
9
Garbage Collection

The execution model of a program on a microprocessor corresponds to that of impera-
tive programming. More precisely, a program is a series of instructions whose execution
modifies the memory state of the machine. Memory consists mainly of values created
and manipulated by the program. However, like any computer resource, available mem-
ory has a finite size; a program trying to use more memory than the system provides
will be in an incoherent state. For this reason, it is necessary to reuse the space of values
that are at a given moment no longer used by future computations during continued
execution. Such memory management has a strong influence on program execution and
its efficiency.

The action of reserving a block of memory for a certain use is called allocation. We
distinguish static allocation, which happens at program load time, i.e. before execution
starts, from dynamic allocation, which happens during program execution. Whereas
statically allocated memory is never reclaimed during execution, dynamically allocated
regions are susceptible to being freed, or to being reused during execution.

Explicit memory management is risky for two reasons:

• if a block of memory is freed while it contains a value still in use, this value may
become corrupted before being accessed. References to such values are called
dangling pointers;

• if the address of a memory block is no longer known to the program, then the
corresponding block cannot be freed before the end of program execution. In such
cases, we speak of a memory leak.

Explicit memory management by the programmer requires much care to avoid these
two possibilities. This task becomes rather difficult if programs manipulate complicated
data structures, and in particular if data structures share common regions of memory.

To free the programmer from this difficult exercise, automatic memory management
mechanisms have been introduced into numerous programming languages. The main

248 Chapter 9 : Garbage Collection

idea is that at any moment during execution, the only dynamically allocated values
potentially useful to the program are those whose addresses are known by the program,
directly or indirectly. All values that can no longer be reached at that moment cannot
be accessed in the future and thus their associated memory can be reclaimed. This
deallocation can be effected either immediately when a value becomes unreachable, or
later when the program requires more free space than is available.

Objective Caml uses a mechanism called garbage collection (GC) to perform automatic
memory management. Memory is allocated at value construction (i.e., when a construc-
tor is applied) and it is freed implicitly. Most programs do not have to deal with the
garbage collector directly, since it works transparently behind the scenes. However,
garbage collection can have an effect on efficiency for allocation-intensive programs.
In such cases, it is useful to control the GC parameters, or even to invoke the col-
lector explicitly. Moreover, in order to interface Objective Caml with other languages
(see chapter 12), it is necessary to understand what constraints the garbage collector
imposes on data representations.

Chapter Overview

This chapter presents dynamic memory allocation strategies and garbage collection
algorithms, in particular the one used by Objective Caml which is a combination of
the presented algorithms. The first section provides background on different classes of
memory and their characteristics. The second section describes memory allocation and
compares implicit and explicit deallocation. The third section presents the major GC
algorithms. The fourth section details Objective Caml’s algorithm. The fifth section
uses the Gc module to control the heap. The sixth section introduces the use of weak
pointers from the Weak module to implement caches.

Program Memory

A machine code program is a sequence of instructions manipulating values in memory.
Memory consists generally of the following elements:

• processor registers (for direct and fast access),

• the stack,

• a data segment (static allocation region),

• the heap (dynamic allocation region).

Only the stack and the dynamic allocation region can change in size during the execu-
tion of a program. Depending on the programming language used, some control over
these classes of memory can be exercised. Whereas the program instructions (code)
usually reside in static memory, dynamic linking (see page 241) makes use of dynamic
memory.

Allocation and Deallocation of Memory 249

Allocation and Deallocation of Memory

Most languages permit dynamic memory allocation, among them C, Pascal, Lisp, ML,
SmallTalk, C++, Java, ADA.

Explicit Allocation

We distinguish two types of allocation:

• a simple allocation reserving a block of memory of a certain size without concern
of its contents;

• an allocation combining the reservation of space with its initialization.

The first case is illustrated by the function new in Pascal or malloc in C. These return
a pointer to a memory block (i.e. its address), through which the value stored in
memory can be read or modified. The second case corresponds to the construction
of values in Objective Caml, Lisp, or in object-oriented languages. Class instances in
object-oriented languages are constructed by combining new with the invocation of a
constructor for the class, which usually expects a number of parameters. In functional
languages, constructor functions are called in places where a structural value (tuple,
list, record, vector, or closure) is defined.

Let’s examine an example of value construction in Objective Caml. The representation
of values in memory is illustrated in Figure 9.1.

’c’ ’a’

ul

’m’

’z’ ’z’

vr p

Figure 9.1: Memory representation of values.

let u = let l = [’c’; ’a’; ’m’] in List.tl l ; ;

val u : char list = [’a’; ’m’]

250 Chapter 9 : Garbage Collection

let v = let r = ([’z’] , u)

in match r with p → (fst p) @ (snd p) ; ;

val v : char list = [’z’; ’a’; ’m’]

A list element is represented by a tuple of two words, the first containing a character
and the second containing a pointer to the next element of the list. The actual runtime
representation differs slightly and is described in the chapter on interfacing with C (see
page 315).

The first definition constructs a value named l by allocating a cell (constructor ::) for
each element of the list [’c’;’a’;’m’]. The global declaration u corresponds to the
tail of l. This establishes a sharing relationship between l and u, i.e. between the
argument and the result of the function call to List.tl.

Only the declaration u is known after the evaluation of this first statement.

The second statement constructs a list with only one element, then a pair called r
containing this list and the list u. This pair is pattern matched and renamed p by the
matching. Next, the first element of p is concatenated with its second element, which
creates a value [’z’;’a’;’m’] tied to the global identifier v. Notice that the result of
snd (the list [’a’;’m’]) is shared with its argument p whereas the result of fst (the
character ’z’) is copied.

In each case memory allocation is explicit, meaning that it is requested by the pro-
grammer (by a language command or instruction).

Note
Allocated memory stores information on the size of the object allocated
in order to be able to free it later.

Explicit Reclamation

Languages with explicit memory reclamation possess a freeing operator (free in C or
dispose in Pascal) that take the address (a pointer) of the region to deallocate. Using
the information stored at allocation time, the program frees this region and may re-use
it later.

Dynamic allocation is generally used to manipulate data structures that evolve, such as
lists, trees etc.. Freeing the space occupied by such data is not done in one fell swoop,
but instead requires a function to traverse the data. We call such functions destructors.

Although correctly defining destructors is not too difficult, their use is quite delicate.
In fact, in order to free the space occupied by a structure, it is necessary to traverse the
structure’s pointers and apply the language’s freeing operator. Leaving the responsi-
bility of freeing memory to the programmer has the advantage that the latter is sure of
the actions taken. However, incorrect use of these operators can cause an error during
the execution of the program. The principal dangers of explicit memory reclamation
are:

Allocation and Deallocation of Memory 251

• dangling pointers: a memory region has been freed while there are still pointers
pointing at it. If the region is reused, access to the region by these pointers risks
being incoherent.

• Inaccessible memory regions (a memory “leak”): a memory region is still allo-
cated, but no longer referenced by any pointer. There is no longer any possibility
of freeing the region. There is a clear loss of memory.

The entire difficulty with explicit memory reclamation is that of knowing the lifetime
of the set of values of a program.

Implicit Reclamation

Languages with implicit memory reclamation do not possess memory-freeing operators.
It is not possible for the programmer to free an allocated value. Instead, an automatic
reclamation mechanism is engaged when a value is no longer referenced, or at the time
of an allocation failure, that is to say, when the heap is full.

An automatic memory reclamation algorithm is in some ways a global destructor.
This characteristic makes its design and implementation more difficult than that of a
destructor dedicated to a particular data structure. But, once this difficulty is overcome,
the memory reclamation function obtained greatly enhances the safety of memory
management. In particular, the risk of dangling pointers disappears.

Furthermore, an automatic memory reclamation mechanism may bring good properties
to the heap:

• compaction: all the recovered memory belongs to a single block, thereby avoiding
fragmentation of the heap, and allowing allocation of objects of the size of the
free space on the heap;

• localization: the different parts of the same value are close to one another from the
point of view of memory address, permitting them to remain in the same memory
pages during use, and thereby avoiding their erasure from cache memory.

Design choices for a garbage collector must take certain criteria and constraints into
account:

• reclamation factor: what percentage of unused memory is available?

• memory fragmentation: can one allocate a block the size of the free memory?

• the slowness of allocation and collection;

• what freedom do we have regarding the representation of values?

In practice, the safety criterion remains primordial, and garbage collectors find a com-
promise among the other constraints.

252 Chapter 9 : Garbage Collection

Automatic Garbage Collection

We classify automatic memory reclamation algorithms into two classes:

• reference counters: each allocated region knows how many references there are to
it. When this number becomes zero, the region is freed.

• sweep algorithms: starting from a set of roots, the collection of all accessible
values is traversed in a way similar to the traversal of a directed graph.

Sweep algorithms are more commonly used in programming languages. In effect, ref-
erence counting garbage collectors increase the processing costs (through counter up-
dating) even when there is no need to reclaim anything.

Reference Counting

Each allocated region (object) is given a counter. This counter indicates the number of
pointers to the object. It is incremented each time a reference to the object is shared. It
is decremented whenever a pointer to the object disappears. When the counter becomes
zero, the object is garbage collected.

The advantage of such a system comes from the immediate freeing of regions that
are no longer used. Aside from the systematic slowdown of computations, reference
counting garbage collectors suffer from another disadvantage: they do not know how
to process circular objects. Suppose that Objective Caml had such a mechanism. The
following example constructs a temporary value l, a list of characters of where the last
element points to the cell containing ’c’. This is clearly a circular value (figure 9.2).
let rec l = ’c’ :: ’a’ :: ’m’ :: l in List.hd l ; ;

- : char = ’c’

At the end of the calculation of this expression each element of the list l has a counter

’c’ ’a’

l

’m’

Figure 9.2: Memory representation of a circular list.

equal to one (even the first element, for the tail points to the head). This value is
no longer accessible and yet cannot be reclaimed because its reference counter is not
zero. In languages equipped with memory reclamation via reference counting—such as
Python—and which allow the construction of circular values, it is necessary to add a
memory sweep algorithm.

Automatic Garbage Collection 253

Sweep Algorithms

Sweep algorithms allow us to explore the graph of accessible values on the heap. This
exploration uses a set of roots indicating the beginning of the traversal. These roots
are exterior to the heap, stored most often in a stack. In the example in figure 9.1, we
can suppose that the values of u and v are roots. The traversal starting from these
roots constructs the graph of the values to save: the cells and pointers marked with
heavy lines in figure 9.3.

’c’ ’a’

l

’m’

’z’ ’z’

v
r p

u

Figure 9.3: Memory reclamation after a garbage collection.

The traversal of this graph necessitates knowing how to distinguish immediate values
from pointers in the heap. If a root points to an integer, we must not consider this
value to be the address of another cell. In functional languages, this distinction is made
by using a few bits of each cell of the heap. We call these bits tag bits. This is why
Objective Caml integers only use 31 bits. This option is described in Chapter 12, page
325. We describe other solutions to the problem of distinguishing between pointers and
immediate values in this chapter, page 260.

The two most commonly used algorithms are Mark&Sweep, which constructs the list
of the free cells in the heap, and Stop&Copy, which copies cells that are still alive to a
second memory region.

The heap should be seen as a vector of memory boxes. The representation of the state
of the heap for the example of figure 9.1 is illustrated in figure 9.4.

We use the following characteristics to evaluate a sweep algorithm:

• efficiency: does the time-complexity depend on the size of the heap or only on
the number of the living cells?

• reclamation factor: is all of the free memory usable?
• compactness: is all of the free memory usable in a single block?

254 Chapter 9 : Garbage Collection

’c’ ’a’ ’m’ ’z’ ’z’

u

v

roots

HEAP

Figure 9.4: State of the heap.

• localization: are all of the different cells of a structured value close to one another?

• memory needs: does the algorithm need to use part of the memory when it runs?

• relocation: do values change location following a garbage collection?

Localization avoids changing memory pages when traversing a structured value. Com-
pactness avoids fragmentation of the heap and allows allocations equal to the amount
of available memory. The efficiency, reclamation factor, and supplementary memory
needs are intimately linked to the time and space complexity of the algorithm.

Mark&Sweep

The idea of Mark&Sweep is to keep an up-to-date list of the free cells in the heap
called the free list. If, at the time of an allocation request, the list is empty or no
longer contains a free cell of a sufficient size, then a Mark&Sweep occurs.

It proceeds in two stages:

1. the marking of the memory regions in use, starting from a set of roots (called the
Mark phase); then

2. reclamation of the unmarked memory regions by sequentially sweeping through
the whole heap (called the Sweep phase).

One can illustrate the memory management of Mark&Sweep by using four “colorings”
of the heap cells: white, gray1, black, and hached. The mark phase uses the gray; the
sweep phase, the hached; and the allocation phase, the white.

The meaning of the gray and black used by marking is as follows:

• gray: marked cells whose descendents are not yet marked;

• black: marked cells whose descendents are also marked.

1. In the online version of the book, the gray is slightly bluish.

Automatic Garbage Collection 255

It is necessary to keep the collection of grayed cells in order to be sure that everything
has been explored. At the end of the marking each cell is either white or black, with
black cells being those that were reached from the roots. Figure 9.5 shows an interme-
diate marking stage for the example of figure 9.4: the root u has been swept, and the
sweeping of v is about to begin.

’c’ ’a’ ’m’ ’z’ ’z’

u
black

grey

white
v

roots

HEAP

free list

Figure 9.5: Marking phase.

It’s during the sweep phase that the free list is constructed. The sweep phase modifies
the colorings as follows:

• black becomes white, as the cell is alive;

• white becomes hached, and the cell is added to the free list.

Figure 9.6 shows the evolution of the colors and the construction of the free list.

���
�

���������������
���������������

���������������������
���������������������

’c’ ’a’ ’m’ ’z’ ’z’

u
black

grey

white

hatched

HEAP

v

roots

free list

handled part of the heap

Figure 9.6: Sweep phase.

Characteristics of Mark&Sweep are that it:

• depends on the size of the entire heap (Sweep phase);

• reclaims all possible memory;

• does not compact memory;

256 Chapter 9 : Garbage Collection

• does not guarantee localization;

• does not relocate data.

The marking phase is generally implemented by a recursive function, and therefore
uses space on the execution stack. One can give a completely iterative version of
Mark&Sweep that does not require a stack of indefinite size, but it turns out to be
less efficient than the partially recursive version.

Finally, Mark&Sweep needs to know the size of values. The size is either encoded in
the values themselves, or deduced from the memory address by splitting the heap into
regions that allocate objects of a bounded size. The Mark&Sweep algorithm, imple-
mented since the very first versions of Lisp, is still widely used. A part of the Objective
Caml garbage collector uses this algorithm.

Stop&Copy

The principal idea of this garbage collector is to use a secondary memory in order to
copy and compact the memory regions to be saved. The heap is divided into two parts:
the useful part (called from-space), and the part being re-written (called to-space).

’c’ ’a’ ’m’ ’z’ ’z’

u

from-space

to-space

roots

v

HEAP

already handled free box

Figure 9.7: Beginning of Stop&Copy.

The algorithm is the following. Beginning from a set of roots, each useful part of the
from-space is copied to the to-space; the new address of a relocated value is saved (most
often in its old location) in order to update all of the other values that point to this
value.

The contents of the rewritten cells gives new roots. As long as there are unprocessed
roots the algorithm continues.

Automatic Garbage Collection 257

�����
�����
�����

�����
�����
�����

’c’ ’m’ ’z’ ’z’

u

from-space

to-space’a’

free box

roots

v

HEAP

already handled

Figure 9.8: Rewriting from from-space into to-space.

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

’c’ ’z’ ’z’

u

from-space

to-space’a’ ’m’

free box

roots

v

HEAP

already handled

Figure 9.9: New roots.

In the case of sharing, in other words, when attempting to relocate a value that has
already been relocated, it suffices to use the new address.

At the end of garbage collection, all of the roots are updated to point to their new
addresses. Finally, the roles of the two parts are reversed for the next garbage collection.

The principal characteristics of this garbage collector are the following:

• it depends solely on the size of the objects to be kept;

258 Chapter 9 : Garbage Collection

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

’c’ ’z’

u

from-space

to-space’a’ ’m’

already handled

’z’

free box

v

roots

HEAP

Figure 9.10: Sharing.

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

’c’ ’z’

u

’a’ ’m’ ’z’

free box

roots

v

HEAP

from-space

to-space

Figure 9.11: Reversing the two parts.

• only half of the memory is available;

• it compacts memory;

• it may localize values (using breadth-first traversal);

• it does not use extra memory (only from-space+to-space);

• the algorithm is not recursive;

• it relocates values into the new part of memory;

Automatic Garbage Collection 259

Other Garbage Collectors

Many other techniques, often derived from the two preceding, have been used: either
in particular applications, e.g., the manipulation of large matrices in symbolic cal-
culations, or in a general way linked to compilation techniques. Generational garbage
collectors allow optimizations based on the age of the values. Conservative garbage col-
lectors are used where there is not an explicit differentiation between immediate values
and pointers (for example, when one translates into C). Finally, incremental garbage
collectors allow us to avoid a noticeable slow-down at the time of garbage collection
activation.

Generational Garbage Collection

Functional programs are, in general, programs that allocate frequently. We notice that
a very large number of values have a very short lifetime2. On the other hand, when a
value has survived several garbage collections, it is quite likely to survive for a while
longer. In order to avoid complete traversal of the heap—as in Mark&Sweep—during
each memory reclamation, we would like to be able to traverse only the values that have
survived one or more garbage collections. Most frequently, it is among the young values
that we will recover the most space. In order to take advantage of this property, we
give objects dates, either a time-stamp or the number of garbage collections survived.
To optimize garbage collection, we use different algorithms according to the age of the
values:

• The garbage collections for young objects should be fast and traverse only the
younger generations.

• The garbage collections for old objects should be rare and do well at collecting
free space from the entire memory.

As a value ages it should take part less and less in the most frequent garbage collec-
tions. The difficulty, therefore, is taking count of only the region of memory occupied
by young objects. In a purely functional language, that is, a language without assign-
ment, younger objects reference older objects, and on the other hand, older objects do
not possess pointers to younger objects because they were created before the young
objects existed. Therefore, these garbage collection techniques lend themselves well to
functional languages, with the exception of those with delayed evaluation which can
in fact evaluate the constituents of a structure after evaluating the structure itself.
On the other hand, for functional languages with assignment it is always possible to
modify part of an older object to refer to a younger object. The problem then is to
save young memory regions referenced only by an older value. For this, it is necessary
to keep an up-to-date table of references from old objects to young objects in order to
have a correct garbage collection. We study the case of Objective Caml in the following
section.

2. Most values do not survive a single garbage collection.

260 Chapter 9 : Garbage Collection

Conservative Garbage Collectors

To this point, all of the garbage collection techniques presume knowing how to tell a
pointer from an immediate value. Note that in functional languages with parametric
polymorphism values are uniformly represented, and in general occupy one word of
memory3. This is what allows having generic code for polymorphic functions.

However, this restriction on the range for integers may not be acceptable. In this case,
conservative garbage collectors make it possible to avoid marking immediate values
such as integers. In this case, every value uses an entire memory word without any
tag bits. In order to avoid traversing a memory region starting from a root actually
containing an integer, we use an algorithm for discriminating between immediate values
and pointers that relies on the following observations:

• the addresses of the beginning and end of the heap are known so any value outside
of these bounds is an immediate value;

• allocated objects are aligned on a word address. Every value that does not cor-
respond to such an alignment must also be an immediate value.

Thus each heap value that is valid from the point of view of being an address into
the heap is considered to be a pointer and the garbage collector tries to keep this
region, including those cases where the value is in fact an immediate value. These
cases may become very rare by using specific memory pages according to the size of
the objects. It is not possible to guarantee that the entire unused heap is collected.
This is the principal defect of this technique. However, we remain certain that only
unused regions are reclaimed.

In general, conservative garbage collectors are conservative, i.e., they do not relocate
objects. Indeed, as the garbage collector considers some immediate values as pointers,
it would be harmful to change their value. Nevertheless, some refinements can be
introduced for building the sets of roots, which allow to relocate corresponding to
clearly known roots.

Garbage collection techniques for ambiguous roots are often used when compiling a
functional language into C, seen here as a portable assembler. They allow the use of
immediate C values coded in a memory word.

Incremental Garbage Collection

One of the criticisms frequently made of garbage collection is that it stops the execution
of a running program for a time that is perceptible to the user and is unbounded. The
first is embarrassing in certain applications, for instance, rapid-action games where
the halting of the game for a few seconds is too often prejudicial to the player, as
the execution restarts without warning. The latter is a source of loss of control for
applications which must process a certain number of events in a limited time. This is

3. The only exception in Objective Caml relates to arrays of floating point values (see chapter 12,
page 331).

Memory Management by Objective Caml 261

typically the case for embedded programs which control a physical device such as a
vehicle or a machine tool. These applications, which are real-time in the sense that
they must respond in a bounded time, most often avoid using garbage collectors.

Incremental garbage collectors must be able to be interrupted during any one of their
processing phases and be able to restart while assuring the safety of memory recla-
mation. They give a sufficiently satisfactory method for dealing with the former case,
and can be used in the latter case by enforcing a programming discipline that clearly
isolates the software components that use garbage collection from those that do not.

Let us reconsider the Mark&Sweep example and see what adaptations are necessary in
order to make it incremental. There are essentially two:

1. how to be sure of having marked everything during the marking phase?

2. how to allocate during either the marking phase or the reclamation phase?

If Mark&Sweep is interrupted in the Mark phase, it is necessary to assure that cells
allocated between the interruption of marking and its restart are not unduly reclaimed
by the Sweep that follows. For this, we mark cells allocated during the interruption in
black or gray in anticipation.

If the Mark&Sweep is interrupted during the Sweep phase, it can continue as usual in
re-coloring the allocated cells white. Indeed, as the Sweep phase sequentially traverses
the heap, the cells allocated during the interruption are localized before the point where
the sweep restarts, and they will not be re-examined before the next garbage collection
cycle.

Figure 9.12 shows an allocation during the reclamation phase. The root w is created
by:
let w = ’f’ :: v; ;

val w : char list = [’f’; ’z’; ’a’; ’m’]

Memory Management by Objective Caml

Objective Caml’s garbage collector combines the various techniques described above.
It works on two generations, the old and the new. It mainly uses a Stop&Copy on the
new generation (a minor garbage collection) and an incremental Mark&Sweep on the
old generation (major garbage collection).

A young object that survives a minor garbage collection is relocated to the old gener-
ation. The Stop&Copy uses the old generation as the to-space. When it is finished,
the entire from-space is completely freed.

When we presented generational garbage collectors, we noted the difficulty presented
by impure functional languages: an old-generation value may reference an object of the
new generation. Here is a small example.
let older = ref [1] ; ;

262 Chapter 9 : Garbage Collection

���
�

���������������������
���������������������

’a’ ’m’ ’z’ ’z’

u

free list

black

grey

white’f’

hatched

v

w

roots

HEAP

handled part of the heap

Figure 9.12: Allocation during reclamation.

val older : int list ref = {contents=[1]}

(* ... *)

let newer = [2;5;8] in

older := newer ; ;

- : unit = ()

The comment (* ... *) replaces a long sequence of code in which older passes into
the older generation. The minor garbage collection must take account of certain old
generation values. Therefore we must keep an up-to-date table of the references from
the old generation to the new that becomes part of the set of roots for the minor
garbage collection. This table of roots grows very little and becomes empty just after
a minor garbage collection.

It is to be noted that the Mark&Sweep of the old generation is incremental, which
means that a part of the major garbage collection happens during each minor garbage
collection. The major garbage collection is a Mark&Sweep that follows the algorithm
presented on page 259. The relevance of this incremental approach is the reduction of
waiting time for a major garbage collection by advancing the marking phase with each
minor garbage collection. When a major garbage collection is activated, the marking
of the unprocessed regions is finished, and the reclamation phase is begun. Finally, as
Mark&Sweep may fragment the old generation significantly, a compaction algorithm
may be activated after a major garbage collection.

Putting this altogether, we arrive at the following stages:

1. minor garbage collection: perform a Stop&Copy on the young generation; age
the surviving objects by having them change zone; and then do part of the
Mark&Sweep of the old generation.
It fails if the zone change fails, in which case we go to step 2.

Module Gc 263

2. end of the major garbage collection cycle.
When this fails go on to step 3.

3. another major garbage collection, to see if the objects counted as used during
the incremental phases have become free.
When this fails, go on to step 4.

4. Compaction of the old generation in order to obtain maximal contiguous free
space. If this last step does not succeed, there are no other possibilities, and the
program itself fails.

The GC module allows activation of the various phases of the garbage collector.

A final detail of the memory management of Objective Caml is that the heap space is
not allocated once and for all at the beginning of the program, but evolves with time
(increasing or decreasing by a given size).

Module Gc

The Gc module lets one obtain statistics about the heap and gives control over its
evolution as well as allowing the activation of various garbage collector phases. Two
concrete record types are defined: stat and control. The fields of type control are
modifiable; whereas those of stat are not. The latter simply reflect the state of the
heap at a given moment.

The fields of a stat mainly contain counters indicating:

• the number of garbage collections: minor collections, major collections and
compactions;

• the number of words allocated and transfered since the beginning of the program:
minor words, promoted words, and major words.

The fields of the record control are:

• minor heap size, which defines the size of the zone allotted to the younger gen-
eration;

• major heap increment, which defines the increment applied to the growth of the
region for the older generation;

• space overhead, which defines the percentage of the memory used beyond which
a major garbage collection is begun (the default value is 42);

• max overhead, which defines the connection between free memory and occupied
memory after which compactification is activated. A value of 0 causes a system-
atic compactification after every major garbage collection. The maximal value of
1000000 inhibits compactification.

• verbose is an integer parameter governing the tracing of the activities of the
garbage collector.

Functions manipulating the types stat and control are given in figure 9.13.

264 Chapter 9 : Garbage Collection

stat unit → stat

print stat out channel → unit

get unit → control

set control → unit

Figure 9.13: Control and statistical functions for the heap.

The following functions, of type unit -> unit, force the execution of one or more
stages of the Objective Caml garbage collector: minor (stage 1), major (stages 1 and 2),
full major (stages 1, 2 and 3) and compact (stages 1, 2, 3 and 4).

Examples

Here is what the Gc.stat call shows:
Gc.stat () ; ;

- : Gc.stat =

{Gc.minor_words=555677; Gc.promoted_words=61254; Gc.major_words=205249;

Gc.minor_collections=17; Gc.major_collections=3; Gc.heap_words=190464;

Gc.heap_chunks=3; Gc.live_words=157754; Gc.live_blocks=35600;

Gc.free_words=32704; Gc.free_blocks=83; Gc.largest_free=17994;

Gc.fragments=6; Gc.compactions=0}

We see the number of executions of each phase: minor garbage collection, major garbage
collection, compaction, as well as the number of words handled by the different memory
spaces. Calling compact forces the four stages of the garbage collector, causing the heap
statistics to be modified (see the call of Gc.stat).
Gc.compact () ; ;

- : unit = ()

Gc.stat () ; ;

- : Gc.stat =

{Gc.minor_words=562155; Gc.promoted_words=62288; Gc.major_words=206283;

Gc.minor_collections=18; Gc.major_collections=5; Gc.heap_words=190464;

Gc.heap_chunks=3; Gc.live_words=130637; Gc.live_blocks=30770;

Gc.free_words=59827; Gc.free_blocks=1; Gc.largest_free=59827;

Gc.fragments=0; Gc.compactions=1}

The fields GC.minor collections and compactions are incremented by 1, whereas the
field Gc.major collections is incremented by 2. All of the fields of type GC.control

are modifiable. For them to be taken into account, we must use the function Gc.set,
which takes a value of type control and modifies the behavior of the garbage collector.

For example, the field verbose may take a value from 0 to 127, controlling 7 different
indicators.
c.Gc.verbose <- 31; ;

Module Weak 265

Characters 1-2:

This expression has type int * int but is here used with type Gc.control

Gc.set c; ;

Characters 7-8:

This expression has type int * int but is here used with type Gc.control

Gc.compact () ; ;

- : unit = ()

which prints:

<>Starting new major GC cycle
allocated_words = 329
extra_heap_memory = 0u
amount of work to do = 3285u
Marking 1274 words
!Starting new major GC cycle
Compacting heap...
done.

The different phases of the garbage collector are indicated as well as the number of
objects processed.

Module Weak

A weak pointer is a pointer to a region which the garbage collector may reclaim at
any moment. It may be surprising to speak of a value that might disappear at any
moment. In fact, we must see these weak pointers as a reservoir of values that may
still be available. This turns out to be particularly useful when memory resources are
small compared to the elements to be saved. The classic case is the management of
a memory cache: a value may be lost, but it remains directly accessible as long as it
exists.

In Objective Caml one cannot directly manipulate weak pointers, only arrays of weak
pointers. The Weak module defines the abstract type ’a Weak.t, corresponding to the
type ’a option array, a vector of weak pointers of type ’a. The concrete type ’a

option is defined as follows:

type ’a option = None | Some of ’a;;

The main functions of this module are defined in figure 9.14.

The create function allocates an array of weak pointers, each initialized to None. The
set function puts a value of type ’a option at a specified index. The get function
returns the value contained at index n in a table of weak pointers. The returned
value is then referenced, and no longer reclaimable as long as this reference exists. To

266 Chapter 9 : Garbage Collection

function type
create int -> ’a t

set ’a t -> int -> ’a option -> unit

get ’a t -> int -> ’a option

check ’a t -> int -> bool

Figure 9.14: Main functions of the Weak module.

verify the effective existence of a value, one uses either the check function or pattern
matching on the ’a option type’s patterns. The former solution does not depend on
the representation choice for weak pointers.

Standard functions for sequential structures also exist: length, for the length, and
fill and blit for copies of parts of the array.

Example: an Image Cache

In an image-processing application, it is not rare to work on several images. When
the user moves from one image to another, the first is saved to a file, and the other
is loaded from another file. In general, only the names of the latest images processed
are saved. In order to avoid overly frequent disk access while at the same time not
using too much memory space, we use a memory cache which contains the last images
loaded. The contents of the cache may be freed if necessary. We implement this with
a table of weak pointers, leaving the decision of when to free the images up to the
garbage collector. To load an image we first search the cache. If the image is there, it
becomes the current image. If not, its file is read.

We define a table of images in the following manner:
type table of images = {

size : int;

mutable ind : int;

mutable name : string;

mutable current : Graphics.color array array;

cache : (string * Graphics.color array array) Weak.t } ; ;

The field size gives the size of the table; the field ind gives the index of the current
image; the field name, the name of the current image; the field current, the current
image, and the field cache contains the array of weak pointers to the images. It contains
the last images loaded and their names.

The function init table initializes the table with its first image.
let open image filename =

let ic = open in filename

in let i = ((input value ic) : Graphics.color array array)

in (close in ic ; i) ; ;

val open_image : string -> Graphics.color array array = <fun>

Module Weak 267

let init table n filename =

let i = open image filename

in let c = Weak.create n

in Weak.set c 0 (Some (filename,i)) ;

{ size=n; ind=0; name = filename; current = i; cache = c } ; ;

val init_table : int -> string -> table_of_images = <fun>

The loading of a new image saves the current image in the table and loads the new
one. To do this, we must first try to find the image in the cache.
exception Found of int * Graphics.color array array ; ;

let search table filename table =

try

for i=0 to table.size-1 do

if i<>table.ind then match Weak.get table.cache i with

Some (n,img) when n=filename → raise (Found (i,img))

| _ → ()

done ;

None

with Found (i,img) → Some (i,img) ; ;

let load table filename table =

if table.name = filename then () (* the image is the current image *)

else

match search table filename table with

Some (i,img) →
(* the image found becomes the current image *)

table.current <- img ;

table.name <- filename ;

table.ind <- i

| None →
(* the image isn’t in the cache, need to load it *)

(* find an empty spot in the cache *)

let i = ref 0 in

while (!i<table.size && Weak.check table.cache !i) do incr i done ;

(* if none are free, take a full slot *)

(if !i=table.size then i:=(table.ind+1) mod table.size) ;

(* load the image here and make it the current one *)

table.current <- open image filename ;

table.ind <- !i ;

table.name <- filename ;

Weak.set table.cache table.ind (Some (filename,table.current)) ; ;

val load_table : string -> table_of_images -> unit = <fun>

The load table function tests to see if the image requested is current. If not, it checks
the cache to see if the image exists; if that fails, the function loads the image from disk.
In either of the latter two cases, it makes the image become the current one.

268 Chapter 9 : Garbage Collection

To test this program, we use the following cache-printing function:
let print table table =

for i = 0 to table.size-1 do

match Weak.get table.cache ((i+table.ind) mod table.size) with

None → print string "[] "

| Some (n,_) → print string n ; print string " "

done ; ;

val print_table : table_of_images -> unit = <fun>

Then we test the following program:
let t = init table 10 "IMAGES/animfond.caa" ; ;

val t : table_of_images =

{size=10; ind=0; name="IMAGES/animfond.caa";

current=

[|[|7372452; 7372452; 7372452; 7372452; 7372452; 7372452; 7372452;

7372452; 7372452; 7372452; 7372452; 7372452; 7505571; 7505571; ...|];

...|];

cache=...}

load table "IMAGES/anim.caa" t ; ;

- : unit = ()

print table t ; ;

IMAGES/anim.caa [] [] [] [] [] [] [] [] [] - : unit = ()

This cache technique can be adapted to various applications.

Exercises

Following the evolution of the heap

In order to follow the evolution of the heap, we suggest writing a function that keeps
information on the heap in the form of a record with the following format:
type tr gc = {state : Gc.stat;

time : float; number : int}; ;
The time corresponds to the number of milliseconds since the program began and
the number serves to distinguish between calls. We use the function Unix.time (see
chapter 18, page 572) which gives the running time in milliseconds.

1. Write a function trace gc that returns such a record.

2. Modify this function so that it can save a value of type tr gc in a file in the
form of a persistant value. This new function needs an output channel in order
to write. We use the Marshal module, described on page 228, to save the record.

3. Write a stand-alone program, taking as input the name of a file containing
records of type of tr gc, and displaying the number of major and minor garbage
collections.

Summary 269

4. Test this program by creating a trace file at the interactive loop level.

Memory Allocation and Programming Styles

This exercise compares the effect of programming styles on the growth of the heap.
To do this, we reconsider the exercise on prime numbers from chapter 8 page 244. We
are trying to compare two versions, one tail-recursive and the other not, of the sieve
of Eratosthenes.

1. Write a tail-recursive function erart (this name needs fixing) that calculates the
prime numbers in a given interval. Then write a function that takes an integer
and returns the list of smaller prime numbers.

2. By using the preceding functions, write a program (change the name) that takes
the name of a file and a list of numbers on the command line and calculates,
for each number given, the list of prime numbers smaller than it. This function
creates a garbage collection trace in the indicated file. Trace commands from
previous exercice are gathered in file trgc.ml

3. Compile these files and create a stand-alone executable; test it with the following
call, and display the result.

%
erart trace_rt 3000 4000 5000 6000

4. Do the same work for the non tail recursive function.

5. Compare trace results.

Summary

This chapter has presented the principal families of algorithms for automatic memory
reclamation with the goal of detailing those used in Objective Caml. The Objective
Caml garbage collector is an incremental garbage collector with two generations. It
uses Mark&Sweep for the old generation, and Stop&Copy for the young generation.
Two modules directly linked to the garbage collector allow control of the evolution of
the heap. The Gc module allows analysis of the behavior of the garbage collector and
modification of certain parameters with the goal of optimizing specific applications.
With the Weak module one can save in arrays values that are potentially reclaimable,
but which are still accessible. This module is useful for implementing a memory cache.

To Learn More

Memory reclamation techniques have been studied for forty years—in fact, since the
first implementations of the Lisp programming language. For this reason, the literature
in this area is enormous.

270 Chapter 9 : Garbage Collection

A comprehensive reference is Jones’ book [Jon98]. Paul Wilson’s tutorial [Wil92] is an
excellent introduction to the field, with many references. The following web pages also
provide a good view of the state of the art in memory management.

Link: ftp://ftp.netcom.com/pub/hb/hbaker/home.html

is an introduction to sequential garbage collectors.

Link: http://www.cs.ukc.ac.uk/people/staff/rej/gc.html

contains the presentation of [Jon98] and includes a large searchable bibliography.

Link: http://www.cs.colorado.edu/˜zorn/DSA.html

lists different tools for debugging garbage collection.

Link: http://reality.sgi.com/boehm mti/

offers C source code for a conservative garbage collector for the C language. This
garbage collector replaces the classical allocator malloc by a specialized version GC malloc.
Explicit recovery by free is replaced by a new version that no longer does anything.

Link: http://www.harlequin.com/mm/reference/links.html

maintains a list of links on this subject.

In chapter 12 on the interface between C and Objective Caml we come back to memory
management.

