flag cc wcf i j

| (_,false,_) → draw closed cc wcf i j

| (_,_,true) → draw mine cc wcf i j

| _ → draw num cc wcf i j cell.nbm ; ;

val draw_cell : window_config -> cell array array -> int -> int -> unit =

<fun>

A specialized function displays all the cells at the end of the game. It is slightly different
from the previous one as all the cells are taken as opened. Moreover, a red cross indicates
the empty cells where the player wrongly put a flag.
let draw cell end wcf bd i j =

let cell = bd.(i).(j)

in match (cell.flag, cell.mined) with

(true,true) → draw flag cc wcf i j

| (true,false) → draw num cc wcf i j cell.nbm; draw cross cc wcf i j

| (false,true) → draw mine cc wcf i j

| (false,false) → draw num cc wcf i j cell.nbm ; ;

val draw_cell_end : window_config -> cell array array -> int -> int -> unit =

<fun>

Display of the other components The state of the flagging mode is indicated by
a box that is either at the bottom or on top and that contain either the word ON or
OFF:
let draw flag switch wcf on =

if on then wcf.flag box.r <- Bot else wcf.flag box.r <- Top ;

draw box wcf.flag box ;

if on then draw string in box Center "ON" wcf.flag box Graphics.red

else draw string in box Center "OFF" wcf.flag box Graphics.blue ; ;

val draw_flag_switch : window_config -> bool -> unit = <fun>

Minesweeper 187

We display the purpose of the flagging button above it:
let draw flag title wcf =

let m = "Flagging" in

let w,h = Graphics.text size m in

let x = (wcf.main box.w-w)/2

and y0 = wcf.dialog box.y+wcf.dialog box.h in

let y = y0+(wcf.main box.h-(y0+h))/2

in Graphics.moveto x y ;

Graphics.draw string m ; ;

val draw_flag_title : window_config -> unit = <fun>

During the game, the number of empty cells left to be opened and the number of cells
to flag are displayed in the dialog box, to the left and right of the flagging mode button.

let print score wcf nbcto nbfc =

erase box wcf.d1 box ;

draw string in box Center (string of int nbcto) wcf.d1 box Graphics.blue ;

erase box wcf.d2 box ;

draw string in box Center (string of int (wcf.cf.nbmines-nbfc)) wcf.d2 box

(if nbfc>wcf.cf.nbmines then Graphics.red else Graphics.blue) ; ;

val print_score : window_config -> int -> int -> unit = <fun>

To draw the initial mine field, we need to draw (number of rows) × (number of columns)
times the same closed cell. It is always the same drawing, but it may take a long time,
as it is necessary to draw a rectangle as well as four trapezoids. To speed up this
initialization, we draw only one cell, take the bitmap corresponding to this drawing,
and paste this bitmap into every cell.
let draw field initial wcf =

draw closed cc wcf 0 0 ;

let cc = wcf.current box in

let bitmap = draw box cc ; Graphics.get image cc.x cc.y cc.w cc.h in

let draw bitmap (i,j) = let x,y=wcf.cell (i,j)

in Graphics.draw image bitmap x y

in iter cells wcf.cf draw bitmap ; ;

val draw_field_initial : window_config -> unit = <fun>

At the end of the game, we open the whole mine field while putting a red cross on cells
wrongly flagged:
let draw field end wcf bd =

iter cells wcf.cf (fun (i,j) → draw cell end wcf bd i j) ; ;

val draw_field_end : window_config -> cell array array -> unit = <fun>

Finally, the main display function called at the beginning of the game opens the graph-
ical context and displays the initial state of all the components.

188 Chapter 6 : Applications

let open wcf wcf =

Graphics.open graph (" " ^ (string of int wcf.main box.w) ^ "x" ^

(string of int wcf.main box.h)) ;

draw box wcf.main box ;

draw box wcf.dialog box ;

draw flag switch wcf false ;

draw box wcf.field box ;

draw field initial wcf ;

draw flag title wcf ;

print score wcf ((wcf.cf.nbrows*wcf.cf.nbcols)-wcf.cf.nbmines) 0 ; ;

val open_wcf : window_config -> unit = <fun>

Notice that all the display primitives are parameterized by a graphical configuration of
type window config. This makes them independent of the layout of the components
of our Minesweeper. If we wish to modify the layout, the code still works without any
modification, only the configuration needs to be updated.

Interaction with the player

We now list what the player may do:

• he may click on the mode box to change mode (opening or flagging),

• he may click on a cell to open it or flag it,

• he may hit the ’q’ key to quit the game.

Recall that a Graphic event (Graphics.event) must be associated with a record
(Graphics.status) that contains the current information on the mouse and keyboard
when the event occurs. An interaction with the mouse may happen on the mode but-
ton, or on a cell of the mine field. Every other mouse event must be ignored. In order
to differentiate these mouse events, we create the type:
type clickon = Out | Cell of (int*int) | SelectBox ; ;

Also, pressing the mouse button and releasing it are two different events. For a click
to be valid, we require that both events occur on the same component (the flagging
mode button or a cell of the mine field).
let locate click wcf st1 st2 =

let clickon of st =

let x = st.Graphics.mouse x and y = st.Graphics.mouse y

in if x>=wcf.flag box.x && x<=wcf.flag box.x+wcf.flag box.w &&

y>=wcf.flag box.y && y<=wcf.flag box.y+wcf.flag box.h

then SelectBox

else let (x2,y2) = wcf.coor (x,y)

in if x2>=0 && x2<wcf.cf.nbcols && y2>=0 && y2<wcf.cf.nbrows

then Cell (x2,y2) else Out

in

Minesweeper 189

let r1=clickon of st1 and r2=clickon of st2

in if r1=r2 then r1 else Out ; ;

val locate_click :

window_config -> Graphics.status -> Graphics.status -> clickon = <fun>

The heart of the program is the event waiting and processing loop defined in the
function loop. It is similar to the function skel described page 133, but specifies the
mouse events more precisely. The loop ends when:

• the player presses the q or Q key, meaning that he wants to end the game;

• the player opens a cell containing a mine, then he loses;

• the player has opened all the cell that are empty, then he wins the game.

We gather in a record of type minesw cf the information useful for the interface:
type minesw cf =

{ wcf : window config; bd : cell array array;

mutable nb flagged cells : int;

mutable nb hidden cells : int;

mutable flag switch on : bool } ; ;

The meaning of the fields is:

• wcf: the graphical configuration;

• bd: the board;

• flag switch on: a boolean indicating whether flagging mode or opening mode
is on;

• nb flagged cells: the number of flagged cells;

• nb hidden cells: the number of empty cells left to open;

The main loop is implemented this way:
let loop d f init f key f mouse f end =

f init () ;

try

while true do

let st = Graphics.wait next event

[Graphics.Button down;Graphics.Key pressed]

in if st.Graphics.keypressed then f key st.Graphics.key

else let st2 = Graphics.wait next event [Graphics.Button up]

in f mouse (locate click d.wcf st st2)

done

with End → f end () ; ;

val loop :

minesw_cf ->

(unit -> ’a) -> (char -> ’b) -> (clickon -> ’b) -> (unit -> unit) -> unit =

<fun>

190 Chapter 6 : Applications

The initialization function, cleanup function and keyboard event processing function
are very simple.
let d init d () = open wcf d.wcf

let d end () = Graphics.close graph ()

let d key c = if c=’q’ || c=’Q’ then raise End; ;

val d_init : minesw_cf -> unit -> unit = <fun>

val d_end : unit -> unit = <fun>

val d_key : char -> unit = <fun>

However, the mouse event processing function requires the use of some auxiliary func-
tions:

• flag cell: when clicking on a cell with flagging mode on.

• ending: when ending the game. The whole mine field is revealed, we display a
message indicating whether the game was won or lost, and we wait for a mouse
or keyboard event to quit the application.

• reveal: when clicking on a cell with opening mode on (i.e. flagging mode off).

let flag cell d i j =

if d.bd.(i).(j).flag

then (d.nb flagged cells <- d.nb flagged cells -1;

d.bd.(i).(j).flag <- false)

else (d.nb flagged cells <- d.nb flagged cells +1;

d.bd.(i).(j).flag <- true);

draw cell d.wcf d.bd i j;

print score d.wcf d.nb hidden cells d.nb flagged cells; ;

val flag_cell : minesw_cf -> int -> int -> unit = <fun>

let ending d str =

draw field end d.wcf d.bd;

erase box d.wcf.flag box;

draw string in box Center str d.wcf.flag box Graphics.black;

ignore(Graphics.wait next event

[Graphics.Button down;Graphics.Key pressed]);

raise End; ;

val ending : minesw_cf -> string -> ’a = <fun>

let reveal d i j =

let reveal cell (i,j) =

d.bd.(i).(j).seen <- true;

draw cell d.wcf d.bd i j;

d.nb hidden cells <- d.nb hidden cells -1

in

List.iter reveal cell (cells to see d.bd d.wcf.cf (i,j));

print score d.wcf d.nb hidden cells d.nb flagged cells;

if d.nb hidden cells = 0 then ending d "WON"; ;

Minesweeper 191

val reveal : minesw_cf -> int -> int -> unit = <fun>

The mouse event processing function matches a value of type clickon.
let d mouse d click = match click with

Cell (i,j) →
if d.bd.(i).(j).seen then ()

else if d.flag switch on then flag cell d i j

else if d.bd.(i).(j).flag then ()

else if d.bd.(i).(j).mined then ending d "LOST"

else reveal d i j

| SelectBox →
d.flag switch on <- not d.flag switch on;

draw flag switch d.wcf d.flag switch on

| Out → () ; ;

val d_mouse : minesw_cf -> clickon -> unit = <fun>

To create a game configuration, three parameters are needed: the number of columns,
the number of rows, and the number of mines.
let create minesw nb c nb r nb m =

let nbc = max default config.nbcols nb c

and nbr = max default config.nbrows nb r in

let nbm = min (nbc*nbr) (max 1 nb m) in

let cf = { nbcols=nbc ; nbrows=nbr ; nbmines=nbm } in

generate seed () ;

let wcf = make wcf cf in

{ wcf = wcf ;

bd = initialize board wcf.cf;

nb flagged cells = 0;

nb hidden cells = cf.nbrows*cf.nbcols-cf.nbmines;

flag switch on = false } ; ;

val create_minesw : int -> int -> int -> minesw_cf = <fun>

The launch function creates a configuration according to the numbers of columns, rows,
and mines, before calling the main event processing loop.
let go nbc nbr nbm =

let d = create minesw nbc nbr nbm in

loop d (d init d) d key (d mouse d) (d end); ;

val go : int -> int -> int -> unit = <fun>

The function call go 10 10 10 builds and starts a game of the same size as the one
depicted in figure 6.5.

192 Chapter 6 : Applications

Exercises

This program can be built as a standalone executable program. Chapter 7 explains
how to do this. Once it is done, it is useful to be able to specify the size of the game
on the command line. Chapter 8 describes how to get command line arguments in an
Objective Caml program, and applies it to our minesweeper (see page 236).

Another possible extension is to have the machine play to discover the mines. To do
this, one needs to be able to find the safe moves and play them first, then compute the
probabilities of presence of a mine and open the cell with the smallest probability.

