
8
Libraries

Every language comes with collections of programs that are reusable by the program-
mer, called libraries. The quality and diversity of these programs are often some of the
criteria one uses to assess the ease of use of a language. You could separate libraries
into two categories: those that offer types and functions that are often useful but could
be written in the language, and those that offer functionality that cannot be defined
in the language. The first group saves the programmer the effort of redefining utilities
such as stacks, lists, etc. The second group extends the possible uses of the language
by incorporating new functionality into it.

The Objective Caml language distribution comes with many precompiled libraries. For
the curious reader, the uncompiled version of these libraries comes packaged with the
source code distribution for the language.

In Objective Caml, all the libraries are organized into modules that are also compila-
tion units. Each one contains declarations of globals and types, exceptions and values
that can be used in programs. In this chapter we are not interested in how to create
new modules; we just want to use the existing ones. Chapter 14 will revisit the con-
cepts of the module and the compilation unit while describing the module language of
Objective Caml, including parameterized modules. Regarding the creation of libraries
that incorporate code that is not written in Objective Caml, chapter 12 will describe
how to integrate Objective Caml programs with code written in C.

The Objective Caml distribution contains a preloaded library (the Pervasives mod-
ule), a collection of basic modules called the standard library, and many other libraries
adding functionality to the language. Some of the libraries are briefly shown in this
chapter while others are described in later chapters.

214 Chapter 8 : Libraries

Chapter Outline

This chapter describes the collection of libraries in the Objective Caml distribution.
Some have been used in previous chapters, such as the Graphics library (see chapter
5), or the Array library. The first section shows the organization of the various libraries.
The second section finishes describing the preloaded Pervasives module. The third
section classifies the set of modules found in the standard library. The fourth section
examines the high precision math libraries and the libraries for dynamically loading
code.

Categorization and Use of the Libraries

The libraries in the Objective Caml distribution fall into three categories. The first
contains preloaded global declarations. The second is called the standard library and
is subdivided into four parts:

• data structures;

• input/output

• system interface;

• lexical and syntactic analysis.

Finally there are the libraries in the third group that generally extend the language,
such as the Graphics library (see chapter 5). In this last group you will find libraries
dealing with the following areas: regular expressions (Str), arbitrary-precision math
(Num), Unix system calls (Unix), lightweight processes (Threads) and dynamic loading
of bytecode (Dynlink).

The I/O and the system interface portions of the standard library are compatible with
different operating systems such as Unix, Windows and MacOS. This is not always
the case with the libraries in the third group (those that extend the language). There
are also many independently written libraries that are not part of the Objective Caml
distribution.

Usage and naming To use modules or libraries in a program, one has to use dot
notation to specify the module name and the object to access. For example if one wants
to use a function f in a library called Name, one qualifies it as Name.f. To avoid having
to prefix everything with the name of the library, it is possible to open the library and
use f directly.

Syntax : open Name

From then on, all the global declarations of the library Name will be considered as if
they belonged to the global environment. If two declarations have the same name in
two distinct open libraries, then only the last declaration is visible. To be able to call
the first, it would be necessary to use the point notation.

Preloaded Library 215

Preloaded Library

The Pervasives library is always preloaded so that it will be available at the toplevel
(interactive) loop or for inline compilation. It is always linked and is the initial envi-
ronment of the language. It contains the declarations of:

• type: basic types (int, char, string, float, bool, unit, exn, ’a array, ’a
list) and the types ’a option (see page 223) and (’a, ’b, ’c) format (see
page 265).

• exceptions: A number of exceptions are raisable by the execution library. Some
of the more common ones are the following:
– Failure of string that is raised by the function failwith applied to a

string.
– Invalid argument of string that indicates that an argument cannot be

handled by the function having raised the exception. The function inv-
alid arg applied to a string starts this exception.

– Sys error of string, for the input/output, typically in attempting to
open a nonexistent file for reading.

– End of file for detecting the end of a file.
– Division by zero for zero divide errors between integers.
As well as internal exceptions like:
– Out of memory and Stack overflow for going beyond the memory of the

heap or the stack. It should be noted that a program cannot recover from
the Out of memory exception. In effect, when it is raised it is too late to
allocate new memory space to continue functioning.
Handling the Stack Overflow exception differs depending on whether the
program was compiled in byte code or native code. In the latter case, it is
not possible to recover.

• functions: there are roughly 140, half of which correspond to the C functions
of the execution library. There you may find mathematical and comparison op-
erators, functions on integer and floating-point numbers, functions on character
strings, on references and input-output. It should be noted that a certain num-
ber of these declarations are in fact synonyms for declarations defined in other
modules. They are nevertheless declared here for historical and implementation
reasons.

Standard Library

The standard library contains a group of stable modules. These are operating system
independent. There are currently 29 modules in the standard library containing 400
functions, 30 types of which half are abstract, 8 exceptions, 10 sub-modules, and 3
parameterized modules. Clearly we will not describe all of the declarations in all of
these modules. Indeed, the reference manual [LRVD99] already does that quite well.
Only those modules presenting a new concept or a real difficulty in use will be detailed.

216 Chapter 8 : Libraries

The standard library can be divided into four distinct parts:

• linear data structures (15 modules), some of which have already appeared in
the first part;

• input-output (4 modules), for the formatting of output, the persistence and
creation of cryptographic keys;

• parsing and lexical analysis (4 modules). They are described in chapter 11
(page 287);

• system interface that permit communication and examination of parameters
passed to a command, directory navigation and file access.

To these four groups we add a fifth containing some utilities for handling or creating
structures such as functions for text processing or generating pseudo-random numbers,
etc.

Utilities

The modules that we have named ”utilities” concern:

• characters: the Char module primarily contains conversion functions;

• object cloning: OO will be presented in chapter 15 (page 435), on object oriented
programming

• lazy evaluation: Lazy is first presented on page 107;

• random number generator: Random will be described below.

Generation of Random Numbers

The Random module is a pseudo-random number generator. It establishes a random
number generation function starting with a number or a list of numbers called a seed.
In order to ensure that the function does not always return the same list of numbers,
the programmer must give it a different seed each time the generator is initialized.

From this seed the function generates a succession of seemingly random numbers.
Nevertheless, an initialization with the same seed will create the same list. To correctly
initialize the generator, you need to find some outside resource, like the date represented
in milliseconds, or the length of time since the start of the program.

The functions of the module:

• initialization: init of type int -> unit and full init of type int array ->

unit initialize the generator. The second function takes an array of seeds.

• generate random numbers: bits of type unit -> int returns a positive integer,
int of type int -> int returns a positive integer ranging from 0 to a limit given
as a parameter, and float returns a float between 0. and a limit given as a
parameter.

Standard Library 217

Linear Data Structures

The modules for linear data structures are:

• simple modules: Array, String, List, Sort, Stack, Queue, Buffer, Hashtbl
(that is also parameterized) and Weak;

• parameterized modules: Hashtbl (of HashedType parameters), Map and Set (of
OrderedType parameters).

The parameterized modules are built from the other modules, thus making them more
generic. The construction of parameterized modules will be presented in chapter 14,
page 418.

Simple Linear Data Structures

The name of the module describes the type of data structures manipulated by the
module. If the type is abstract, that is to say, if the representation is hidden, the
current convention is to name it t inside the module. These modules establish the
following structures:

• module Array: vectors;

• module List: lists;

• module String: character strings;

• module Hashtbl: hash tables (abstract type);

• module Buffer: extensible character strings (abstract type);

• module Stack: stacks (abstract type);

• module Queue: queues or FIFO (abstract type);

• module Weak: vector of weak pointers (abstract type).

Let us mention one last module that implements linear data structures:

• module Sort: sorting on lists and vectors, merging of lists.

Family of common functions Each of these modules (with the exception of Sort),
has functions for defining structures, creating/accessing elements (such as handler func-
tions), and converting to other types. Only the List module is not physically modi-
fiable. We will not give a complete description of all these functions. Instead, we will
focus on families of functions that one finds in these modules. Then we will detail the
List and Array modules that are the most commonly used structures in functional
and imperative programming.

One finds more or less the following functionality in all these modules:

• a length function that takes the value of a type and calculates an integer corre-
sponding to its length;

• a clear function that empties the linear structure, if it is modifiable;

218 Chapter 8 : Libraries

• a function to add an element, add in general, but sometimes named differently
according to common practice, (for example, push for stacks);

• a function to access the n-th element, often called get;

• a function to remove an element (often the first) remove or take.

In the same way, in several modules the names of functions for traversal and processing
are the same:

• map: applies a function on all the elements of the structure and returns a new
structure containing the results of these calls;

• iter: like map, but drops successive results, and returns ().

For the structures with indexed elements we have:

• fill: replaces (modifies in place) a part of the structure with a value;

• blit: copies a part of one structure into another structure of the same type;

• sub: copies a part of one structure into a newly created structure.

Modules List and Array

We describe the functions of the two libraries while placing an emphasis on the simi-
larities and the particularities of each one. For the functions common to both modules,
t designates either the ’a list or ’a array type. When a function belongs to one
module, we will use the dot notation.

Common or analogous functionality The first of them is the calculation of length.

List.length : ’a t -> int

Two functions permitting the concatenation of two structures or all the structures of
a list.

List.append : ’a t -> ’a t -> ’a t

List.concat : ’a t list -> ’a t

Both modules have a function to access an element designated by its position in the
structure.

List.nth : ’a list -> int -> ’a

Array.get : ’a array -> int -> ’a

The function to access an element at index i of a vector t, which is frequently used,
has a syntactic shorthand: t.(i).

Two functions allow you to apply an operation to all the elements of a structure.

Standard Library 219

iter : (’a -> unit) -> ’a t -> unit

map : (’a -> ’b) -> ’a t -> ’b t

You can use iter to print the contents of a list or a vector.
let print content iter print item xs =

iter (fun x → print string"("; print item x; print string")") xs;

print newline () ; ;

val print_content : ((’a -> unit) -> ’b -> ’c) -> (’a -> ’d) -> ’b -> unit =

<fun>

print content List.iter print int [1;2;3;4;5] ; ;

(1)(2)(3)(4)(5)

- : unit = ()

print content Array.iter print int [|1;2;3;4;5|] ; ;

(1)(2)(3)(4)(5)

- : unit = ()

The map function builds a new structure containing the result of the application. For
example, with vectors whose contents are modifiable:
let a = [|1;2;3;4|] ; ;

val a : int array = [|1; 2; 3; 4|]

let b = Array.map succ a ; ;

val b : int array = [|2; 3; 4; 5|]

a, b; ;

- : int array * int array = [|1; 2; 3; 4|], [|2; 3; 4; 5|]

Two iterators can be used to compose successive applications of a function on all
elements of a structure.

fold left : (’a -> ’b -> ’a) -> ’a -> ’b t -> ’a

fold right : (’a -> ’b -> ’b) -> ’a t -> ’b -> ’b

You have to give these iterators a base case that supplies a default value when the
structure is empty.

fold left f r [v1; v2; ...; vn] = f ... (f (f r v1) v2) ... vn

fold right f [v1; v2; ...; vn] r = f v1 (f v2 ... (f vn r) ...)

These functions allow you to easily transform binary operations into n-ary operations.
When the operation is commutative and associative, left and right iteration are indis-
tinguishable:
List.fold left (+) 0 [1;2;3;4] ; ;

- : int = 10

List.fold right (+) [1;2;3;4] 0 ; ;

220 Chapter 8 : Libraries

- : int = 10

List.fold left List.append [0] [[1];[2];[3];[4]] ; ;

- : int list = [0; 1; 2; 3; 4]

List.fold right List.append [[1];[2];[3];[4]] [0] ; ;

- : int list = [1; 2; 3; 4; 0]

Notice that, for binary concatenation, an empty list is a neutral element to the left and
to the right. We find thus, in this specific case, the equivalence of the two expressions:
List.fold left List.append [] [[1];[2];[3];[4]] ; ;

- : int list = [1; 2; 3; 4]

List.fold right List.append [[1];[2];[3];[4]] [] ; ;

- : int list = [1; 2; 3; 4]

We have, in fact, found the List.concat function.

Operations specific to lists. It is useful to have the following list functions that
are provided by the List module:

List.hd : ’a list -> ’a

first element of the list
List.tl : ’a list -> ’a

the list, without its first element
List.rev : ’a list -> ’a list

reversal of a list
List.mem : ’a -> ’a list -> bool

membership test
List.flatten : ’a list list -> ’a list

flattens a list of lists
List.rev append : ’a list -> ’a list -> ’a list

is the same as append (rev l1) l2

The first two functions are partial. They are not defined on the empty list and raise a
Failure exception. There is a variant of mem: memq that uses physical equality.
let c = (1,2) ; ;

val c : int * int = 1, 2

let l = [c] ; ;

val l : (int * int) list = [1, 2]

List.memq (1,2) l ; ;

- : bool = false

List.memq c l ; ;

- : bool = true

The List module provides two iterators that generalize boolean conjunction and dis-
junction (and / or): List.for all and List.exists that are defined by iteration:

Standard Library 221

let for all f xs = List.fold right (fun x → fun b → (f x) & b) xs true ; ;

val for_all : (’a -> bool) -> ’a list -> bool = <fun>

let exists f xs = List.fold right (fun x → fun b → (f x) or b) xs false ; ;

val exists : (’a -> bool) -> ’a list -> bool = <fun>

There are variants of the iterators in the List module that take two lists as arguments
and traverse them in parallel (iter2, map2, etc.). If they are not the same size, the
Invalid argument exception is raised.

The elements of a list can be searched using the criteria provided by the following
boolean functions:

List.find : (’a -> bool) -> ’a list -> ’a

List.find all : (’a -> bool) -> ’a list -> ’a list

The find all function has an alias: filter.

A variant of the general search function is the partitioning of a list:

List.partition : (’a -> bool) -> ’a list -> ’a list * ’a list

The List module has two often necessary utility functions permitting the division and
creation of lists of pairs:

List.split : (’a * ’b) list -> ’a list * ’b list

List.combine : ’a list -> ’b list -> (’a * ’b) list

Finally, a structure combining lists and pairs is often used: association lists. They are
useful to store values associated to keys. These are lists of pairs such that the first
entry is a key and the second is the information associated to the key. One has these
data structures to deal with pairs:

List.assoc : ’a -> (’a * ’b) list -> ’b

extract the information associated to a key
List.mem assoc : ’a -> (’a * ’b) list -> bool

test the existence of a key
List.remove assoc : ’a -> (’a * ’b) list -> (’a * ’b) list

deletion of an element corresponding to a key

Each of these functions has a variant using physical equality instead of structural
equality: List.assq, List.mem assq and List.remove assq.

Handlers specific to Vectors. The vectors that imperative programmers often use
are physically modifiable structures. The Array module furnishes a function to change
the value of an element:

222 Chapter 8 : Libraries

Array.set : ’a array -> int -> ’a -> unit

Like get, the set function has a syntactic shortcut: t.(i) <- a.

There are three vector allocation functions:

Array.create : int -> ’a -> ’a array

creates a vector of a given size whose elements are all
initialized with the same value

Array.make : int -> ’a -> ’a array

alias for create
Array.init : int -> (int -> ’a) -> ’a array

creates a vector of a given size whose elements are each
initialized with the result of the application of a function
to the element’s index

Since they are frequently used, the Array module has two functions for the creation of
matrices (vectors of vectors):

Array.create matrix : int -> int -> ’a -> ’a array array

Array.make matrix : int -> int -> ’a -> ’a array array

The set function is generalized as a function modifying the values on an interval
described by a starting index and a length:

Array.fill : ’a array -> int -> int -> ’a -> unit

One can copy a whole vector or extract a sub-vector (described by a starting index
and a length) to obtain a new structure:

Array.copy : ’a array -> ’a array

Array.sub : ’a array -> int -> int -> ’a array

The copy or extraction can also be done towards another vector:

Array.blit : ’a array -> int -> ’a array -> int -> int -> unit

The first argument is the index into the first vector, the second is the index into the
second vector and the third is the number of values copied. The three functions blit,
sub and fill raise the Invalid argument exception.

The privileged use of indices in the vector manipulation functions leads to the definition
of two specific iterators:

Standard Library 223

Array.iteri : (int -> ’a -> unit) -> ’a array -> unit

Array.mapi : (int -> ’a -> ’b) -> ’a array -> ’b array

They apply a function whose first argument is the index of the affected element.
let f i a = (string of int i) ^ ":" ^ (string of int a) in

Array.mapi f [| 4; 3; 2; 1; 0 |] ; ;

- : string array = [|"0:4"; "1:3"; "2:2"; "3:1"; "4:0"|]

Although the Array module does not have a function to modify the contents of all the
elements in a vector, this effect can be easily obtained using iteri:
let iter and set f t =

Array.iteri (fun i → fun x → t.(i) <- f x) t ; ;

val iter_and_set : (’a -> ’a) -> ’a array -> unit = <fun>

let v = [|0;1;2;3;4|] ; ;

val v : int array = [|0; 1; 2; 3; 4|]

iter and set succ v ; ;

- : unit = ()

v ; ;

- : int array = [|1; 2; 3; 4; 5|]

Finally, the Array module provides two list conversion functions:

Array.of list : ’a list -> ’a array

Array.to list : ’a array -> ’a list

Input-output

The standard library has four input-output modules:

• module Printf: for the formatting of output;

• Format: pretty-printing facility to format text within “pretty-printing boxes”.
The pretty-printer breaks lines at specified break hints, and indents lines accord-
ing to the box structure.

• module Marshal: implements a mechanism for persistent values;

• module Digest: for creating unique keys.

The description of the Marshal module will be given later in the chapter when we
begin to discuss persistent data structures (see page 228).

Module Printf

The Printf module formats text using the rules of the printf function in the C
language library. The display format is represented as a character string that will be

224 Chapter 8 : Libraries

decoded according to the conventions of printf in C, that is to say, by specializing the
% character. This character followed by a letter indicates the type of the argument at
this position. The following format "(x=%d, y=%d)" indicates that it should put two
integers in place of the %d in the output string.

Specification of formats. A format defines the parameters for a printed string.
Those, of basic types: int, float, char and string, will be converted to strings and
will replace their occurrence in the printed string. The values 77 and 43 provided to
the format "(x=%d, y=%d)" will generate the complete printed string "(x=77, y=43)".
The principal letters indicating the type of conversion to carry out are given in figure
8.1.

Type Letter Result

integer d or i signed decimal
u unsigned decimal
x unsigned hexadecimal, lower case form
X same, with upper case letters

character c character
string s string
float f decimal

e or E scientific notation
g or G same

boolean b true or false
special a or t functional parameter

of type (out channel -> ’a -> unit) -> ’a -> unit

or out channel -> unit

Figure 8.1: Conversion conventions.

The format also allows one to specify the justification of the conversion, which al-
lows for the alignment of the printed values. One can indicate the size in conversion
characters. For this one places between the % character and the type of conversion an
integer number as in %10d that indicates a conversion to be padded on the right to
ten characters. If the size of the result of the conversion exceeds this limit, the limit
will be discarded. A negative number indicates left justification. For conversions of
floating point numbers, it is helpful to be able to specify the printed precision. One
places a decimal point followed by a number to indicate the number of characters after
the decimal point as in %.5f that indicates five characters to the right of the decimal
point.

There are two specific format letters: a and t that indicate a functional argument.
Typically, a print function defined by the user. This is specific to Objective Caml.

Standard Library 225

Functions in the module The types of the five functions in this module are given
in figure 8.2.

fprintf : out channel -> (’a, out channel, unit) format -> ’a

printf : (’a, out channel, unit) format -> ’a

eprintf : (’a, out channel, unit) format -> ’a

sprintf : (’a, unit, string) format -> ’a

bprintf : Buffer.t -> (’a, Buffer.t, string) format -> ’a

Figure 8.2: Printf formatting functions.

The fprintf function takes a channel, a format and arguments of types described in the
format. The printf and eprintf functions are specializations on standard output and
standard error. Finally, sprintf and bprintf do not print the result of the conversion,
but instead return the corresponding string.

Here are some simple examples of the utilization of formats.
Printf.printf "(x=%d, y=%d)" 34 78 ; ;

(x=34, y=78)- : unit = ()

Printf.printf "name = %s, age = %d" "Patricia" 18 ; ;

name = Patricia, age = 18- : unit = ()

let s = Printf.sprintf "%10.5f\n%10.5f\n" (-.12.24) (2.30000008) ; ;

val s : string = " -12.24000\n 2.30000\n"

print string s ; ;

-12.24000

2.30000

- : unit = ()

The following example builds a print function from a matrix of floats using a given
format.
let print mat m =

Printf.printf "\n" ;

for i=0 to (Array.length m)-1 do

for j=0 to (Array.length m.(0))-1 do

Printf.printf "%10.3f" m.(i).(j)

done ;

Printf.printf "\n"

done ; ;

val print_mat : float array array -> unit = <fun>

print mat (Array.create 4 [| 1.2; -.44.22; 35.2 |]) ; ;

1.200 -44.220 35.200

1.200 -44.220 35.200

1.200 -44.220 35.200

1.200 -44.220 35.200

- : unit = ()

226 Chapter 8 : Libraries

Note on the format type. The description of a format adopts the syntax of char-
acter strings, but it is not a value of type string. The decoding of a format, according
to the preceding conventions, builds a value of type format where the ’a parameter
is instantiated either with unit if the format does not mention a parameter, or by a
functional type corresponding to a function able to receive as many arguments as are
mentioned and returning a value of type unit.

One can illustrate this process by partially applying the printf function to a format:
let p3 =

Printf.printf "begin\n%d is val1\n%s is val2\n%f is val3\n" ; ;

begin

val p3 : int -> string -> float -> unit = <fun>

One obtains thus a function that takes three arguments. Note that the word begin
had already been printed. Another format would have given another type of function:
let p2 =

Printf.printf "begin\n%f is val1\n%s is val2\n"; ;

begin

val p2 : float -> string -> unit = <fun>

In providing arguments one by one to p3, one progressively obtains the output.
let p31 = p3 45 ; ;

45 is val1

val p31 : string -> float -> unit = <fun>

let p32 = p31 "hello" ; ;

hello is val2

val p32 : float -> unit = <fun>

let p33 = p32 3.14 ; ;

3.140000 is val3

val p33 : unit = ()

p33 ; ;

- : unit = ()

From the last obtained value, nothing is printed: it is the value () of type unit.

One cannot build a format using values of type string:
let f d =

Printf.printf (d^d); ;

Characters 27-30:

This expression has type string but is here used with type

(’a, out_channel, unit) format

The compiler cannot know the value of the string passed as an argument. It thus cannot
know the type that instantiates the ’a parameter of type format.

On the other hand, strings are physically modifiable values, it would thus be possible
to replace, for example, the %d part with another letter, thus dynamically changing the
print format. This conflicts with the static generation of the conversion function.

Standard Library 227

Digest Module

A hash function converts a character string of unspecified size into a character string
of fixed length, most often smaller. Hashing functions return a fingerprint (digest) of
their entry.

Such functions are used for the construction of hash tables, as in the Hashtbl module,
permitting one to rapidly test if an element is a member of such a table by directly
accessing the fingerprint. For example the function f mod n, that generates the modulo
n sum of the ASCII codes of the characters in a string, is a hashing function. If one
creates an n by n table to arrange the strings, from the fingerprint one obtains direct
access. Nevertheless two strings can return the same fingerprint. In the case of collisions,
one adds to the hash table an extension to store these elements. If there are too many
collisions, then access to the hash table is not very effective. If the fingerprint has a
length of n bits, then the probability of collision between two different strings is 1/2n.

A non-reversible hash function has a very weak probability of collision. It is thus
difficult, given a fingerprint, to construct a string with this fingerprint. The preceding
function f mod n is not, based on the evidence, such a function. One way hash functions
permit the authentification of a string, that it is for some text sent over the Internet,
a file, etc.

The Digest module uses the MD5 algorithm, short for Message Digest 5. It returns a
128 bit fingerprint. Although the algorithm is public, it is impossible (today) to carry
out a reconstruction from a fingerprint. This module defines the Digest.t type as
an abbreviation of the string type. The figure 8.3 details the main functions of this
module.

string : string -> t

returns the fingerprint of a string
file : string -> t

returns the fingerprint of a file

Figure 8.3: Functions of the Digest module.

We use the string function in the following example on a small string and on a large
one built from the first. The fingerprint is always of fixed length.
let s = "The small cat is dead..."; ;

val s : string = "The small cat is dead..."

Digest.string s; ;

- : Digest.t = "xr6\127\171(\134=\238‘\252F\028\t\210$"

let r = ref s in

for i=1 to 100 do r:= s^ !r done;

Digest.string !r; ;

- : Digest.t = "\232\197|C]\137\180{>\224QX\155\131D\225"

228 Chapter 8 : Libraries

The creation of a fingerprint for a program allows one to guarantee the contents and
thus avoids the use of a bad version. For example, when code is dynamically loaded
(see page 241), a fingerprint is used to select the binary file to load.
Digest.file "basic.ml" ; ;

- : Digest.t = "\179\026\191\137\157Ly|^w7\183\164:\167q"

Persistence

Persistence is the conservation of a value outside the running execution of a program.
This is the case when one writes a value in a file. This value is thus accessible to any
program that has access to the file. Writing and reading persistent values requires the
definition of a format for representing the coding of data. In effect, one must know how
to go from a complex structure stored in memory, such as a binary tree, to a linear
structure, a list of bytes, stored in a file. This is why the coding of persistent values is
called linearization 1.

Realization and Difficulties of Linearization

The implementation of a mechanism for the linearization of data structures requires
choices and presents difficulties that we describe below.

• read-write of data structures. Since memory can always be viewed as a vector
of words, one value can always correspond to the memory that it occupies, leaving
us to preserve the useful part by then compacting the value.

• share or copy. Must the linearization of a data structure conserve sharing?
Typically a binary tree having two identical children (in the sense of physical
equality) can indicate, for the second child, that it has already saved the first.
This characteristic influences the size of the saved value and the time taken to do
it. On the other hand, in the presence of physically modifiable values, this could
change the behavior of this value after a recovery depending on whether or not
sharing was conserved.

• circular structures. In the case of a circular value, linearization without sharing
is likely to loop. It will be necessary to conserve sharing.

• functional values. Functional values, or closures, are composed of an environ-
ment part and a code part. The code part corresponds to the entry point (ad-
dress) of the code to execute. What must thus be done with code? It is possible to
uniquely store this address, but thus only the same program will find the correct
meaning of this address. It is also possible to save the list of machine instructions
of this function, but that would require having a mechanism to dynamically load
code.

• guaranteeing the type when reloading. This is the main difficulty of this
mechanism. Static typing guarantees that typed values will not generate type

1. JAVA uses the term serialization

Standard Library 229

errors at execution time. But this is not true except for values belonging to
the program during the course of execution. What type can one give to a value
outside the program, that was not seen by the type verifier? Just to verify that
the re-read value has the monomorphic type generated by the compiler, the type
would have to be transmitted at the moment the value was saved, then the type
would have to be checked when the value was loaded. Additionally, a mechanism
to manage the versions of types would be needed to be safe in case a type is
redeclared in a program.

Marshal Module

The linearization mechanism in the Marshal module allows you to choose to keep or
discard the sharing of values. It also allows for the use of closures, but in this case,
only the pointer to the code is saved.

This module is mainly comprised of functions for linearization via a channel or a string,
and functions for recovery via a channel or a string. The linearization functions are
parameterizable. The following type declares two possible options:

type external_flag =
No_sharing

| Closures;;

The No sharing constant constructor indicates that the sharing of values is not to
be preserved, though the default is to keep sharing. The Closures constructor allows
the use of closures while conserving its pointer to the code. Its absence will raise an
exception if one tries to store a functional value.

Warning The Closures constructor is inoperative in interactive
mode. It can only be used in command line mode.

The reading and writing functions in this module are gathered in figure 8.4.

to channel : out channel -> ’a -> extern flag list -> unit

to string : ’a -> extern flag list -> string

to buffer : string -> int -> int -> ’a -> extern flag list -> unit

from channel : in channel -> ’a

from string : string -> int -> ’a

Figure 8.4: Functions of the Marshal module.

The to channel function takes an output channel, a value, and a list of options and
writes the value to the channel. The to string function produces a string correspond-
ing to the linearized value, whereas to buffer accomplishes the same task by modifying
part of a string passed as an argument. The from channel function reads a linearized
value from a channel and returns it. The from string variant takes as input a string

230 Chapter 8 : Libraries

and the position of the first character to read in the string. Several linearized values
can be stored in the same file or in the same string. For a file, they can be read sequen-
tially. For a string, one must specify the right offset from the beginning of the string
to decode the desired value.

let s = Marshal.to string [1;2;3;4] [] in String.sub s 0 10; ;

- : string = "\132\149\166\190\000\000\000\t\000\000"

Warning Using this module one loses the safety of static typing
(see infra, page 233).

Loading a persistent object creates a value of indeterminate type:
let x = Marshal.from string (Marshal.to string [1; 2; 3; 4] []) 0; ;

val x : ’_a = <poly>

This indetermination is denoted in Objective Caml by the weakly typed variable ’ a.
You should specify the expected type:
let l =

let s = (Marshal.to string [1; 2; 3; 4] []) in

(Marshal.from string s 0 : int list) ; ;

val l : int list = [1; 2; 3; 4]

We return to this topic on page 233.

Note
The output value function of the preloaded library corresponds to calling
to channel with an empty list of options. The input value function in
the Pervasives module directly calls the from channel function. These
functions were kept for compatibility with old programs.

Example: Backup Screens

We want to save the bitmap, represented as a matrix of colors, of the whole screen. The
save screen function recovers the bitmap, converts it to a table of colors and saves it
in a file whose name is passed as a parameter.
let save screen name =

let i = Graphics.get image 0 0 (Graphics.size x ())

(Graphics.size y ()) in

let j = Graphics.dump image i in

let oc = open out name in

output value oc j;

close out oc; ;

val save_screen : string -> unit = <fun>

The load screen function does the reverse operation. It opens the file whose name is
passed as a parameter, restores the value stored inside, converts this color matrix into
a bitmap, then displays the bitmap.
let load screen name =

Standard Library 231

let ic = open in name in

let image = ((input value ic) : Graphics.color array array) in

close in ic;

Graphics.close graph () ;

Graphics.open graph (" "^(string of int(Array.length image.(0)))

^"x"^(string of int(Array.length image)));

let image2 = Graphics.make image image in

Graphics.draw image image2 0 0; image2 ; ;

val load_screen : string -> Graphics.image = <fun>

Warning Abstract typed values cannot be made persistent.

It is for this reason that the preceding example does not use the abstract Graphics.image
type, but instead uses the concrete color array array type. The abstraction of types
is presented in chapter 14.

Sharing

The loss of sharing in a data structure can make the structure completely lose its
intended behavior. Let us revisit the example of the symbol generator from page 103.
For whatever reason, we want to save the functional values new s and reset s, and
thereafter use the current value of their common counter. We thus write the following
program:
let reset s,new s =

let c = ref 0 in

(function () → c := 0) ,

(function s → c:=!c+1; s^(string of int !c)) ; ;

let save =

Marshal.to string (new s,reset s) [Marshal.Closures;Marshal.No sharing] ; ;

let (new s1,reset s1) =

(Marshal.from string save 0 : ((string → string) * (unit → unit))) ; ;

(* 1 *)

Printf.printf "new_s : \%s\n" (new s "X");

Printf.printf "new_s : \%s\n" (new s "X");

(* 2 *)

Printf.printf "new_s1 : \%s\n" (new s1 "X");

(* 3 *)

reset s1 () ;

Printf.printf "new_s1 (after reset_s1) : \%s\n" (new s1 "X") ; ;

Characters 148-154:

Unbound value new_s1

232 Chapter 8 : Libraries

The first two outputs in (* 1 *) comply with our intent. The output obtained in
(* 2 *) after re-reading the closures also appears correct (after X2 comes X3). But, in
fact, the sharing of the c counter between the re-read functions new s1 and reset s1 is
lost, as the output of X4 attests that one of them set the counter to zero. Each closure
has a copy of the counter and the call to reset s1 does not reset the new s1 counter
to zero. Thus we should not have used the No sharing option during the linearization.

It is generally necessary to conserve sharing. Nevertheless in certain cases where exe-
cution speed is important, the absence of sharing speeds up the process of saving. The
following example demonstrates a function that copies a matrix. In this case it might
be preferable to break the sharing:
let copy mat f (m : float array array) =

let s = Marshal.to string m [Marshal.No sharing] in

(Marshal.from string s 0 : float array array); ;

val copy_mat_f : float array array -> float array array = <fun>

One can also use it to create a matrix without sharing:
let create mat f n m v =

let m = Array.create n (Array.create m v) in

copy mat f m; ;

val create_mat_f : int -> int -> float -> float array array = <fun>

let a = create mat f 3 4 3.14; ;

val a : float array array =

[|[|3.14; 3.14; 3.14; 3.14|]; [|3.14; 3.14; 3.14; 3.14|];

[|3.14; 3.14; 3.14; 3.14|]|]

a.(1).(2) <- 6.28; ;

- : unit = ()

a; ;

- : float array array =

[|[|3.14; 3.14; 3.14; 3.14|]; [|3.14; 3.14; 6.28; 3.14|];

[|3.14; 3.14; 3.14; 3.14|]|]

Which is a more common behavior than that of Array.create, and resembles that of
Array.create matrix.

Size of Values

It may be useful to know the size of a persistent value. If sharing is conserved, this
size also reflects the amount of memory occupied by a value. Although the encoding
sometimes optimizes the size of atomic values2, knowing the size of their respective
encodings permits us to compare different implementations of a data structure. In
addition, for programs that will never stop themselves, like embedded systems or even
network servers; watching the size of data structures can help detect memory leaks.

2. Arrays of characters, for example.

Standard Library 233

The Marshal module has two functions to calculate the size of a constant. They are
described in figure 8.5. The total size of a persistent value is the same as the size of its

header size : int

data size : string -> int -> int

total size : string -> int -> int

Figure 8.5: Size functions of Marshal.

data structures plus the size of its header.

Below is a small example of the use of MD5 encoding to compare two representations
of binary trees:
let size x = Marshal.data size (Marshal.to string x []) 0; ;

val size : ’a -> int = <fun>

type ’a bintree1 = Empty1 | Node1 of ’a * ’a bintree1 * ’a bintree1 ; ;

type ’a bintree1 = | Empty1 | Node1 of ’a * ’a bintree1 * ’a bintree1

let s1 =

Node1(2, Node1(1, Node1(0, Empty1, Empty1), Empty1),

Node1(3, Empty1, Empty1)) ; ;

val s1 : int bintree1 =

Node1

(2, Node1 (1, Node1 (0, Empty1, Empty1), Empty1),

Node1 (3, Empty1, Empty1))

type ’a bintree2 =

Empty2 | Leaf2 of ’a | Node2 of ’a * ’a bintree2 * ’a bintree2 ; ;

type ’a bintree2 =

| Empty2

| Leaf2 of ’a

| Node2 of ’a * ’a bintree2 * ’a bintree2

let s2 =

Node2(2, Node2(1, Leaf2 0, Empty2), Leaf2 3) ; ;

val s2 : int bintree2 = Node2 (2, Node2 (1, Leaf2 0, Empty2), Leaf2 3)

let s1, s2 = size s1, size s2 ; ;

val s1 : int = 13

val s2 : int = 9

The values given by the size function reflect well the intuition that one might have
of the size of s1 and s2.

Typing Problem

The real problem with persistent values is that it is possible to break the type system of
Objective Caml. The creation functions return a monomorphic type (unit or string).
On the other hand unmarshalling functions return a polymorphic type ’a. From the
point of view of types, you can do anything with a persistent value. Here is the usage
that can be done with it (see chapter 2, page 58): create a function magic copy of type

234 Chapter 8 : Libraries

’a -> ’b.
let magic copy a =

let s = Marshal.to string a [Marshal.Closures] in

Marshal.from string s 0; ;

val magic_copy : ’a -> ’b = <fun>

The use of such a function causes a brutal halt in the execution of the program.

(magic_copy 3 : float) +. 3.1;;
Segmentation fault

In interactive mode (under Linux), we even leave the toplevel (interactive) loop with
a system error signal corresponding to a memory violation.

Interface with the System

The standard library has six system interface modules:

• module Sys: for communication between the operating system and the program;

• module Arg: to analyze parameters passed to the program from the command
line;

• module Filename: operations on file names

• module Printexc: for the interception and printing of exceptions;

• module Gc: to control the mechanism that automatically deallocates memory,
described in chapter 9;

• module Callback: to call Objective Caml functions from C, described in chapter
12.

The first four modules are described below.

Module Sys

This module provides quite useful functions for communication with the operating
system, such as handling the signals received by a program. The values in figure 8.6
contain information about the system.

Communication between the program and the system can go through the command
line, the value of an environmental variable, or through running another program.
These functions are described in figure 8.7.

The functions of the figure 8.8 allow us to navigate in the file hierarchy.

Finally, the management of signals will be described in the chapter on system pro-
gramming (see chapter 18).

Standard Library 235

OS type : string

type of system
interactive : bool ref

true if executing at the toplevel
word size : string

size of a word (32 or 64 bits)
max string length : int

maximum size of a string
max array length : int

maximum size of a vector
time : unit -> float

gives the time in seconds since the start of the pro-
gram

Figure 8.6: Information about the system.

argv : string array

contains the vector of parameters
getenv : string -> string

retrieves the value of a variable
command : string -> int

executes the command passed as an argument

Figure 8.7: Communication with the system.

file exists : string -> bool

returns true if the file exists
remove : string -> unit

destroys a file
rename : string -> string -> unit

renames a file
chdir : string -> unit

change the current directory
getcwd : unit -> string

returns the name of the current directory

Figure 8.8: File manipulation.

236 Chapter 8 : Libraries

Here is a small program that revisits the example of saving a graphics window as an
array of colors. The main function verifies that it is not started from the interactive
loop, then reads from the command line the names of files to display, then tests if they
exist, then displays them (with the load screen function). We wait for a key to be
pressed between displaying two images.
let main () =

if not (!Sys.interactive) then

for i = 0 to Array.length(Sys.argv) -1 do

let name = Sys.argv.(i) in

if Sys.file exists name then

begin

ignore(load screen name);

ignore(Graphics.read key)

end

done; ;

val main : unit -> unit = <fun>

Module Arg

The Arg module defines a small syntax for command line arguments. With this module,
you can parse arguments and associate actions with them. The various elements of the
command line are separated by one or more spaces. They are the values stored in
the Sys.argv array. In the syntax provided by Arg, certain elements are distinguished
by starting with the minus character (-). These are called command line keywords or
switches. One can associate a specific action with a keyword or take as an argument a
value of type string, int or float. The value of these arguments is initialized with
the value found on the command line just after the keyword. In this case one can call
a function that converts character strings into the expected type. The other elements
on the command line are called anonymous arguments. One associates an action with
them that takes their value as an argument. An undefined option causes the display
of some short documentation on the command line. The documentation’s contents are
defined by the user.

The actions associated with keywords are encapsulated in the type:
type spec =

| Unit of (unit → unit) (* Call the function with unit argument*)

| Set of bool ref (* Set the reference to true*)

| Clear of bool ref (* Set the reference to false*)

| String of (string → unit) (* Call the function with a string

argument *)

| Int of (int → unit) (* Call the function with an int

argument *)

| Float of (float → unit) (* Call the function with a float

argument *)

| Rest of (string → unit) (* Stop interpreting keywords and call the

Standard Library 237

function with each remaining argument*)

The command line parsing function is:
Arg.parse ; ;

- : (string * Arg.spec * string) list -> (string -> unit) -> string -> unit =

<fun>

Its first argument is a list of triples of the form (key, spec, doc) such that:

• key is a character string corresponding to the keyword. It starts with the reserved
character ’ ’.

• spec is a value of type spec specifying the action associated with key.

• doc is a character string describing the option key. It is displayed upon a syntax
error.

The second argument is the function to process the anonymous command line ar-
guments. The last argument is a character string displayed at the beginning of the
command line documentation.

The Arg module also includes:

• Bad: an exception taking as its argument a character string. It can be used by
the processing functions.

• usage: of type (string * Arg.spec * string) list -> string -> unit, this
function displays the command line documentation. One preferably provides it
with the same arguments as those of parse.

• current: of type int ref that contains a reference to the current value of the
index in the Sys.argv array. One can therefore modify this value if necessary.

By way of an example, we show a function read args that initializes the configuration
of the Minesweeper game seen in chapter 6, page 176. The possible options will be
-col, -lin and -min. They will be followed by an integer indicating, respectively: the
number of columns, the number of lines and the number of mines desired. These values
must not be less than the default values, respectively 10, 10 and 15.

The processing functions are:
let set nbcols cf n = cf := {!cf with nbcols = n} ; ;

let set nbrows cf n = cf := {!cf with nbrows = n} ; ;

let set nbmines cf n = cf := {!cf with nbmines = n} ; ;

All three are of type config ref -> int -> unit. The command line parsing function
can be written:
let read args () =

let cf = ref default config in

let speclist =

[("-col", Arg.Int (set nbcols cf), "number of columns (>=10)");

238 Chapter 8 : Libraries

("-lin", Arg.Int (set nbrows cf), "number of lines (>=10)");

("-min", Arg.Int (set nbmines cf), "number of mines (>=15)")]

in

let usage msg = "usage : minesweep [-col n] [-lin n] [-min n]" in

Arg.parse speclist (fun s → ()) usage msg; !cf ; ;

val read_args : unit -> config = <fun>

This function calculates a configuration that will be passed as arguments to open wcf,
the function that opens the main window when the game is started. Each option is, as its
name indicates, optional. If it does not appear on the command line, the corresponding
parameter keeps its default value. The order of the options is unimportant.

Module Filename

The Filename module has operating system independant functions to manipulate the
names of files. In practice, the file and directory naming conventions differ greatly
between Windows, Unix and MacOS.

Module Printexc

This very short module (three functions described in figure 8.9) provides a general
exception handler. This is particularly useful for programs executed in command mode3

to be sure not to allow an exception to escape that would stop the program.

catch : (’a -> ’b) -> ’a -> ’b

general exception handler
print : (’a -> ’b) -> ’a -> ’b

print and re-raise the exception
to string : exn -> string

convert an exception to a string

Figure 8.9: Handling exceptions.

The catch function applies its first argument to its second. This launches the main
function of the program. If an exception arrives at the level of catch, that is to say
that if it is not handled inside the program, then catch will print its name and exit
the program. The print function has the same behavior as catch but re-raises the
exception after printing it. Finally the to string function converts an exception into
a character string. It is used by the two preceding functions. If we look again at the
main function for displaying bitmaps, we might thus write an encapsulating function

3. The interactive mode has a general exception handler that prints a message signaling that an
exception was not handled.

Other Libraries in the Distribution 239

go in the following manner:
let go () =

Printexc.catch main () ; ;

val go : unit -> unit = <fun>

This permits the normal termination of the program by printing the value of the
uncaptured exception.

Other Libraries in the Distribution

The other libraries provided with the Objective Caml language distribution relate to
the following extensions:

• graphics, with the portable Graphics module that was described in chapter 5;

• exact math, containing many modules, and allowing the use of exact calculations
on integers and rational numbers. Numbers are represented using Objective Caml
integers whenever possible;

• regular expression filtering, allowing easier string and text manipulations.
The Str module will be described in chapter 11;

• Unix system calls, with the Unix module allowing one to make unix system
calls from Objective Caml. A large part of this library is nevertheless compatible
with Windows. This bibliography will be used in chapters 18 and 20;

• light-weight processes, comprising many modules that will largely be de-
scribed and used in chapter 19;

• access to NDBD databases, works only in Unix and will not be described;

• dynamic loading of bytecode, implemented by the Dynlink module.

We will describe the big integer and dynamic loading libraries by using them.

Exact Math

The big numbers library provides exact math functions using integers and rational
numbers. Values of type int and float have two limitations: calculations on integers
are done modulo the greatest positive integer, which can cause unperceived overflow
errors; the results of floating point calculations are rounded, which by propagation can
lead to errors. The library presented here mitigates these defects.

This library is written partly in C. For this reason, you have to build an interactive
loop that includes this code using the command:

ocamlmktop -custom -o top nums.cma -cclib -lnums

The library contains many modules. The two most important ones are Num for all the
operations and Arith status for controlling calculation options. The general type num

240 Chapter 8 : Libraries

is a variant type gathering three basic types:
type num = Int of int

| Big int of big int

| Ratio of ratio

The types big int and ratio are abstract.

The operations on values of type num are followed by the symbol /. For example the
addition of two num variables is written +/ and will be of type num -> num -> num. It
will be the same for comparisons. Here is the first example that calculates the factorial:

let rec fact num n =

if Num.(<=/) n (Num.Int 0) then (Num.Int 1)

else Num.(*/) n (fact num (Num.(-/) n (Num.Int 1))); ;

val fact_num : Num.num -> Num.num = <fun>

let r = fact num (Num.Int 100); ;

val r : Num.num = Num.Big_int <abstr>

let n = Num.string of num r in (String.sub n 0 50) ^ "..." ; ;

- : string = "93326215443944152681699238856266700490715968264381..."

Opening the Num module makes the code of fact num easier to read:
open Num ; ;

let rec fact num n =

if n <=/ (Int 0) then (Int 1)

else n */ (fact num (n -/ (Int 1))) ; ;

val fact_num : Num.num -> Num.num = <fun>

Calculations using rational numbers are also exact. If we want to calculate the number
e by following the following definition:

e = limm→∞

(
1 +

1
m

)m

We should write a function that calculates this limit up to a certain m.
let calc e m =

let a = Num.(+/) (Num.Int 1) (Num.(//) (Num.Int 1) m) in

Num.(**/) a m; ;

val calc_e : Num.num -> Num.num = <fun>

let r = calc e (Num.Int 100); ;

val r : Num.num = Ratio <abstr>

let n = Num.string of num r in (String.sub n 0 50) ^ "..." ; ;

- : string = "27048138294215260932671947108075308336779383827810..."

The Arith status module allows us to control some calculations such as the normaliza-
tion of rational numbers, approximation for printing, and processing null denominators.
The arith status function prints the state of these indicators.
Arith status.arith status () ; ;

Other Libraries in the Distribution 241

Normalization during computation --> OFF

(returned by get_normalize_ratio ())

(modifiable with set_normalize_ratio <your choice>)

Normalization when printing --> ON

(returned by get_normalize_ratio_when_printing ())

(modifiable with set_normalize_ratio_when_printing <your choice>)

Floating point approximation when printing rational numbers --> OFF

(returned by get_approx_printing ())

(modifiable with set_approx_printing <your choice>)

Error when a rational denominator is null --> ON

(returned by get_error_when_null_denominator ())

(modifiable with set_error_when_null_denominator <your choice>)

- : unit = ()

They can be modified according to the needs of a calculation. For example, if we want
to print an approximate value for a rational number, we can obtain, for the preceding
calculation:
Arith status.set approx printing true; ;

- : unit = ()

Num.string of num (calc e (Num.Int 100)); ;

- : string = "0.270481382942e1"

Calculations with big numbers take longer than those with integers and the values
occupy more memory. Nevertheless, this library tries to use the most economical rep-
resentations whenever possible. In any event, the ability to avoid the propagation of
rounding errors and to do calculations on big numbers justifies the loss of efficiency.

Dynamic Loading of Code

The Dynlink module offers the ability to dynamically load programs in the form of
bytecode. The dynamic loading of code provides the following advantages:

• reduces the size of a program’s code. If certain modules are not used, they are
not loaded.

• allows the choice at execution time of which module to load. According to certain
conditions at execution time you choose to load one module rather than another.

• allows the modification of the behavior of a module during execution. Here again,
under some conditions the program can load a new module and hide the old code.

The interactive loop of Objective Caml already uses such a mechanism. It is convenient
to let the programmer have access to it as well.

242 Chapter 8 : Libraries

During the loading of an object file (with the .cmo extension), the various expressions
are evaluated. The main program, that initiated the dynamic loading of the code does
not have access to the names of declarations. Therefore it is up to the dynamically
loaded module to update a table of functions used by the main program.

Warning The dynamic loading of code only works for object files
in bytecode.

Description of the Module

For dynamic loading of a bytecode file f.cmo, we need to know the access path to the
file and the names of the modules that it uses. By default, dynamically loaded bytecode
files do not have access to the paths and modules of the libraries in the distribution.
Thus we have to add the path and the name of the required modules to the dynamic
loading of the module.

init : unit -> unit

initialize dynamic loading
add interfaces : string list -> string list -> unit

add the names of modules and paths for load-
ing

loadfile : string -> unit

load a bytecode file
clear avalaible units : unit -> unit

empty the names of loadable modules and
paths

add avalaible units : (string * Digest.t) list -> unit

add the name of a module and a checksum†

for loading without needing the interface file
allow unsafe modules : bool -> unit

allow the loading of files containing external

declarations
loadfile private : string -> unit

the loaded module is not accessible to modules
loaded later

† The checksum of an interface .cmi can be obtained from the extract crc command found in
the catalog of libraries in the distribution.

Figure 8.10: Functions of the Dynlink module.

Many errors can occur during a request to load a module. Not only must the file exist
with the right interface in one of the paths, but the bytecode must also be correct
and loadable. These errors are gathered in the type error used as an argument to the

Other Libraries in the Distribution 243

Error exception and to the error function of type error -> string that allows the
conversion of an error into a clear description.

Example

To write a small program that allows us to illustrate dynamic loading of bytecode, we
provide three modules:

• F that contains the definition of a reference to a function f;

• Mod1 and Mod2 that modify in different ways the function referenced by F.f.

The F module is defined in the file f.ml:
let g () =

print string "I am the ’f’ function by default\n" ; flush stdout ; ;

let f = ref g ; ;

The Mod1 module is defined in the file mod1.ml:
print string "The ’Mod1’ module modifies the value of ’F.f’\n" ; flush stdout ; ;

let g () =

print string "I am the ’f’ function of module ’Mod1’\n" ;

flush stdout ; ;

F.f := g ; ;

The Mod2 module is defined in the file mod2.ml:
print string "The ’Mod2’ module modifies the value of ’F.f’\n" ; flush stdout ; ;

let g () =

print string "I am the ’f’ function of module ’Mod2’\n" ;

flush stdout ; ;

F.f := g ; ;

Finally we define in the file main.ml, a main program that calls the original function
referenced by F.f, loads the Mod1 module, calls F.f again, then loads the Mod2 module
and calls the F.f function one last time:
let main () =

try

Dynlink.init () ;

Dynlink.add interfaces ["Pervasives"; "F" ; "Mod1" ; "Mod2"]

[Sys.getcwd () ; "/usr/local/lib/ocaml/"] ;

!(F.f) () ;

Dynlink.loadfile "mod1.cmo" ; !(F.f) () ;

Dynlink.loadfile "mod2.cmo" ; !(F.f) ()

with

Dynlink.Error e → print endline (Dynlink.error message e) ; exit 1 ; ;

main () ; ;

244 Chapter 8 : Libraries

The main program must, in addition to initializing the dynamic loading, declare by a
call to Dynlink.add interfaces the interface used.

We compile all of these modules:

$ ocamlc -c f.ml
$ ocamlc -o main dynlink.cma f.cmo main.ml
$ ocamlc -c f.cmo mod1.ml
$ ocamlc -c f.cmo mod2.ml

If we execute program main, we obtain:

$ main
I am the ’f’ function by default
The ’Mod1’ module modifies the value of ’F.f’
I am the ’f’ function of module ’Mod1’
The ’Mod2’ module modifies the value of ’F.f’
I am the ’f’ function of module ’Mod2’

Upon the dynamic loading of a module, its code is executed. This is demonstrated in
our example, with the outputs beginning with The ’Mod.... The possible side effects
that it contains are therefore reflected at the level of the program that caused the code
to be loaded. This is why the different calls to F.f call different functions.

The Dynlink library offers the basic mechanism for dynamically loading bytecode. The
programmer still has to manage tables such that the loading will really be effective.

Exercises

Resolution of Linear Systems

This exercise revisits the resolution of linear systems presented as an exercise in the
chapter on imperative programming (see chapter 3).

1. By using the Printf module, write a function print system that aligns the
columns of the system.

2. Test this function on the examples given on page 89.

Search for Prime Numbers

The Sieve of Eratosthenes is an easily programmed algorithm that searches for prime
numbers in a range of integers, given that the lower limit is a prime number. The
method is:

1. Enumerate, in a list, all the values on the range.

Exercises 245

2. Remove from the list all the values that are multiples of the first element.

3. Remove this first element from the list, and keep it as a prime.

4. Restart at step 2 as long as the list is not empty.

Here are the steps to create a program that implements this algorithm:

1. Write a function range that builds a range of integers represented in the form
of a list.

2. Write a function eras that calculates the prime numbers on a range of integers
starting with 2, according to the algorithm of the Sieve of Eratosthenes.
Write a function era go that takes an integer and returns a list of all the prime
numbers smaller than this integer.

3. We want to write an executable primes that one will launch by typing the
command primes n, where n is an integer. This executable will print the prime
numbers smaller than n. For this we must use the Sys module and check whether
a parameter was passed.

Displaying Bitmaps

Bitmaps saved as color array array are bulky. Since 24 bits of color are rarely used,
it is possible to encode a bitmap in less space. For this we will analyze the number of
colors in a bitmap. If the number is small (for example less than 256) we can encode
each pixel in 1 byte, representing the number of the color in the table of colors of this
bitmap.

1. Write a function analyze colors exploring a value of type color array array

and that returns a list of all the colors found in this image.

2. From this list, construct a palette. We will take a vector of colors. The index in
the table will correspond to the order of the color, and the contents are the color
itself. Write the function find index that returns the index of a value stored in
the array.

3. From this table, write a conversion function, encode, that goes from a color

array array to a string. Each pixel is thus represented by a character.

4. Define a type image tdc comprising a table that matches colors to a vector of
strings, allowing the encoding of a bitmap (or color array) using a smaller method.

5. Write the function to image tdc to convert a color array array to this type.

6. Write the function save image tdc to save the values to a file.

7. Compare the size of the file obtained with the saved version of an equivalent
palette.

8. Write the function from image tdc to do the reverse conversion.

9. Use it to display an image saved in a file. The file will be in the form of a value
of type bitmap tdc.

246 Chapter 8 : Libraries

Summary

This chapter gave an overview of the different Objective Caml libraries presented as
a set of simple modules (or compilation units). The modules for output formatting
(Printf), persistant values (Marshal), the system interface (Sys) and the handling of
exceptions (module Printexc) were detailed. The modules concerning parsing, memory
management, system and network programming and light-weight processes will be
presented in the following chapters.

To Learn More

The overview of the libraries in the distribution of the language showed the richness
of the basic environment. For the Printf module nothing is worth more than reading
a work on the C language, such as [HS94]. In [FW00] a solution is proposed for the
typing of intput-output of values (module Marshal). The MD5 algorithm of the Digest
module is described on the web page of its designer:

Link: http://theory.lcs.mit.edu/˜rivest/homepage.html

In the same way you may find many articles on exact arithmetic used by the num library
on the web page of Valérie Ménissier-Morain :

Link: http://www-calfor.lip6.fr/˜vmm/

There are also other libraries than those in the distribution, developed by the commu-
nity of Objective Caml programmers. Objective Caml. The majority of them are listed
on the “Camel’s hump” site:

Link: http://caml.inria.fr/hump.html

Some of them will be presented and discussed in the chapter on applications develop-
ment (see chapter 22).

To know the exact contents of the various modules, don’t hesitate to read the descrip-
tion of the libraries in the reference manual [LRVD99] or consult the online version in
HTML format (see chapter 1). To enter into the details of the implementations of these
libraries, nothing is better than reading the source code, available in the distribution
of the language (see chapter 1).
Chapter 14 presents the language of Objective Caml modules. This allows you to build
simple modules seen as independent compilation units, which will be similar to the
modules presented in this chapter.

