
1

Typing deep pattern-matching in presence of polymorphic variants

Jacques Garrigue†

Polymorphic variants are a well-known feature of the Objective Caml programming lan-
guage, and they have turned popular since their introduction. They allow structural equality
of algebraic type definitions, and code reuse through their polymorphism.

Their typing and compilation have been studied in the past, and there are already detailed
published works for both2),4). By their very nature, polymorphic variants depend on pattern-
matching to analyze their contents. However, only typing for shallow pattern-matching was
studied in the past. In that case, checking exhaustiveness is trivial, and the natural typing
rule guarantees it.

Deep pattern-matching is more complex, as other constructors may appear nested in the
same pattern-matching. Exhaustiveness check is available, but only after finishing type check-
ing, while we would like to use it to define the typing of polymorphic variant patterns. We
explain the tradeoffs, and define a type checking algorithm for pattern-matching containing
polymorphic variants which is symmetric.

1. Introduction

The name polymorphic variant stands for a
particular kind of sum type whose constructors
are automatically inferred by the type checker.
This automatic inference is not only useful be-
cause it avoids writing a type definition —
actually one could argue that writing a type
definition is a good idea anyway—, but also be-
cause it allows to use the same constructor in-
side different types, and allows structural equal-
ity and subtyping between variant types2),4).

The strict binding of a constructor to a spe-
cific type enforced by ML algebraic datatypes
is sometimes burdensome. Think for instance
of the multiple intermediate data structures
you have in a staged compiler. They are of-
ten very similar in structure, but because of
some small differences, all their constructors
must have different names (so we end up with
an Avariable and a Bvariable, an Afunction
and a Bfunction, ...), and all code working on
these data structures must be rewritten for each
type.

With polymorphic variant types, you get
more freedom: you can reuse the same con-
structor name without fear of conflict, and you
can even reuse pieces of code working on com-
mon sets of constructors. A complete example
of such code reuse has been described3).

While the main interest of polymorphic vari-

† 京都大学数理解析研究所
Kyoto University Research Institute for Mathemat-
ical Sciences

ants resides in their typing, a subtle part of
the problem had not been seriously studied
until now: the interaction between pattern-
matching and polymorphic variant typing. To
be more specific, all accounts of polymorphic
variant only consider flat pattern-matching, in
which the choice of the branch depends only
on the constructor, and each constructor oc-
curs only once. In that case, the list of han-
dled constructors (and the upper bound of the
corresponding polymorphic variant type) comes
from a direct reading of the pattern-matching.
However, if we think of deep pattern-matching,
where polymorphic variant constructors may
occur deeper in the structure, then which con-
structors are handled in all cases is no longer
trivial, and we must be very careful about how
we type pattern-matching, lest we loose sym-
metry (for instance changing the order of the
cases in a pattern-matching could lead to a dif-
ferent type), or even principality of the whole
type system (typing of other parts of a program
could influence the typing of patterns in a non-
monotonic way).

As a matter-of-fact, the problem of typing
pattern-matching has rarely been studied. In
most cases, it is just subsumed by the typing
of isomorphic expressions. Outside of polymor-
phic variants, the only specific constructs that
come to mind are Standard ML record ellipsis7),
or Objective Caml’s variables in or-patterns,
and they are not really difficult. Our concern
with deep matching is related to exhaustive-
ness check6), yet it differs from this previous
work (unfortunately only available in French)

2

in that polymorphic variants are a new feature,
and that we need exhaustiveness information
to refine our types, while in general exhaus-
tiveness depends on the type —hence we must
avoid a semantic loop. On the other hand, while
the main problem of pattern-matching, namely
compilation, has been studied for a long time
already1),9), it is not directly related to our en-
deavor: once properly typed, polymorphic vari-
ants can easily be combined in a compilation
algorithm2).

After giving some basic notions of polymor-
phic variants and their typing, we will see
the problems caused by deep pattern-matching,
and how they can be solved. We will then give
a formal account of our solution.

2. Polymorphic variants basics

Polymorphic variants are a standard feature
of Objective Caml5) since version 3. To make
our account more intuitive we will use exam-
ples typed by the Objective Caml toplevel. We
will not enter here into the details of the type
system, which can be found in other papers4).

Polymorphic variants are particular in that
a different type is constructed for each value
introduced.
let a = ‘Apple
val a : [> ‘Apple]
let b = ‘Orange("Spain")
val b : [> ‘Orange of string]

The backquote “‘” indicates a polymorphic
variant constructor. When used without argu-
ment, the type indicates just that this construc-
tor is present. When there is an argument to
the constructor, its type appears in the poly-
morphic variant type.
let l = [a; b]
val l :

[> ‘Apple | ‘Orange of string] list

If you define a list containing apples and or-
anges, then it becomes a list of apples and or-
anges. There is actually a type variable hidden
behind the “>” in the above types, and copies
of the original types can be unified to obtain a
larger type.

The symmetric of constructor introduction is
destruction through pattern-matching.
let show = function

‘Apple -> "apple"
| ‘Orange s -> "orange/" ^ s

val show :
[< ‘Apple | ‘Orange of string] -> string

let l’ = List.map show l
val l’ : string list =

["apple"; "orange/Spain"]

As you can see, the type inferred for pattern-
matching starts with a “<” rather than a “>”.
This denotes a list of accepted variant construc-
tors, with the types of their arguments. Again
the type is polymorphic, and can be applied
to several kinds of variant constructors. Ac-
ceptor types can be unified together, resulting
in a type accepting less constructors. Presence
types and acceptor types can be unified, as long
as all present constructors are also accepted.
let id = function

‘Apple -> 1
| ‘Orange _ -> 2
| ‘Pear -> 3

val id :
[< ‘Apple | ‘Orange of ’a | ‘Pear] -> int

let f x = (show x, id x)
val f :

[< ‘Apple | ‘Orange of string] ->
string * int

While id accepts more constructors than show,
applying both to the same variable results in a
smaller type.
let g x = if (id x = 3) then ‘Apple else x
val g :

([< ‘Apple | ‘Orange of ’b | ‘Pear
> ‘Apple] as ’a) -> ’a

Since it appears in both input and output, the
type of x contains both acceptor and presence
information. The as denotes sharing.

Finally, the ability of acceptor types to loose
members makes necessary the introduction of
conjunctive types in variant arguments.
let id2 = function

‘Apple -> 1
| ‘Orange n -> n

val id2 :
[< ‘Apple | ‘Orange of int] -> int

let h x = (show x, id2 x)
val h :

[< ‘Apple | ‘Orange of int & string] ->
string * int

The type int & string means that, in order
to be accepted by h, an orange should have an
argument of type both int and string. This is
of course impossible, which limits possible in-
puts to apples. From an inference point of view,
all members of a conjunctive type have to be
unified when its constructor becomes present.
Conjunctive types are only useful in intermedi-
ate steps of type inference, to make sure that
unification is associative, and that principality

3

is kept.

3. Closed and open matching

All the functions we have considered up to
now have used closed pattern-matching. That
is, an exhaustive list of accepted constructors
was provided. However, it is not rare for
pattern-matchings to use “wild cards” to catch
all remaining cases.
let show3 = function

‘Apple -> "apple"
| ‘Peer -> "pear"
| _ -> "unknown"

Coherently with the usual behavior of pattern-
matching, the meaning of “_” can be seen as
“all other variant constructors”. We expect
such a function to accept any variant value, ex-
cept (‘Apple e) and (‘Peer e) (i.e. ‘Apple
or ‘Peer used with an argument.) However this
still leaves us with two possibilities. The most
intuitive one may be:
val show3 : [< ‘Apple | ‘Peer | ..]

This stands for “show3 accepts ‘Apple and
‘Peer, and any other constructor”. Yet, ex-
perience proved that this was a bad idea: this
type is too “weak”. Some clearly erroneous pro-
grams are accepted, with their expected type.
let j x = (show3 x, id x)
val j :

[< ‘Apple | ‘Orange of ’a | ‘Pear] ->
string * int

let it = show3 ‘Pear
val it : string * int = ("unknown", 3)

If we assume that ‘Peer was a typo for ‘Pear,
then this answer is incorrect.

An alternative, and actually simpler possibil-
ity is to force all constructors to be present.
val show3 : [> ‘Apple | ‘Peer]

This avoids the above problem, as constructors
in open variants can no longer “vanish”. This is
simpler, because we can limit types to acceptor
types (with a finite bound), presence types, and
combined types. This is also the type that we
would obtain for an implementation of show3
using an association list. For these reasons, the
latter typing was chosen in Objective Caml.

4. Deep matching

If we limit ourselves to flat matching, exam-
ples in the previous sections describe almost
all possibilities, and it seems that no problems
would arise.

However, with deep pattern-matching, the

typing of pattern-matching needs to be further
refined.

4.1 Conjunctive types
In the experimental version 2.99 of Objective

Caml, pattern-matching was typed just as nor-
mal terms.
let f = function

(true, ‘A x) -> ‘A x
| (false, ‘A x) -> ‘B x
| (_, ‘B x) -> ‘B x

val f :
bool * [< ‘A of ’a & ’b | ‘B of ’b]
-> [> ‘A of ’a | ‘B of ’b]

The resulting type was correct, but not intu-
itive: it means that the ‘A case will only be
usable if ’a and ’b can be bound to the same
type. While conjunctive types are useful in gen-
eral, here they contradict the assumption that,
in a pattern-matching, all cases should be us-
able. This only delays errors. The approach
in more recent versions of Objective Caml is to
first type the patterns independently of envi-
roning expressions (in order to keep principal-
ity), and disallow conjunctive types during this
phase. Patterns are then unified with the type
of the matched expression, this time allowing
conjunctive types. As a result, we obtain the
following typing.
val f :

bool * [< ‘A of ’a | ‘B of ’a]
-> [> ‘A of ’a | ‘B of ’a]

All conjunctive type variables have been col-
lapsed to one, and we obtain a more intuitive
typing.

4.2 Open or not open
With flat matching, the distinction between

closed and open pattern-matchings is easy: this
is a purely syntactical problem. Deep pattern-
matching introduces grey cases.
let f = function

true, ‘A -> 1
| true, ‘B -> 2
| false, _ -> 3

From a purely syntactic point of view, this
pattern-matching is open: it contains a wild
card, which actually matches variants. How-
ever, if we look at the first column, we see that
only ‘A and ‘B will be accepted when the first
component is true.

The real question here appears to be: what
does “_” mean in the context of polymorphic
variants? We can base ourselves on two differ-
ent analogies:
• The string type: the set of all possible

4

variant constructors is infinite, and “_” in-
dicates all of them, so a pattern including
a wild card must be open.

• Usual sum types: for any practical appli-
cation, the set of intended constructors is
finite, and “_” indicates all other construc-
tors in a finite set, which should be inferred
when possible.

Interestingly, most people seem to find the
first option to be more intuitive. Its main ad-
vantage is that the meaning of “_” is indepen-
dent from the context. Yet, this solution is
weak: the type inferred for f would be
Warning: this pattern-matching is not
exhaustive. Here is an example of a value
that is not matched:
(true, ‘AnyExtraTag)

val f : bool * [> ‘A | ‘B] -> int

Moreover, it becomes impractical when poly-
morphic variants are mixed with algebraic
datatypes.
let g = function

‘A :: _ -> 1
| ‘B :: _ -> 2
| [] -> 3

Here “_” means “any list”, but the first inter-
pretation makes it mean “a list containing any
variant”. Again, this would result in a non-
exhaustive pattern-matching.

Considering these problems, we choose the
second option. It should make us able to infer
the following types, preserving exhaustiveness.
val f : bool * [< ‘A | ‘B] -> int
val g : [< ‘A | ‘B] list -> int

But we have not yet explained how we ob-
tain these types. Indeed, the second option sug-
gests “inferring” the set of constructors associ-
ated to a type, but does not define how to do
it. Clearly, exhaustiveness has something to do
with it: by closing some types we were able to
make some pattern-matchings exhaustive.

A possible approach would then be: enforce
exhaustiveness by restricting the type of poly-
morphic variants when they are breaking ex-
haustiveness. This is actually our ideal goal.
However this cannot be used as definition: there
are too many ways to restrict types.
let h = function

‘A, _ -> 1
| ‘B, _ -> 2
| _, ‘A -> 3
| _, ‘B -> 4

In this case, either of these two types

val h : [< ‘A | ‘B] * [> ‘A | ‘B] -> int
val h : [> ‘A | ‘B] * [< ‘A | ‘B] -> int

is enough to ensure exhaustiveness. Deciding to
use one of the two would loose symmetry: the
typing would become dependent on the order
of the patterns in the pair, and the order of the
rules in the matching. The first type would also
make the last two cases unusable, which seems
to go against the wishes of the programmer.

If we cannot choose between these two types,
then we should either close both sides (mak-
ing the last two cases unusable), or keep both
sides open (making the pattern-matching non-
exhaustive). We could discuss at length on
which of the two is worse, insisting that non-
exhaustiveness denotes fundamentally a bug of
the program. However, what matters here is
not whether the style of this program is good
or bad (there are warnings for that), but what
was the intent of the program. From that point
of view, making a case unusable clearly departs
from the intent of the program, and we should
avoid it as much as possible. As a result, in this
particular case, we shall keep both sides open.
Warning: this pattern-matching is not
exhaustive. Here is an example of a value
that is not matched:
(‘AnyExtraTag, ‘AnyExtraTag)
val h : [> ‘A | ‘B] * [> ‘A | ‘B] -> int

After considering all these examples, now
comes the time to define a clear set of rules
defining what type should be given to polymor-
phic variants in a pattern. This will be done
formally in the next section, but we give here
the basic steps.
(1) Type each pattern in the pattern-

matching, and unify the obtained types.
In this step, all variants have open (pres-
ence) types.

(2) Build the exhaustiveness matrix corre-
sponding to the inferred type.

(3) For each column of the matrix corre-
sponding to a variant, check whether it
allows extra constructors (i.e. the type is
open). If it does, then, assuming that all
other variant columns have closed types
(limited to the constructors inferred in
step 1), check whether the lines corre-
sponding to an extra constructor produce
an exhaustive matching. If any of these
two checks fails, close the variant type.

(4) Convert all closed variant types to accep-
tor types. (i.e. remove the presence in-
formation.) Open variant types are not

5

p ::= wild card
| CL p normal variant
| C p poly. variant
| (p, . . . , p) tuple
| p | p or-pattern

L ::= {C1, . . . , Cn} constructors

τ ::= α variable
| [Ci of τi]n1 normal variant
| [〉Ci of τi]n1 polymorphic variant
| τ × · · · × τ tuple
| unit unit tuple

Fig. 1 Patterns and types

Any

` : τ

Mono
` p : τ

` CL
k p : [Ci of τi]n1

1 ≤ k ≤ n
L = {Ci}n

1

Poly
` p : τ

` Ck p : [〉Ci of τi]n1
1 ≤ k ≤ n

Unit

` () : unit

Tuple
` pi : τi (1 ≤ i ≤ n)
` (p1, . . . , pn) : τ1 × · · · × τn

Or
` p : τ ` p′ : τ

` p | p′ : τ

Fig. 2 Typing rules

modified.
As you can see, all steps are symmetric. In
particular, step 2 does not privilege a row or
a column over another. Two different pattern-
matching leading to the same matrix (modulo
reordering of rows and columns) will result in
the same typing.

Note also that the last step means that this
algorithm is not monotonous: a presence type
is not provably more general than an acceptor
type (with the same constructors). Indeed, it
cannot be unified with an acceptor type con-
taining strictly less constructors. In general,
being non-monotonous can break the princi-
pality of type inference. However, this algo-
rithm only applies to the pattern part of the
pattern-matching. As a result, it does not im-
port any information from the environing ex-
pression, and is functionally computed from the
patterns. This preserves the principality of type
inference on programs.

5. Exhaustiveness and typing

In this section we formalize our typing strat-
egy. We call it a strategy rather than an algo-
rithm, because its goal is to give an intuitive
definition of the typing obtained, rather than
to pursue efficiency.

Since we are only interested in pattern-
matching, we need just define patterns and
their types, as done in figure 1. Patterns are
either a wild card, a normal variant construc-
tor CL applied to a pattern, where L is the
list of constructors for the corresponding sum
type, a polymorphic variant constructor C ap-
plied to a pattern, a tuple (including the 0-ary
unit tuple), or an or-pattern. Variables would

be needed to bind values in expressions, but in
the absence of expressions we can just replace
them by wild cards. This also lets us consider a
whole pattern-matching as a single or-pattern:
they are equivalent for both typing and exhaus-
tiveness. To further simplify the description,
we used here the same notation for normal and
polymorphic variants. This way we do not need
to introduce explicit type definitions: a normal
variant is just a variant for which the construc-
tor list is fixed.

5.1 Rough typing
The corresponding typing rules are presented

in figure 2. A pattern typing judgment is of
them form ` p : τ , where τ is the type of the
pattern. Again, full typing would also provide
a binding environment, but we don’t need it in
the absence of variables.

The first step of our typing algorithm is to
infer the most general type for an or-pattern
containing all the cases in a pattern-matching.
That is, we want to infer τ such that for any τ ′,
the judgment ` p : τ ′ is derivable if and only if
there is a type substitution θ giving θ(τ) = τ ′.
This is easily done by unification. Rather than
detailing here the unification algorithm we re-
fer you to other papers2),4). Note that since we
have only presence types for polymorphic vari-
ants in pattern types, unification is very simple,
and Ohori’s approach is sufficient8).

For instance consider the pattern
p = T {T,F} (), A (P {P} ())

| T {T,F} (), B (Q{Q} ())
| F {T,F} (), x

its most general typing is (abbreviating unit):
` p : [T | F]× [〉A of [P] | B of [Q]]

6

A-any

` M v : τ

A-mono
` M v p : τk

` (Ck) •B(τ1 × · · · × τk−1) •M •B(τk+1 × · · · × τn) v CL
k p : [Ci of τi]Ci∈L

A-unit

` M v () : unit

A-poly
` M v p : τk

` (Ck) •B(τ1 × · · · × τk−1) •M •B(τk+1 × · · · × τn) v Ck p : [〉Ci of τi]n1
A-tuple
` Mi v pi : τi (1 ≤ i ≤ n)
` M1 • . . . •Mn v (p1, . . . , pn) : τ1 × · · · × τn

A-or1
` M v p1 : τ

` M v p1 | p2 : τ

A-or2
` M v p2 : τ

` M v p1 | p2 : τ

Fig. 3 Acceptability rules

5.2 Exhaustiveness matrix
The next step is to build the exhaustiveness

matrix corresponding to the inferred type. This
is done by induction on the structure of the
type.
M(α) = ()
M(unit) = ()
M([CL

i of τi]n1) =

C1 •M(τ1) •B(τ2 × · · · × τn)
...

...
Cn •B(τ1 × · · · × τn−1) •M(τn)

M([〉Ci of τi]n1) =

C1 •M(τ1) •B(τ2 × · · · × τn)
...

...
Cn •B(τ1 × · · · × τn−1) •M(τn)
C+ •B(τ1 × · · · × τn)

M(τ1 × · · · × τn) = M(τ1) • . . . •M(τn)
The matrix contains variant constructors C, the
extra constructor C+, and blank marks >. In
this definition, () denotes a matrix of 1 line and
0 column; M •N denotes matrix line-wise con-
catenation; and B(τ) is a 1-line matrix of >’s
with the same number of columns as M(τ).

By line-wise concatenation we mean the fol-
lowing operation: assuming that M = (mij) is
a l-line l′-column matrix and N = (nij) is a
k-line k′-column matrix, then P = (pij) is a
l × k-line l′ + k′-column matrix and

pij =
{

m((i−1)/k+1)j j ≤ l′

m((i−1) mod k+1)(j−l′) j > l′.
Applying the above definition, the exhaus-

tiveness matrix for p is:
M([T | F]× [〉A of [P] | B of [Q]]) =

T A P >
T B > Q
T C+ > >
F A P >
F B > Q
F C+ > >

As you can see the exhaustiveness matrix has a
size exponential in the size of the type. A prac-
tical algorithm would not build it physically,
but only enumerate it as needed.

Note that by construction, each of its
columns corresponds to a single variant type.
We note this type tj(M). In this example,

t1(M(τ)) = [T | F]
t2(M(τ)) = [〉A of [P] | B of [Q]]
t3(M(τ)) = [P]
t4(M(τ)) = [Q]

A pattern-matching is exhaustive when all
lines in the exhaustiveness matrix are accepted
by a pattern. For this we define the accept-
ability relation at a type τ in figure 3. If
(mi1 . . . min) is the ith line of M(τ), then it is
accepted by p if and only if ` (mi1 . . .min) v
p : τ is derivable using the acceptability rules.

One can easily see that in our example, the
3rd line of the exhaustiveness matrix is not ac-
cepted. This means that, using directly the
principal type given by the typing rules, this
pattern-matching would not be exhaustive.

Note that the order of clauses inside an or-
pattern, or the order of lines inside the exhaus-
tiveness matrix does not change acceptability.
Moreover, if τ is a tuple type, changing the or-
der of its components creates a matrix identical
to the original one modulo permutations of lines
and columns, and acceptability of each line does
not change (if we permute the patterns identi-
cally.) From these two facts we can see that
the exhaustiveness of a pattern-matching at a
given type is a symmetrical property, preserved
by both permutation of or-patterns and tuple-
patterns.

5.3 Type refinement
The third step of our algorithm is to use ex-

haustiveness check to decide which polymorphic
variant types should be kept open as presence
types, and which should be reverted to closed

7

acceptor types. We proceed in the following
way. For each column corresponding to a poly-
morphic variant type, we extract all the lines
with only a C+ in this column (but not in other
ones). If all these lines are accepted, then the
type is kept open, otherwise it must be closed.
Formally, assuming M(τ) = (mij) of width n,
then for all k’s such that

(∃i)
{ ` (mi1 . . . min) 6v p : τ

(∀j) mij = C+ ⇔ j = k
the polymorphic variant type tk(M(τ)) =
[〉Ci of τi]l1 corresponding to the column k must
be converted to the acceptor type [〈Ci of τi]l1.
Since permuting or-patterns or tuple-patterns
would only change the order of lines and
columns in the exhaustiveness matrix, the
choice of the types to close is symmetrical.

The type judgment `fin p : τfin indicates that
τfin is the final type obtained for p by this whole
process. That is, the principal type τ of p was
refined into τfin by checking the exhaustiveness
matrix M(τ).

Going on with our running example, the rel-
evant lines are:(

T C+ > >
F C+ > >

)

While the second line is accepted
` (F C+ > >) v F (), : τ

since matches anything, the first line is not
—only the A and B cases are handled by p. As
a result, the corresponding variant type must
be closed, and the final pattern type is:

`fin p : [T | F]× [〈A of [P] | B of [Q]]
If we compute the exhaustiveness matrix corre-
sponding to this new type, it contains no longer
C+ lines (an acceptor type [〈 . . .] produces the
same matrix as a normal type [. . .])

M([T | F]× [〈A of [P] | B of [Q]]) =

T A P >
T B > Q
F A P >
F B > Q

This means that with this new type our
pattern-matching is exhaustive.

Let us now check with another example,
namely a simplification of the function h in the
previous section.

` A (), | , B () : [〉A]× [〉B]
The corresponding matrix is:

M([〉A]× [〉B]) =

A B
A C+

C+ B
C+ C+

For the first column, two lines contain C+, but
only one is relevant, as relevant lines must con-
tain only one C+. It is accepted.

` (C+ B) v , B : [〉A]× [〉B]
Similarly, the only relevant line for the second
column is also accepted.

` (A C+) v A, : [〉A]× [〉B]
As a result, the two variant types must be kept
open.

`fin A (), | , B () : [〉A]× [〉B]
Of course, since the last line is not accepted

` (C+ C+) 6v A (), | , B () : [〉A]× [〉B]
this also means that the resulting pattern-
matching is not exhaustive.

6. Conclusion

We have seen in this paper a possible typing
strategy for deep pattern-matching containing
polymorphic variants. This strategy attempts
at making the pattern-matching exhaustive by
eventually closing some variant types. The be-
havior is symmetrical with respect to or-pattern
and tuple-pattern order.

Whether this is the best strategy, and the
inferred type is always the most intuitive one,
remains an open question.

There are two possible criticisms. On one
side, contrary to some strategies used in older
versions of Objective Caml, this strategy does
not guarantee that all polymorphic variant
pattern-matchings are complete, as we have
seen in our last example. This would be a
nice property to have, but it seems more co-
herent with other datatypes to limit ourselves
to a warning, when enforcing it would require
an overly restrictive type.

On the other side, the type produced may
sometimes be more restrictive than the one in-
tended by the programmer. This could be the
case when the type causes a pattern to be un-
used.
let f = function

| _, ‘A -> 1
| true, _ -> 2

Warning: this pattern is unused.
val f : bool * [‘A] -> int

One could require the strategy to force all pat-
terns to be used. However, this cannot be
enforced, as this warning can appear even in
pattern-matchings without variants. And we
believe that, as this definition is inherently am-
biguous (at the type level), a warning is the
right behavior to obtain in this case.

8

References

1) Augustsson, L.: Compiling Pattern Match-
ing, Proc. ACM Symposium on Functional Pro-
gramming and Computer Architectures (Jouan-
naud, J.-P.(ed.)), Springer-Verlag LNCS 201,
pp. 368–381 (1985).

2) Garrigue, J.: Programming with Polymorphic
Variants, ML Workshop, Baltimore (1998).

3) Garrigue, J.: Code reuse through polymorphic
variants, Workshop on Foundations of Soft-
ware Engineering , Lecture Notes in Software
Science, No. 25, Sasaguri, Japan, Kindai Ka-
gakusha, pp. 93–100 (2000).

4) Garrigue, J.: Simple type inference for struc-
tural polymorphism, The Ninth International
Workshop on Foundations of Object-Oriented
Languages, Portland, Oregon (2002).

5) Leroy, X., Doligez, D., Garrigue, J., Rémy, D.
and Vouillon, J.: The Objective Caml system re-
lease 3.07, Documentation and user’s manual ,
Projet Cristal, INRIA (2003).

6) Maranget, L.: Les avertissements du filtrage,
Journées Francophones des Langages Applicat-
ifs (2003).

7) Milner, R., Tofte, M. and Harper, R.: The
Definition of Standard ML, MIT Press, Cam-
bridge, Massachusetts (1990).

8) Ohori, A.: A Polymorphic Record Calculus
and Its Compilation, ACM Transactions on
Programming Languages and Systems , Vol. 17,
No. 6, pp. 844–895 (1995).

9) Wadler, P.: Efficient Compilation of Pattern-
Matching, The Implementation of Functional
Programming Languages (Peyton Jones(ed.)),
Prentice-Hall, chapter 5, pp. 78–103 (1987).

