
To appear in J. Functional Programming 1

A modular module system

XAVIER LEROY
INRIA Rocquencourt

B.P. 105, 78153 Le Chesnay, France
Xavier.Leroy@inria.fr

Abstract

A simple implementation of an SML-like module system is presented as a module param-
eterized by a base language and its type-checker. This implementation is useful both as a
detailed tutorial on the Harper-Lillibridge-Leroy module system and its implementation,
and as a constructive demonstration of the applicability of that module system to a wide
range of programming languages.

1 Introduction

Modular programming can be done in any language, with sufficient discipline from
the programmers (Parnas, 1972). However, it is facilitated if the programming lan-
guage provides constructs to express some aspects of the modular structure and
check them automatically: implementations and interfaces in Modula, clusters in
CLU, packages in Ada, structures and functors in ML, classes in C++ and Java, . . .

Even though modular programming has little to do with the particulars of any
programming language, each of the languages above puts forward its own design of a
module system, without reusing directly an earlier module system — as if the design
of a module system were so dependent on the base language that transferring a
module system from one language to another were impossible. Consider for instance
the module system of SML (MacQueen, 1986; Milner et al., 1997), also used in
Objective Caml (Leroy et al., 1996). This is one of the most powerful module
systems proposed so far, particularly for its treatment of parameterized modules
as functors, i.e. functions from modules to modules; the SML module system is
actually a small functional language of its own that operates over modules. The
only published attempts at transferring it to other languages are adaptations to
Prolog (Sannella & Wallen, 1992) and to Signal (Nowak et al., 1997) that did not
receive much publicity. What if one wants SML-style modules in one’s favorite
language? Say, Fortran?

Recent work on the type-theoretic foundations of SML modules (Harper & Lil-
libridge, 1994; Leroy, 1994) has led to a reformulation of the SML module system
as a type system that uses mostly standard notions from type theory. On these
presentations, it is apparent that the base language does not really matter, as long
as its compile-time checks can be presented as a type system. In particular, (Leroy,
1994) presents an SML-style module system built on top of a typed base language

2 Xavier Leroy

left mostly unspecified; even though core ML is used as the base language when the
need arises to be more specific, it is claimed that “the module calculus makes few
assumptions about the base language and should accommodate a variety of base
languages”.

The purpose of the present paper is twofold. The first purpose is to give a highly
constructive proof of that claim: we present an implementation of a ML-style mod-
ule system as a functor parameterized by the base language and its associated type-
checking functions. This implementation gives sufficient conditions for an existing
or future language to support SML-style modules: if it can be cast in the shape
specified by the input interfaces of the functor, then it can easily be equipped with
SML-style modules.

The second purpose of this paper is to give a tutorial introduction to the Harper-
Lillibridge-Leroy presentation of the ML module system and to its implementation.
To this end, most of the actual source code is shown, thus providing a reference im-
plementation of the module system that complements its type-theoretic description.
The experience with Hindley-Milner typing shows that typing rules do not always
tell the whole story, and a simple implementation may help in understanding all
the issues involved (Cardelli, 1987; Peyton-Jones, 1987; Weis & Leroy, 1999). For
this purpose, the implementation presented in this paper has been made as simple
as possible, but no simpler (to quote Einstein out of context).

The implementation presented in this paper is written in Objective Caml (Leroy
et al., 1996), an extension of the Caml dialect of ML (Weis & Leroy, 1999) with
objects and a module system extremely close to the one that is described here. In
the established tradition of meta-circular interpretors for Lisp, the code presented
in this paper exemplifies the module language that it implements, in particular the
systematic use of functors. We hope that, far from making this paper impenetra-
ble to readers unfamiliar with the theory and practice of ML-style modules, this
circularity will actually help them gain some understanding of both.

Related work

Algebraic specifications can be viewed as highly base language-independent
languages for expressing module interfaces, with parameterized specifications
playing the role of functor signatures (Wirsing, 1990). The algebraic approach
is both stronger and weaker than the type-theoretic approach followed here: it
supports equations, but not higher-order functions. Our approach also provides
a base language-independent framework for relating an implementation to its
interface, while in the case of algebraic specification this operation is often left
implicit, or performed through intermediate languages specialized for a particular
base language (Guttag & Horning, 1993).

Cardelli (1998) gives a formal treatment of linking and separate compilation,
which is also highly independent of the base language. The emphasis is on sepa-
rate compilation rather than on module languages; in particular, functors are not
considered. Other generic frameworks for linking and separate compilation with

A modular module system 3

much the same characteristics as Cardelli’s include (Flatt & Felleisen, 1998; Glew
& Morrisett, 1999).

Mixins, originally introduced as a generalization of inheritance in object-oriented
languages (Bracha, 1992), have been proposed as a generic module calculus by
Ancona and Zucca (1998; 1999). Ancona and Zucca give algebraic and operational
semantics for mixin modules that are largely independent of the underlying base
language.

On the implementation side, the New Jersey ML implementation of the SML
module system is described in (MacQueen, 1988) and its extension to higher-order
functors in (Crégut & MacQueen, 1994). Both implementations are considerably
more sophisticated than the implementation described in this paper, in particular
because much attention is paid to reducing memory requirements through term
sharing.

The New Jersey ML implementations follow the stamp-based static semantics
for SML modules (Milner et al., 1997; MacQueen & Tofte, 1994). This semantics
is close to an actual implementation of a typechecker for the SML module system.
In particular, the semantics represents the identities of types using stamps (unique
names) just like actual SML implementations do. However, this stamp-based se-
mantics is not presented in isolation from the base ML language; in particular,
stamps are strongly tied with the generativity of datatype definitions in ML, but
do not reflect directly more universal notions such as type abstraction. Moreover,
the static semantics is not completely algorithmic, in the sense that it allows both
principal and non-principal typings, while an actual type-checker is expected to
produce principal typings.

Another semantics for SML modules that is close to an actual implementation
of a type-checker is that of Harper and Stone (1998). This semantics does not use
stamps, but relies directly on a syntactic treatment of type abstraction similar to
the one we use in this paper. However, the semantics does not lead directly to a
type-checking algorithm for the same reasons as mentioned above in the case of
(Milner et al., 1997).

Cardelli’s implementation of Quest (Cardelli, 1990) inspired important parts of
the present work, such as the central role played by paths and the distinction
between identifiers and names.

Outline

The remainder of this paper is organized as follows. Section 2 presents the functors
implementing the module system. The reader more interested in the applicability of
the module system to many base languages than in the features and implementation
of the module language itself can concentrate on subsections 2.4 and 2.7 only. Two
applications are outlined in section 3, with core-ML and mini-C as base languages.
Section 4 briefly discusses compilation issues. Section 5 discusses some extensions,
in particular to deal with generative type definitions. Concluding remarks follow in
section 6. For reference, appendix A shows the typing rules for the module system
implemented in this paper.

4 Xavier Leroy

2 The modular module system

2.1 Identifiers

The first issue we have to solve is the status of names (of types, variables, and
modules). In our module system, type and module names play an important role
in deciding type compatibility (we will use name equivalence for abstract types).
This requires different types to have different names, otherwise the soundness of
the type system is compromised.

Some languages allow type names to be redefined arbitrarily; others prevent
redefinition within the same block, but allow a declaration in an inner block to
shadow a declaration with the same name in an outer enclosing block. In both
cases, typing difficulties arise: assuming a type name t and a variable x of type t,
redefining t to be a different type invalidates the typing hypothesis x : t. To avoid
these difficulties, typed calculi generally rely on renaming (α-conversion) of type
names to ensure uniqueness of names within a typing context.

However, these renamings conflict with another feature of ML-like module sys-
tems: clients of modules refer to their components by name (e.g. M.t to refer to the
t type component of module M). This implies that names of module components
are fixed and must not be renamed lest external references become invalid.

To solve this dilemma, we introduce a notion of identifiers distinct from names:
each identifier has a name, but it also records the binding location of this name.
Thus, we can have different type identifiers, bound at different locations, that have
the same external name (Cardelli, 1990; Harper & Lillibridge, 1994; Leroy, 1994).
Names in the program source are replaced by identifiers in the abstract syntax tree
in accordance with the static scoping rules of the language. This can be performed
either during parsing or as a separate “scoping” pass prior to type-checking. The
abstract type of identifiers has the following signature:

module type IDENT =

sig

type t

val create: string -> t

val name: t -> string

val equal: t -> t -> bool

type ’a tbl

val emptytbl: ’a tbl

val add: t -> ’a -> ’a tbl -> ’a tbl

val find: t -> ’a tbl -> ’a

end

create returns a fresh identifier with the name given as argument; name returns the
name of the given identifier; equal checks the equality (same binding location) of
two identifiers. The parameterized type ’a tbl implements applicative dictionaries
associating identifiers to data of type ’a; add returns the given dictionary enriched
with an (identifier, data) pair; find retrieves the data associated with an identifier,
raising the Not_found exception if the identifier is unbound.

Here is a sample implementation of IDENT, representing identifiers as pairs of a

A modular module system 5

name and an integer stamp incremented at each create operation, and ’a tbl as
association lists (any dictionary data structure could be used instead).

module Ident : IDENT =

struct

type t = {name: string; stamp: int}

let currstamp = ref 0

let create s =

currstamp := !currstamp + 1; {name = s; stamp = !currstamp}

let name id = id.name

let equal id1 id2 = (id1.stamp = id2.stamp)

type ’a tbl = (t * ’a) list

let emptytbl = []

let add id data tbl = (id, data) :: tbl

let rec find id1 = function

[] -> raise Not_found

| (id2, data) :: rem ->

if equal id1 id2 then data else find id1 rem

end

2.2 Access paths

We refer to named types, values (variables), and modules either by identifier (if we
are in the scope of their binding) or via the dot notation, e.g. M.x to refer to the x

component of module M. The data type path represent both kinds of references:

type path =

Pident of Ident.t (* identifier *)

| Pdot of path * string (* access to a module component *)

Since modules can be nested, paths may be arbitrarily long, e.g. M.N.P.x, which
reads ((M.N).P).x. As mentioned in section 2.1, access to a module component is
by name: the second argument of Pdot is a string, not an identifier; it would not
make sense to put a full identifier there, since the access is generally not in the
scope of the identifier binding. To avoid ambiguity, we require that all components
of a module (at the same nesting level of modules) have distinct names. The same
constraint is enforced on the signatures assigned to those modules. For instance, a
module M cannot have two type components named t, because we would not know
which type M.t refers to. However, sub-modules can still define components with
the same name as components from an enclosing module, since the path notation
distinguishes them. For instance, M can have a t type component and a N sub-
module with another t type component; the former type t is referred to as M.t,
and the latter as M.N.t.

Path equality naturally extends identifier equality:

let rec path_equal p1 p2 =

match (p1, p2) with

(Pident id1, Pident id2) -> Ident.equal id1 id2

| (Pdot(r1, field1), Pdot(r2, field2)) ->

path_equal r1 r2 && field1 = field2

| (_, _) -> false

6 Xavier Leroy

2.3 Substitutions

For typechecking modules, we will need to substitute paths for identifiers. Substi-
tutions are defined by the following signature:

module type SUBST =

sig

type t

val identity: t

val add: Ident.t -> path -> t -> t

val path: path -> t -> path

end

Subst.add i p σ extends the substitution σ by [i ← p]. Subst.path p σ applies σ

to the path p. Here is a sample implementation of SUBST, where substitutions are
represented as dictionaries from identifiers to paths (type path Ident.tbl).

module Subst : SUBST =

struct

type t = path Ident.tbl

let identity = Ident.emptytbl

let add = Ident.add

let rec path p sub =

match p with

Pident id -> (try Ident.find id sub with Not_found -> p)

| Pdot(root, field) -> Pdot(path root sub, field)

end

2.4 Abstract syntax for the base language

The abstract syntax for the base language is provided as an implementation of the
following signature:

module type CORE_SYNTAX =

sig

type term

type val_type

type def_type

type kind

val subst_valtype: val_type -> Subst.t -> val_type

val subst_deftype: def_type -> Subst.t -> def_type

val subst_kind: kind -> Subst.t -> kind

end

The type term is the abstract syntax tree for definitions of value names: a value ex-
pression in a functional language, a variable declaration or procedure definition in a
procedural language, or a set of clauses defining a predicate in a logic language. The
type val_type represents type expressions for these terms; def_type represents the
type expressions that can be bound to a type name. In many languages, val_type
and def_type are identical, but ML, for instance, has type schemes for val_type,
but type constructors (type expressions possibly parameterized by other types) for
def_type. Finally, the type kind describes the various kinds that a def_type may

A modular module system 7

have. Many languages have only one kind of definable types; in ML, the kind of a
def_type is the arity of a type constructor.

2.5 Abstract syntax for the module language

Given the syntax for a core language (a module of signature CORE_SYNTAX), we
build the abstract syntax structure for the module language specified below. The
core language syntax is re-exported as a substructure Core of the module language
syntax, in order to record the core language on top of which the module language
is built; the remainder of the signature refers to the core language a.s.t. types as
components of the Core substructure.

module type MOD_SYNTAX =

sig

module Core: CORE_SYNTAX (* the core syntax we started with *)

type type_decl =

{ kind: Core.kind;

manifest: Core.def_type option } (* abstract or manifest *)

type mod_type =

Signature of signature (* sig ... end *)

| Functor_type of Ident.t * mod_type * mod_type

(* functor(X: mty) mty *)

and signature = specification list

and specification =

Value_sig of Ident.t * Core.val_type (* val x: ty *)

| Type_sig of Ident.t * type_decl (* type t :: k [= ty] *)

| Module_sig of Ident.t * mod_type (* module X: mty *)

type mod_term =

Longident of path (* X or X.Y.Z *)

| Structure of structure (* struct ... end *)

| Functor of Ident.t * mod_type * mod_term

(* functor (X: mty) mod *)

| Apply of mod_term * mod_term (* mod1(mod2) *)

| Constraint of mod_term * mod_type (* (mod : mty) *)

and structure = definition list

and definition =

Value_str of Ident.t * Core.term (* let x = expr *)

| Type_str of Ident.t * Core.kind * Core.def_type

(* type t :: k = ty *)

| Module_str of Ident.t * mod_term (* module X = mod *)

val subst_typedecl: type_decl -> Subst.t -> type_decl

val subst_modtype: mod_type -> Subst.t -> mod_type

end

Module terms (type mod_term) denote either structures or functors. Structures
are sequences of definitions: of a value identifier equal to a core term, of a type
identifier equal to a definable core type, or of a (sub-)module identifier equal to a
module term. Functors are parameterized module terms, i.e. functions from module
terms to module terms; a module type is explicitly given for the parameter. Other
module terms are module identifiers and access paths (Longident), referring to

8 Xavier Leroy

module terms bound elsewhere; applications of a functor to a module (Apply); and
restriction of a module term by a module type (Constraint).

Module types are either signatures or functor types. Functor types are dependent
function types: they consist of a module type for the argument, a module type for
the result, and a name for the argument, which may appear in the result type. A
signature describes the interface of a structure, as a sequence of type specifications
for identifiers bound in the structure. Value specifications are of the form “this value
identifier has that value type”; module specifications, “this module identifier has
that module type”. Type specifications consist of a kind and an optional definable
type revealing the implementation of the type; the type identifier is said to be
manifest if its implementation is shown in the specification, and abstract otherwise.
Manifest types play an important role for recording type equalities, propagating
them through functors, and express so-called sharing constraints between functor
arguments (Leroy, 1994). Not all components of a structure need to be specified
in a matching signature: identifiers not mentioned in the signature are hidden and
remain local to the structure.

The functor that takes an implementation of CORE_SYNTAX and returns the cor-
responding implementation of MOD_SYNTAX is trivial:

module Mod_syntax(Core_syntax: CORE_SYNTAX) =

struct

module Core = Core_syntax

type type_decl = ... (* as in the signature MOD_SYNTAX *)

type mod_type = ...

type mod_term = ...

let subst_typedecl decl sub =

{ kind = Core.subst_kind decl.kind sub;

manifest = match decl.manifest with

None -> None

| Some dty -> Some(Core.subst_deftype dty sub) }

let rec subst_modtype mty sub =

match mty with

Signature sg -> Signature(List.map (subst_sig_item sub) sg)

| Functor_type(id, mty1, mty2) ->

Functor_type(id, subst_modtype mty1 sub, subst_modtype mty2 sub)

and subst_sig_item sub = function

Value_sig(id, vty) -> Value_sig(id, Core.subst_valtype vty sub)

| Type_sig(id, decl) -> Type_sig(id, subst_typedecl decl sub)

| Module_sig(id, mty) -> Module_sig(id, subst_modtype mty sub)

end

The substitution functions are simple morphisms over declarations and module
types, calling the substitution functions from Core_syntax to deal with core-
language types and kinds. They assume that identifiers are bound at most once, so
that name captures cannot occur.

A modular module system 9

2.6 The environment structure

Type-checking for the base language necessitates type information for module iden-
tifiers, in order to type module accesses such as M.x. Before specifying the base-
language typechecker, we therefore need to develop an environment structure that
records type information for value, type and module identifiers, and answers queries
such as “what is the type of the value M.x?”.

module type ENV =

sig

module Mod: MOD_SYNTAX

type t

val empty: t

val add_value: Ident.t -> Mod.Core.val_type -> t -> t

val add_type: Ident.t -> Mod.type_decl -> t -> t

val add_module: Ident.t -> Mod.mod_type -> t -> t

val add_spec: Mod.specification -> t -> t

val add_signature: Mod.signature -> t -> t

val find_value: path -> t -> Mod.Core.val_type

val find_type: path -> t -> Mod.type_decl

val find_module: path -> t -> Mod.mod_type

end

Environments are handled in a purely applicative way, without side-effects: each
add operation leaves the original environment unchanged and returns a fresh en-
vironment enriched with the given binding. add_value records the value type of
a value identifier; add_type, the declaration of a type identifier; add_module, the
module type of a module identifier. add_spec records one of the three kinds of
bindings described by the given specification; add_signature records in turn all
specifications of the given signature.

Below is a simple implementation of environments, parameterized by an A.S.T.
structure for modules.

module Env(Mod_syntax: MOD_SYNTAX) =

struct

module Mod = Mod_syntax

type binding =

Value of Mod.Core.val_type

| Type of Mod.type_decl

| Module of Mod.mod_type

type t = binding Ident.tbl

let empty = Ident.emptytbl

For simplicity, all three kinds of bindings are stored in the same table. This is
adequate for source languages that have a unique name space (e.g. a type and a
value cannot have the same name); to handler multiple name spaces, separate tables
can be used. The add functions are straightforward:

let add_value id vty env = Ident.add id (Value vty) env

let add_type id decl env = Ident.add id (Type decl) env

let add_module id mty env = Ident.add id (Module mty) env

let add_spec item env =

10 Xavier Leroy

match item with

Mod.Value_sig(id, vty) -> add_value id vty env

| Mod.Type_sig(id, decl) -> add_type id decl env

| Mod.Module_sig(id, mty) -> add_module id mty env

let add_signature = List.fold_right add_spec

The find functions returns the typing information associated with a path in an
environment. If the input path is just an identifier, then a simple lookup in the
environment suffices. If the path is a dot access, e.g. M.x, the signature of M is
looked up in the environment, then scanned to find its x field and the associated type
information. Moreover, some substitutions are required to preserve the dependencies
between signature components. Assume for instance that the module M has the
following signature:

M : sig type t val x: t end

Then, the type of the value M.x is not t as indicated in the signature (that t

becomes unbound once lifted out of the signature), but M.t. More generally, in the
type of a component of a signature, all identifiers bound earlier in the signature
must be prefixed by the path leading to the signature. This substitution can either
be performed each time a path is looked up, or, more efficiently, be computed
in advance when a module identifier with a signature type is introduced in the
environment. Below is a naive implementation where the substitution is computed
and applied at path lookup time.

let rec find path env =

match path with

Pident id ->

Ident.find id env

| Pdot(root, field) ->

match find_module root env with

Mod.Signature sg -> find_field root field Subst.identity sg

| _ -> error "structure expected in dot access"
and find_field p field subst = function

[] -> error "no such field in structure"
| Mod.Value_sig(id, vty) :: rem ->

if Ident.name id = field

then Value(Mod.Core.subst_valtype vty subst)

else find_field p field subst rem

| Mod.Type_sig(id, decl) :: rem ->

if Ident.name id = field

then Type(Mod.subst_typedecl decl subst)

else find_field p field

(Subst.add id (Pdot(p, Ident.name id)) subst) rem

| Mod.Module_sig(id, mty) :: rem ->

if Ident.name id = field

then Module(Mod.subst_modtype mty subst)

else find_field p field

(Subst.add id (Pdot(p, Ident.name id)) subst) rem

and find_value path env =

match find path env with

Value vty -> vty | _ -> error "value field expected"

A modular module system 11

and find_type path env =

match find path env with

Type decl -> decl | _ -> error "type field expected"
and find_module path env =

match find path env with

Module mty -> mty | _ -> error "module field expected"
end

As the reader may have noticed, error handling is extremely simplified in this pa-
per: we assume given an error function that prints a message and aborts. Similarly,
Not_found exceptions raised by Ident.find are not handled. A better implemen-
tation would use exceptions to gather more context before printing the error.

2.7 Type-checking the base language

The type-checker for the base language must implement the following signature:

module type CORE_TYPING =

sig

module Core: CORE_SYNTAX

module Env: ENV with module Mod.Core = Core

(* Typing functions *)

val type_term: Env.t -> Core.term -> Core.val_type

val kind_deftype: Env.t -> Core.def_type -> Core.kind

val check_valtype: Env.t -> Core.val_type -> unit

val check_kind: Env.t -> Core.kind -> unit

(* Type matching functions *)

val valtype_match: Env.t -> Core.val_type -> Core.val_type -> bool

val deftype_equiv:

Env.t -> Core.kind -> Core.def_type -> Core.def_type -> bool

val kind_match: Env.t -> Core.kind -> Core.kind -> bool

val deftype_of_path: path -> Core.kind -> Core.def_type

end

The Core and Env components record the a.s.t. types and the environment structure
over which the type-checker is built. Of course, the environment structure must be
compatible with the a.s.t. structure: in SML parlance, some of their type compo-
nents must share. In our system, this is expressed by the notation ENV with module

Mod.Core = Core, which is equivalent to the following signature that enriches ENV
with type equalities over its Mod.Core component:

sig

module Mod: sig

module Core: sig

type term = Core.term

type val_type = Core.val_type

type def_type = Core.def_type

type kind = Core.kind

(* remainder of CORE_SYNTAX unchanged *)

end

(* remainder of MOD_SYNTAX unchanged *)

end

12 Xavier Leroy

(* remainder of ENV unchanged *)

end

The main typing function is type_term, which takes a term and an environment,
and returns the principal type of the term in that environment (principal w.r.t.
the valtype_match ordering on value types). Depending on the base language,
this function implements type inference (propagate types from the declarations of
variables and function parameters) or ML-style type reconstruction (guess the types
of function parameters as well). For simplicity, all typing functions are assumed to
print a message and abort on error.

Three auxiliary functions kind_deftype, check_valtype and check_kind check
the well-formedness of type and kind expressions in an environment, in particu-
lar that all type paths are bound and all kind constraints are met. In addition,
kind_deftype infers and returns the kind of the given definable type.

The three predicates valtype_match, deftype_equiv and kind_match are used
when checking an implementation against a specification, e.g. a structure against
a signature. In a language with subtyping, valtype match e t1 t2 checks that the
type t1 is a subtype of t2 in the environment e; in a language with ML-style poly-
morphism, that t1 is a type schema more general than t2; in a language with co-
ercions, that t1 can be coerced into t2. Similarly, kind match e k1 k2 checks that
the kind k1 is a subkind of k2 in the environment e. For most base languages, the
kind structure is simple enough that kind_match reduces to kind equality. Finally,
deftype equiv e k t1 t2 checks that the definable types t1 and t2, viewed at kind k,
are equivalent (identical modulo the type equalities induced by manifest type speci-
fications contained in e). Again, for most base languages the extra kind argument k

is not used, but with a rich enough kind system, the equivalence of definable types
might depend on the kind with which they are considered.

Finally, deftype_of_path transforms a type path and its kind into the corre-
sponding definable type. For instance, in the case of ML, given the path u and the
arity 0, it returns the type u; given the t and the arity 2, it returns the parameter-
ized type (’a, ’b) 7→ (’a, ’b) t. This can be viewed as a form of eta-expansion
on the type path.

2.8 Type-checking the module language

The type-checker for the module language has the following interface:

module type MOD_TYPING =

sig

module Mod: MOD_SYNTAX

module Env: ENV with module Mod = Mod

val type_module: Env.t -> Mod.mod_term -> Mod.mod_type

val type_definition: Env.t -> Mod.definition -> Mod.specification

end

The main entry point is type_module, which infers and returns the type of a module
term. The intended usage for a separate compiler is to parse a whole implementation
file as a module term, then pass it to type_module. If an interface file is also given,

A modular module system 13

type_module should be applied to the constrained term (m : M), where m is
the implementation (a module term) and M the interface (a module type). The
alternate entry point type_definition is intended for interactive use: the toplevel
loop reads a definition, infers its specification, and prints the outcome.

The implementation of the type-checker is parameterized by an A.S.T. struc-
ture, an environment structure, and a type-checker for the core language, all three
operating on compatible types:

module Mod_typing

(TheMod: MOD_SYNTAX)

(TheEnv: ENV with module Mod = TheMod)

(CT: CORE_TYPING with module Core = TheMod.Core and module Env = TheEnv)

= struct

module Mod = TheMod

module Env = TheEnv

open Mod (* Allows to omit the ‘Mod.’ prefix *)

let rec modtype_match env mty1 mty2 = ... (* see section 2.9 *)

let rec strengthen_modtype path mty = ... (* see section 2.10 *)

We postpone the definition of the two auxiliary functions above to the following
sections. The check_modtype function below checks the well-formedness of a user-
supplied module type — in particular, that no identifier is used before being bound.

let rec check_modtype env = function

Signature sg -> check_signature env [] sg

| Functor_type(param, arg, res) ->

check_modtype env arg;

check_modtype (Env.add_module param arg env) res

and check_signature env seen = function

[] -> ()

| Value_sig(id, vty) :: rem ->

if List.mem (Ident.name id) seen

then error "repeated value name";
CT.check_valtype env vty;

check_signature env (Ident.name id :: seen) rem

| Type_sig(id, decl) :: rem ->

if List.mem (Ident.name id) seen

then error "repeated type name";
CT.check_kind env decl.kind;

begin match decl.manifest with

None -> ()

| Some typ ->

if not (CT.kind_match env (CT.kind_deftype env typ)

decl.kind)

then error "kind mismatch in manifest type specification"
end;

check_signature (Env.add_type id decl env)

(Ident.name id :: seen) rem

| Module_sig(id, mty) :: rem ->

if List.mem (Ident.name id) seen

then error "repeated module name";
check_modtype env mty;

check_signature (Env.add_module id mty env)

14 Xavier Leroy

(Ident.name id :: seen) rem

After checking a type specification or module specification in a signature, we add it
to the environment before checking the remainder of the signature, since subsequent
signature elements may refer to the type or module just checked. No such depen-
dency occurs for value specifications. Similarly, the result type of a functor may
depend on its parameter (the type of the Mod_typing functor itself is an example).

The extra parameter seen to check_signature is a list of component names
already encountered; it is used to check that a given name does not appear twice
in the signature.

let rec type_module env = function

Longident path ->

strengthen_modtype path (Env.find_module path env)

| Structure str ->

Signature(type_structure env [] str)

| Functor(param, mty, body) ->

check_modtype env mty;

Functor_type(param, mty,

type_module (Env.add_module param mty env) body)

| Apply(funct, (Longident path as arg)) ->

(match type_module env funct with

Functor_type(param, mty_param, mty_res) ->

let mty_arg = type_module env arg in

modtype_match env mty_arg mty_param;

subst_modtype mty_res (Subst.add param path Subst.identity)

| _ -> error "application of a non-functor")
| Apply(funct, arg) ->

error "application of a functor to a non-path"
| Constraint(modl, mty) ->

check_modtype env mty;

modtype_match env (type_module env modl) mty;

mty

and type_structure env seen = function

[] -> []

| stritem :: rem ->

let (sigitem, seen’) = type_definition env seen stritem in

sigitem :: type_structure (Env.add_spec sigitem env) seen’ rem

and type_definition env seen = function

Value_str(id, term) ->

if List.mem (Ident.name id) seen

then error "repeated value name";
(Value_sig(id, CT.type_term env term), Ident.name id :: seen)

| Module_str(id, modl) ->

if List.mem (Ident.name id) seen

then error "repeated module name";
(Module_sig(id, type_module env modl), Ident.name id :: seen)

| Type_str(id, kind, typ) ->

if List.mem (Ident.name id) seen

then error "repeated type name";
CT.check_kind env kind;

if not (CT.kind_match env (CT.kind_deftype env typ) kind)

A modular module system 15

then error "kind mismatch in type definition";
(Type_sig(id, {kind = kind; manifest = Some typ}),

Ident.name id :: seen)

end

A reference to a module identifier or module component of a structure (Longident)
is typed by a lookup in the environment, followed by a “strengthening” operation
(strengthen_modtype) that turns abstract type specifications into specifications
of types manifestly equal to themselves. Strengthening ensures that the identities
of abstract types are preserved; this is detailed in section 2.10.

In the case of a structure, each definition is typed, then entered in the environment
before typing the remainder of the structure, which can depend on the definition.
Type definitions are assigned manifest signatures, which reveal their implementa-
tions; the type can be abstracted later, if desired, using a module constraint.

The typing of functor definitions is straightforward. For functor applications,
we type the functor and its argument, then check that the type of the argument
matches the type of the functor parameter. That is, the argument must provide at
least all the components required by the functor, with types at least as general.
Matching between module types is detailed in section 2.9.

Determining the result type of the application raises a subtle difficulty: since
functor types are dependent, the result type of the functor can refer to the parameter
name; according to the standard elimination rule for dependent function types, the
parameter name must therefore be replaced by the actual argument to obtain the
type of the application. If the actual argument is a path, this causes no difficulties,
because we can always substitute a path for a module identifier anywhere in the
module language. But if the argument is not a path, then the substitution is not
always possible. Consider:

module F = functor(X: sig type t end) struct type t = X.t end

module A = F(struct type t = int end)

The result type of F is sig type t = X.t end, and attempting to replace X

by struct type t = int end in this type creates an ill-formed module access
(struct type t = int end).t. (Recall that accesses to structure components
are restricted to module paths; lifting this restriction could compromise the type
abstraction properties of the module system (Leroy, 1995; Courant, 1997a).) To
avoid this difficulty, we simply reject all functor applications where the argument
given to the functor is not a path. This requires users (or a preprocessor) to bind
complex functor arguments to module names before applying the functors to the
module names. In section 5.5, we shall return to this issue and propose less drastic
restrictions.

2.9 Matching between module types

A module type M matches a module type N if any module m satisfying the specifi-
cation M also satisfies N . This allows several degrees of flexibility. If M and N are
signatures, then M may specify more components than N ; components common

16 Xavier Leroy

to both signatures may be specified more tightly in M than in N (e.g. N specifies
a type t abstract and M manifest). If M and N are functor types, then M ’s re-
sult type can be more precise than N ’s, or M ’s argument type can be less precise
(accepting more arguments) than N ’s. All in all, module type matching resembles
subtyping in a functional language with records, with some extra complications due
to the dependencies in functor types and signatures.

let rec modtype_match env mty1 mty2 =

match (mty1, mty2) with

(Signature sig1, Signature sig2) ->

let (paired_components, subst) =

pair_signature_components sig1 sig2 in

let ext_env = Env.add_signature sig1 env in

List.iter (specification_match ext_env subst) paired_components

| (Functor_type(param1,arg1,res1), Functor_type(param2,arg2,res2)) ->

let subst = Subst.add param1 (Pident param2) Subst.identity in

let res1’ = Mod.subst_modtype res1 subst in

modtype_match env arg2 arg1;

modtype_match (Env.add_module param2 arg2 env) res1’ res2

| (_, _) ->

error "module type mismatch"

As outlined above, matching between functor types is contravariant in the argument
types. Since the result types may depend on the parameters, we need to identify the
two parameter identifiers. For matching the result types, we assign the parameter
the more precise of the two argument types, allowing more type equalities to be
derived about components of the parameter.

Matching between signatures proceeds in several steps. First, the signature com-
ponents are paired: to each component of sig2, we associate the component of sig1
with same name and class. This pass also builds a substitution that equates the
identifiers of the paired components, so that these identifiers are considered equal
when matching specifications of components that depend on these identifiers.

and pair_signature_components sig1 sig2 =

match sig2 with

[] -> ([], Subst.identity)

| item2 :: rem2 ->

let rec find_matching_component = function

[] -> error "unmatched signature component"
| item1 :: rem1 ->

match (item1, item2) with

(Value_sig(id1, _), Value_sig(id2, _))

when Ident.name id1 = Ident.name id2 ->

(id1, id2, item1)

| (Type_sig(id1, _), Type_sig(id2, _))

when Ident.name id1 = Ident.name id2 ->

(id1, id2, item1)

| (Module_sig(id1, _), Module_sig(id2, _))

when Ident.name id1 = Ident.name id2 ->

(id1, id2, item1)

| _ -> find_matching_component rem1 in

A modular module system 17

let (id1, id2, item1) = find_matching_component sig1 in

let (pairs, subst) = pair_signature_components sig1 rem2 in

((item1, item2) :: pairs, Subst.add id2 (Pident id1) subst)

After pairing, all components of the richer signature sig1 are added to the typing
environment; this allows matching of specifications to take advantage of all type
equalities specified in sig1. Finally, the specifications of paired components are
matched pairwise.

and specification_match env subst = function

(Value_sig(_, vty1), Value_sig(_, vty2)) ->

if not (CT.valtype_match env vty1 (Core.subst_valtype vty2 subst))

then error "value components do not match"
| (Type_sig(id, decl1), Type_sig(_, decl2)) ->

if not (typedecl_match env id decl1

(Mod.subst_typedecl decl2 subst))

then error "type components do not match"
| (Module_sig(_, mty1), Module_sig(_, mty2)) ->

modtype_match env mty1 (Mod.subst_modtype mty2 subst)

and typedecl_match env id decl1 decl2 =

CT.kind_match env decl1.kind decl2.kind &&

(match (decl1.manifest, decl2.manifest) with

(_, None) -> true

| (Some typ1, Some typ2) ->

CT.deftype_equiv env decl2.kind typ1 typ2

| (None, Some typ2) ->

CT.deftype_equiv env decl2.kind

(CT.deftype_of_path (Pident id) decl1.kind) typ2)

Matching pairs of specifications is straightforward: value specifications match if
their value types satisfy the valtype_match predicate provided by the core lan-
guage type-checker. Module specifications match if their module types do. For type
specifications, the kinds should obviously agree. No additional condition is required
if the second type is specified abstract. If it is specified manifestly equal to some
definable type d, then the first type must either be specified manifestly equal to
a type equivalent to d, or specified abstract but provably equivalent to d in the
current context.

The following ML example illustrates all cases of type specification matching:

M = sig type ’a t type u = int type v = u type w type z = w end

N = sig type ’a t type v = int type z type w = z end

The two t specifications match because both are abstract with the same kind (ar-
ity 1). The v=u specification in M matches the v=int specification in N because u

is equivalent to int in the environment enriched by M ’s components. The abstract
type z in N is matched because z is manifest with the right kind (arity 0) in M .
Finally, the w=z specification in N is matched by the w component of M , despite it
being abstract, because w and z are equivalent in the enriched environment.

2.10 Strengthening of module types

Consider a module path p with a signature containing an abstract type t:

18 Xavier Leroy

p : sig type t ... end

What makes p.t abstract is that, since the signature contains no type equality over
t, p.t is incompatible with any other type except itself. However, the identity of
p.t must be preserved, in particular across rebindings. Assume for instance that p

is bound to a module identifier m:

module m = p

If we assign m the same signature as p, sig type t ... end, then m.t and p.t are
different types. The identity of the abstract type p.t was lost. The correct signature
for m that preserves p.t’s identity is:

m : sig type t = p.t ... end

Fortunately, this signature is a perfectly legal signature for p itself: an abstract
type t component of a path p is always manifestly equal to itself, p.t. The following
function strengthen_modtype replaces all abstract type specifications in a module
type by the corresponding manifest types rooted at the given path:

let rec strengthen_modtype path mty =

match mty with

Signature sg -> Signature(List.map (strengthen_spec path) sg)

| Functor_type(_, _, _) -> mty

and strengthen_spec path item =

match item with

Value_sig(id, vty) -> item

| Type_sig(id, decl) ->

let m = match decl.manifest with

None -> Some(CT.deftype_of_path

(Pdot(path, Ident.name id)) decl.kind)

| Some ty -> Some ty in

Type_sig(id, {kind = decl.kind; manifest = m})

| Module_sig(id, mty) ->

Module_sig(id, strengthen_modtype (Pdot(path, Ident.name id)) mty)

In type_module, this strengthening operation is performed systematically on a
module path each time it is referenced. It can be shown that this ensures inference
of minimal module types and implements the same notion of type generativity as
in SML (Leroy, 1996).

3 Applications

This section outlines two applications of the generic module system presented above
to two simplified base languages: core C and mini-ML.

3.1 Core C

The first base language considered is a small subset of the C language, hopefully
representative of many conventional imperative languages. The abstract syntax is:

A modular module system 19

module C =

struct

type ctype =

Void | Int | Float | Pointer of ctype

| Function of ctype list * ctype

| Typename of path

type expr =

Intconst of int (* integer constants *)

| Floatconst of float (* float constants *)

| Variable of path (* var or mod.mod...var *)

| Apply of expr * expr list (* function call *)

| Assign of expr * expr (* var = expr *)

| Unary_op of string * expr (* *expr, !expr, etc *)

| Binary_op of string * expr * expr (* expr + expr, etc *)

| Cast of expr * ctype (* (type)expr *)

type statement =

Expr of expr (* expr; *)

| If of expr * statement * statement(* if (cond) stmt; else stmt; *)

| For of expr * expr * expr * statement

(* for (init; cond; step) stmt; *)

| Return of expr (* return expr; *)

| Block of (Ident.t * ctype) list * statement list

(* { decls; stmts; } *)

type term =

Var_decl of ctype

| Fun_def of (Ident.t * ctype) list * ctype * statement

type val_type = ctype

type def_type = ctype

type kind = unit

(* Substitution functions omitted; see Web appendix *)

end

Type expressions are quite simple: there is no distinction between value types
and definable types, and there is only one kind of definable types. Applying the
Mod_syntax and Env functors to C produces an environment structure suitable for
writing the core-C typechecker:

module CMod = Mod_syntax(C)

module CEnv = Env(CMod)

module CTyping =

struct

module Core = C

module Env = CEnv

open CMod

open C

let rec check_valtype env = function

Typename path -> ignore(CEnv.find_type path env)

| Pointer ty -> check_valtype env ty

| Function(args, res) ->

List.iter (check_valtype env) args; check_valtype env res

| _ -> ()

let kind_deftype = check_valtype

20 Xavier Leroy

let check_kind env k = ()

let deftype_of_path path kind = Typename path

Type matching reduces to type equivalence modulo the expansion of manifest types.

let rec valtype_match env ty1 ty2 =

match (ty1, ty2) with

(Void, Void) -> true

| (Int, Int) -> true

| (Float, Float) -> true

| (Function(args1, res1), Function(args2, res2)) ->

List.length args1 = List.length args2 &&

List.for_all2 (valtype_match env) args1 args2 &&

valtype_match env res1 res2

| (Typename path1, Typename path2) ->

path_equal path1 path2 ||

begin match (CEnv.find_type path1 env,

CEnv.find_type path2 env) with

({manifest = Some def}, _) -> valtype_match env def ty2

| (_, {manifest = Some def}) -> valtype_match env ty1 def

| ({manifest = None}, {manifest = None}) -> false

end

| (Typename path1, _) ->

begin match CEnv.find_type path1 env with

{manifest = Some def} -> valtype_match env def ty2

| {manifest = None} -> false

end

| (_, Typename path2) ->

begin match CEnv.find_type path2 env with

{manifest = Some def} -> valtype_match env ty1 def

| {manifest = None} -> false

end

| (_, _) -> false

let deftype_equiv env kind t1 t2 = valtype_match env t1 t2

let kind_match env k1 k2 = true

Each time a type path is encountered that does not match trivially the other type,
we look it up in the environment and resume matching with its definition if it is
manifest; if it is abstract, then by definition it is not compatible with the other
type and we return false.

let rec type_expr env expr =

... (* omitted; see Web appendix *)

let rec check_statement env type_function_result stmt =

... (* omitted; see Web appendix *)

let type_term env = function

Var_decl ty ->

check_valtype env ty; ty

| Fun_def(params, ty_res, body) ->

check_valtype env ty_res;

check_statement (add_variables env params) ty_res body;

Function(List.map snd params, ty_res)

Voilà, the type-checker for a modular C:

A modular module system 21

module CModTyping = Mod_typing(CMod)(CEnv)(CTyping)

3.2 Mini ML

The application to ML as base language is not that different from the application
to C. The main change is that value types and definable types are distinct in ML:
value types are type schemes, while definable types are parameterized simple types.
The kind of a definable type is an integer representing its arity (number of type
parameters).

module ML =

struct

type term =

Constant of int (* integer constants *)

| Longident of path (* id or mod.mod...id *)

| Function of Ident.t * term (* fun id -> expr *)

| Apply of term * term (* expr(expr) *)

| Let of Ident.t * term * term (* let id = expr in expr *)

type simple_type =

Var of type_variable (* ’a, ’b *)

| Typeconstr of path * simple_type list (* constructed type *)

and type_variable =

{ mutable repres: simple_type option;

(* representative, for union-find *)

mutable level: int } (* binding level, for generalization *)

type val_type =

{ quantif: type_variable list; (* quantified variables *)

body: simple_type } (* body of type scheme *)

type def_type =

{ params: type_variable list; (* list of parameters *)

defbody: simple_type } (* body of type definition *)

type kind = { arity: int }

(* Substitution functions omitted *)

end

module MLMod = Mod_syntax(ML)

module MLEnv = Env(MLMod)

For type reconstruction, we maintain incrementally the binding level of type vari-
ables, which allows generalization without scanning the typing environment for free
type variables (Rémy, 1992; Weis & Leroy, 1999). Scanning the type environment is
costly, and moreover is not supported by the environment structure returned by the
Env functor: we would have to use a custom environment structure, or manipulate
a local environment (for Function- and Let-bound identifiers) in addition to the
global environment (for module-level bindings).

module MLTyping = struct ... end

module MLModTyping = Mod_typing(MLMod)(MLEnv)(MLTyping)

The implementation of the type-checking functions (module MLTyping) is given
in the Web appendix to this paper. We omit it here because it is mostly stan-
dard (Weis & Leroy, 1999). Unification of two types whose type constructors are

22 Xavier Leroy

not equal paths looks up the paths in the environment and expands them if they
are manifest types. type_term performs standard Hindley-Milner type reconstruc-
tion, then generalizes the type inferred and checks that the resulting type scheme
is closed1. kind_deftype checks that the given parameterized type is closed and
returns its arity. valtype_match is subsumption between type schemes, modulo
expansion of manifest types as in unification.

4 Compilation

We have concentrated so far on the problem of type-checking the module language.
We now sketch briefly its compilation, which is mostly standard and builds on the
type information gathered during module typing (MacQueen, 1988).

Structures are naturally represented as records (tuples) of values and substruc-
tures, obtained by erasing all type fields. Access to structure fields is either by
name (similar to a method lookup in an Smalltalk object) or, more efficiently, at
fixed offsets determined at compile-time from the signature of the structure. In
the latter case, constraining a structure to a less precise signature involves recon-
structing the record to match the new signature (coercive subtyping). To this end,
the modtype_match function should return a coercion term recording the matching
operation (e.g. the mapping of components from the more precise signature to the
less precise signature). These coercions introduce no run-time inefficiencies, since
they occur only at link time or program initialization time, but never inside loops
or recursive functions.

If the compiler supports first-class functions (closures), functors can be trans-
lated to functions from structure representations to structure representations and
compiled only once. A functor that takes abstract type components in its argument
becomes a polymorphic function; this imposes the same constraints on data rep-
resentations as in polymorphically-typed languages (Peyton-Jones & Launchbury,
1991; Leroy, 1992). This translation of functors into functions is relatively easy if
the target language (the compiler’s intermediate language) is untyped or weakly
typed, but becomes much more difficult if the target language is strongly typed,
like the typed intermediate language of (Tarditi et al., 1996). Harper and Stone
(1998) develop a type-preserving translation of functors into a typed intermediate
language as part of their semantics for SML-97.

Alternatively, the functor body can be recompiled for each application, special-
izing the functor body for the actual argument of the application. This is how
generics in Ada or templates in C++ are traditionally compiled. The fact that only
a finite number of functor specializations need to be compiled is guaranteed by the

1 The closedness check is not needed for pure ML, where all type variables free in the inferred
type can always be generalized, but is required if generalization is restricted to syntactic values,
as proposed in (Wright, 1995) to deal with the imperative features of full ML. Leaving non-
generalized type variables free in the type schemes for value definitions, letting them be unified
at points of use, raises delicate type soundness issues that are discussed in (Russo, 1998), sections
8.2 and 8.3.

A modular module system 23

“phase distinction” result (Harper et al., 1990): the module language is strongly
normalizing if core language terms are not reduced.

The static interpretation of SML modules proposed by Elsman (1999) goes one
step further: not only functors are specialized at each application, but structures
are also completely eliminated at compile-time, by replacing references to structure
components by direct references to their definitions. Elsman also shows an incre-
mental recompilation framework that avoids recompiling a functor specialization if
neither the functor nor its argument have changed.

5 Extensions

5.1 Beyond values and types

We have assumed so far that the base language has only two classes of things that
can be defined and put inside structures: values and types. Some languages need
more classes of definitions: kind definitions in languages with a rich kind system
(Cardelli, 1989); classes and class types in Objective Caml (Leroy et al., 1996);
propositions and possibly proofs in specification languages (Sannella & Tarlecki,
1991); macro definitions in C and Lisp (Curtis & Rauen, 1990). For these lan-
guages, the Mod_syntax, Env and Mod_typing functors need to be reworked: the
extra classes of definitions should be added to the definition type, their type
specifications to the specification type, add and find functions to the environ-
ment structure, and finally matching rules for the new classes of specifications to
the specification_match function.

Other language features do not correspond to new classes of definitions, but
simply to subdivisions of the general classes of values and types: in Pascal and
Modula, values are subdivided into constants and variables; in ML, type defini-
tions are either datatypes or type abbreviations, and values are either let-bound
identifiers, datatype constructors, or exception constructors. In this situation, our
generic module system need not be modified: it suffices to reflect the subdivision in
the val_type and def_type types of the base language description, e.g.

type val_type = Variable of ... | Constant of ...

Finally, some type definitions may also define values at the same time: typically,
a class definition in a typed object-oriented language defines both a type of objects
and a set of methods; in ML, a datatype definition or an exception definition intro-
duces constructors that can be later used as values. This is easily handled in our
framework by defining a custom environment structure whose add_type function
records the associated value definitions in the value name space. The Mod_syntax

and Mod_typing functors need not be changed. This illustrates the interest of pa-
rameterizing Mod_typing by the environment structure, instead of locally applying
the Env functor inside the Mod_typing functor.

24 Xavier Leroy

5.2 Generative type definitions

Throughout this work, we have compared types by structure, except for type paths
specified abstractly, which are compared by name. This makes type definitions non
generative; only type abstraction is generative — more precisely, the only operation
that generates new types is constraining a structure by a signature specifying an
abstract type. Some languages have type definitions that generate new types, yet do
not abstract the concrete representations of the types. For instance, in C, struct
types are compared by name, thus each struct definition generates a new type, yet
the record fields can be accessed directly. In ML, datatype definitions also generate
new types, compared by name rather than by structure during unification, yet
the constructors allow direct construction and inspection of values of that type.
Finally, the definitions is new t in Ada and BRANDED REF t in Modula-3 create a
type different from t, but which can be coerced to and from t.

The correct way to treat these definitions in our framework is to record their
structure (e.g. list of record fields or datatype constructors, with their types) in the
kind field of their definition, leaving the manifest field equal to None. This way,
the types are compared by name (no type equalities are known for them), but their
structure is remembered and can be consulted to check a record access or a type
coercion, or to record the datatype constructors as values. For instance, in the case
of ML, kinds record not only the arity of the type constructor, but also whether it
comes with associated constructors:

type kind = { arity: int; description: type_description }

and type_description = Plain | Datatype of constructor list

and constructor = ...

This is exactly how many ML and Haskell type-checkers, as well as the SML defi-
nition (Milner et al., 1997), represent datatypes during type-checking, although it
is rarely, if ever, formulated explicitly in terms of kinds. Since having associated
constructors and being manifestly equal to another type are independent properties
in this approach, a type specification can combine both, as in

module M = struct ... type t = A | B ... end

module N = (M: sig type t = M.t = A | B end)

This is useful to re-export the type M.t along with its constructors A and B, while
keeping the compatibility between M.t and N.t. Writing (M: sig type t = M.t

end) would preserve the type compatibility but fail to include the constructors A

and B as components of N, while (M: sig type t = A | B end) would leave the
constructors apparent in N, but make a new type N.t incompatible with M.t.

5.3 Manifest constants, inline functions, and macros

In the context of separate compilation, the interface of a module is supposed to
provide all the information needed to compile clients of this module. Some base-
language features complicate this goal. For instance, if a module exports a macro
definition, then the actual definition of this macro (and not just a guarantee of

A modular module system 25

its existence) is needed to compile client modules. If a module defines a value as
a constant, compilers could generate better code for the clients if they knew the
actual value of the constant and not just its type. Similarly, if a function is defined
as expandable (inline), then its actual definition must be available to the clients for
inline expansion to take place.

There are two ways to address this problem. One is to enrich the language of
module signatures to allow “manifest values”, analogous to manifest types: the
signature specifies not only the type of the value, but also its actual definition. For
instance, the following signature

module M :

sig

val c : int = 10

val f : int -> int = fun x -> x+1

end

allows in-line expansion of the function f and of the constant c in all users of M. This
approach raises several technical issues. First, signature matching requires a suit-
able notion of equivalence between manifest values. Equivalence is straightforward
between constants, but not between in-line functions or macro definitions; some de-
cidable approximation must be agreed upon. Second, checking the well-formedness
of signatures requires that the manifest values are well-typed in the context of the
signature. This prevents exporting in-line functions that refer to non-exported func-
tions or variables in the same structure, or that take advantage of the particular
implementation of a type exported abstractly.

One may object that function inlining and constant propagation are purely com-
piler issues and should not pollute the module system. From this alternate view-
point, manifest values have nothing to do in the interface of a module, viewed as
its type specification; they are just additional information for cross-module opti-
mizations. This information should be recorded and propagated separately by the
compiler, possibly in persistent storage to support separate compilation. This al-
ternate approach is especially adequate if the extra information affects only the
efficiency of the generated code, but not its semantics: if inlining information for
an external function is not available at the time this function is used, a standard
function call can always be generated. On the other hand, this approach is prob-
ably inadequate for macros and other syntactic extensions, whose definition must
be available at the time they are used. The solution adopted in (Curtis & Rauen,
1990; Mauny & de Rauglaudre, 1994) is to compile syntactic extensions separately,
before compiling the remainder of the code.

5.4 Mutually recursive modules

Like the ML module system, the module system presented here requires that a mod-
ule refers only to previously defined modules, thus preventing recursive or mutually
recursive module definitions. Such recursive modules occur naturally when recursive
definitions of types and function are spread across different modules. For instance,
one cannot define structures for trees and forests as in the following pseudo-code:

26 Xavier Leroy

module rec Tree =

struct type ’a t = Leaf of ’a | Node of ’a Forest.t

let size = function Leaf _ -> 1 | Node f -> Forest.size f

end

and Forest =

struct type ’a t = ’a Tree.t list

let rec size = function [] -> 0

| t::l -> Tree.size t + size l

end

Adding a module rec construct to our module system raises delicate typing and
compilation issues; see (Crary et al., 1999) for a discussion. Two different approaches
to solving these issues have been proposed so far. Crary et al. (1999) rely on mutual
recursion between signatures and on a special, “transparent” interpretation of ML
datatypes during the type-checking of the mutual definitions. Duggan and Sourelis
(1996) introduce mixin modules, which are structures containing deferred (not yet
defined) components, and a special mixin composition operation to connect together
the deferred and defined components of two structures. Mixin modules have been
studied further by Ancona and Zucca (1998; 1999), and are also very close to Flatt
and Felleisen’s units (Flatt & Felleisen, 1998).

5.5 Functors applied to non-paths

The type-checker for the module language presented in section 2.8 rejects all functor
applications m1(m2) where m2 is not syntactically a module path – in accordance
with the typing rules of appendix A. The technical justification for this restriction
is that our type algebra is not closed under substitution of arbitrary module expres-
sions m2 for module identifiers, but only under substitution of paths for identifiers.
This restriction does not reduce the expressive power of the module language (as
shown in (Leroy, 1996), a program can always be rewritten in a form where all
functor arguments are paths), but still is a minor annoyance for programmers.

There are several common situations where the path restriction could be lifted
without harm. First, if the functor m1 has a non-dependent type functor(X :
M1) M2 where the formal parameter X does not occur in the result signature M2,
it is tempting to say that the application m1(m2) has type M2 regardless of
whether m2 is a path or not: the substitution of m2 for X in M2 always succeeds.
More formally, we could try to replace the typing rule 5 for functor application by
the following more lenient rule:

E ` m1 : functor(X : M1) M2 E ` m2 : M2

m2 is a path or X is not free in M2

E ` m1(m2) : M2{X ← m2}
(5’)

Perhaps surprisingly, this rule, combined with the subsumption rule 7, allows to
type-check certain applications of functors with truly dependent types to arguments
that are not paths. This was first noticed by Harper and Lillibridge (1994). Consider
the following example, similar to that of section 2.8:

A modular module system 27

module F = functor(X: sig type t end) struct type t = X.t -> X.t end

module A = F(struct type t = int end)

To type-check the application of F, we could first consider F with the type

functor(X: sig type t = int end) sig type t = int -> int end

which is a supertype of the “true” type of F, functor(X: sig type t end) sig

type t = X.t -> X.t end). The new type for F being non-dependent, rule 5′ ap-
plies and concludes that A has type sig type t = int -> int end. More intu-
itively, we took advantage of the fact that the t component of the actual argument
is known (from the signature of the argument) to be int, and instead of replacing
X by the argument in the result signature of the functor, we replaced X.t by int,
obtaining the correct signature sig type t = int -> int end for A.

The problem with this approach is to choose the right non-dependent supertype
of the functor type that permits the functor application. In order to obtain the
principal (most precise) type for the functor application, we need to find a smallest
X-free supertype of M2 under the hypothesis X : M (where M is the actual type of
the argument m2). This smallest non-dependent X-free supertype does not always
exist (Lillibridge, 1997). In general, the set of non-dependent supertypes has several
minimal elements. Thus, there is no hope of obtaining a type-checking algorithm
that always returns principal types. Type-checking algorithms that do not always
return principal types can still be useful in practice, but are less satisfactory in that
they do not have clear specifications in the form of typing rules, and may fail in
ways that are hard to understand for the programmer.

The Objective Caml type-checker implements one solution that is still incomplete
with respect to rules 5′ and 7, but which is at least reasonably easy to understand
for the programmer. Instead of trying to take an X-free supertype of the functor
result type M2, it just tries to take an X-free type type equivalent to M2 under the
hypothesis X : M . In the example above, struct type t = int -> int end is
indeed an X-free type equivalent to struct type t = X.t -> X.t end under the
hypothesis X : sig type t = int end. The good things about X-free equivalent
types are that they do not lose typing information, and that they are easy to
compute: just expand repeatedly type paths rooted at X that refer to manifest
type components of M until either no reference to X remains (success) or we hit a
path rooted at X referring to a type abstract in M (failure).

This approach can easily be added to our modular implementation. The
CORE_TYPING structure must provide three additional functions:

module type CORE_TYPING =

sig ...

val nondep_valtype: Env.t -> Ident.t -> Core.val_type -> Core.val_type

val nondep_deftype: Env.t -> Ident.t -> Core.def_type -> Core.def_type

val nondep_kind: Env.t -> Ident.t -> Core.kind -> Core.kind

end

nondep valtype e x t should return a value type t′ equivalent to t in the environ-
ment e, and such that x does not occur in t′. It proceeds by repeated expansion
of manifest type paths rooted at x, as outlined above, and raises the Not_found

28 Xavier Leroy

exception if no such type t′ exists. nondep_deftype and nondep_kind behave simi-
larly on definable types and on kinds, respectively. Then, in the structure returned
by the Mod_typing functor, we add the following functions that similarly remove
dependencies on a given identifier in module types and signatures:

let rec nondep_modtype env param = function

Signature sg -> Signature(nondep_signature env param sg)

| Functor_type(id, arg, res) ->

Functor_type(id, nondep_modtype env param arg,

nondep_modtype (Env.add_module id arg env) param res)

and nondep_signature env param = function

[] -> []

| item :: rem ->

let rem’ =

nondep_signature (Env.add_spec item env) param rem in

match item with

Value_sig(id, vty) ->

Value_sig(id, CT.nondep_valtype env param vty) :: rem’

| Type_sig(id, decl) ->

let manifest’ =

match decl.manifest with

None -> None

| Some ty -> Some(CT.nondep_deftype env param ty) in

let decl’ =

{kind = CT.nondep_kind env param decl.kind;

manifest = manifest’} in

Type_sig(id, decl’) :: rem’

| Module_sig(id, mty) ->

Module_sig(id, nondep_modtype env param mty) :: rem’

Then, the type-checking of functor applications becomes:

let rec type_module env = function

...

| Apply(funct, arg) ->

(match type_module env funct with

Functor_type(param, mty_param, mty_res) ->

let mty_arg = type_module env arg in

modtype_match env mty_arg mty_param;

(match arg with

Longident path ->

subst_modtype mty_res

(Subst.add param path Subst.identity)

| _ ->

try

nondep_modtype (Env.add_module param mty_arg env)

param mty_res

with Not_found ->

error "cannot eliminate dependency in application")
| _ -> error "application of a non-functor")

A modular module system 29

5.6 Applicative functors

An interesting extension of the module calculus is to allow simple functor applica-
tions in paths, e.g. F(A).t where F is a functor identifier and A a structure identifier
is a valid type expression (Leroy, 1995). Besides facilitating the type-checking of
nested functor applications such as G(F(A)), this extension enhances the expres-
sive power of higher-order functors (functors taking functors as arguments), making
them “fully transparent” in the terminology of (MacQueen & Tofte, 1994). A com-
plete discussion of full transparency and applicative functors is beyond the scope of
this paper; see (Leroy, 1995). Here, we will only discuss their impact on the generic
module implementation.

Allowing functor applications in paths raises a difficulty in the implementation
of the Env environment structure. Recall that the environment structure should
answer queries such as “what is the type of this path?”. It does so by looking up
the bindings of identifiers in the current environment (if the path is an identifier),
possibly followed by accesses to signature fields (if the path is a projection M.x). If
the path can also be a functor application F(A), the environment structure must
also check the type-correctness of the application of F to A, before deriving the type
of F(A) from the result type of F. Type-checking a functor application requires
matching a module type against another — as per the modtype_match function
in the Mod_typing functor (see section 2.9). Unfortunately, the modtype_match

function assumes given an already-built environment structure.
Applicative functors therefore introduce a difficult case of mutual recursion be-

tween the Env and Mod_typing functors; either needs to be parameterized by the
result of applying the other, as in the following pseudo-code:

module rec MLEnv = Env(MLMod)(MLModTyping)

and MLTyping = struct ... end

and MLModTyping = Mod_typing(MLMod)(MLEnv)(MLTyping)

In the absence of support for mutual recursion between structures, we are forced
to use inelegant encodings at the level of the core language. The usual trick for re-
ducing mutual recursion to simple recursion at the level of values (parameterize all
functions in Env and MLTyping by the modtype_match function) does not work very
well here, as it pollutes the base-language implementation with module-level oper-
ations. The Objective Caml implementation uses a reference to a dummy matching
function in the environment structure; this reference is updated later by the correct
modtype_match function.

6 Conclusions

We have presented a reference implementation of a module system with functors
and multiple views of modules, and demonstrated its versatility and independence
with respect to the base language. The requirements put on the base language are
fairly weak, and many existing languages — not just typed λ-calculi — appear to
fit in the framework presented here. Just like type theory in general, our module
system is biased towards structural equivalence between types, but generative type

30 Xavier Leroy

definitions can also be handled with little extra effort. Again just like type theory,
it is largely independent of the evaluation paradigm (Cardelli, 1989): we have used
imperative and functional languages as examples, but there is no reason why logic,
reactive, or dataflow languages could not be accommodated, once equipped with a
type system.

Object-oriented languages raise interesting issues. Languages not based on
classes, such as Modula-3 (Nelson, 1991), are easily accommodated: the object-
oriented features related to evaluation only (e.g. method invocation) are orthogonal
to the module system, and the necessary subtyping between object types fits our
generic module system very well. Even partially abstract types (types specified
as any subtype of a given type) are easily handled by introducing power kinds
(Cardelli, 1988) at the kind level.

For class-based object-oriented languages, it is possible to treat classes as another
sort of structure components, along with values, types and sub-modules. This is
the approach followed in Objective Caml (Leroy et al., 1996). However, classes
and inheritance can also be used as code structuring devices, partially overlapping
the mechanisms provided at the module level. The Moby design (Fisher & Reppy,
1999) attemps to reduce this overlap by using module-level signature constraints to
express some of the visibility modifiers often found in the class mechanism. Vouillon
(1998) tried to go further by unifying classes with structures and inheritance with
some forms of functors. Yet another direction is to use mixin modules or similar
linking calculi to encode both functors and inheritance (Ancona & Zucca, 1998;
Bracha, 1992).

Another interesting direction for future work is the application of module systems
to logical frameworks and proof checkers, an area where the need is growing for
decomposing large proofs in smaller units (Courant, 1997b).

On the implementation side, doubts have been expressed on the ability of the
system presented here to scale to a full compiler for a real language. The main prob-
lem is the inefficiency of the environment lookup operations, due to the number of
substitutions that have to be performed on the types of structure components at
each path lookup. However, it is easy to amortize the cost of those substitutions
through the use of more sophisticated data structures to represent the typing en-
vironment. As a case in point, the type-checker for modules used in the Objective
Caml system is very close to the implementation presented in this paper, except
that environments are represented by balanced binary trees in which all substitu-
tions on the types of structure components are performed at insertion time, rather
than at lookup time. This simple optimization suffices to obtain good performances
even on large source programs.

Acknowledgements

The author is grateful to Claudio Russo, Philip Wadler and the anonymous referees
for their comments and helpful suggestions for improving the exposition of this
paper.

A modular module system 31

References

Ancona, Davide, & Zucca, Elena. (1998). A theory of mixin modules: Basic and derived
operators. Mathematical structures in computer science, 8(4), 401–446.

Ancona, Davide, & Zucca, Elena. (1999). A primitive calculus for module systems. Pages
62–79 of: Nadathur, Gopalan (ed), PPDP’99 - international conference on principles
and practice of declarative programming. Lecture Notes in Computer Science, vol. 1702.
Springer-Verlag.

Bracha, Gilad. (1992). The programming language Jigsaw: Mixins, modularity and multiple
inheritance. Ph.D. thesis, University of Utah.

Cardelli, Luca. (1987). Basic polymorphic typechecking. Science of computer program-
ming, 8(2), 147–172.

Cardelli, Luca. (1988). Structural subtyping and the notion of power type. Pages 70–79
of: 15th symposium Principles of Programming Languages. ACM Press.

Cardelli, Luca. (1989). Typeful programming. Pages 431–507 of: Neuhold, E. J., & Paul,
M. (eds), Formal description of programming concepts. Springer-Verlag.

Cardelli, Luca. (1990). The Quest implementation. Software and documentation available
on ftp://gatekeeper.dec.com/pub/DEC/Quest.

Cardelli, Luca. (1998). Program fragments, linking, and modularization. Pages 266–277
of: 24th symposium Principles of Programming Languages. ACM Press.

Courant, Judicaël. (1997a). An applicative module calculus. Pages 622–636 of: Bidoit,
M., & Dauchet, M. (eds), TAPSOFT ’97: Theory and practice of software development.
Lecture Notes in Computer Science, vol. 1214. Springer-Verlag.

Courant, Judicaël. (1997b). A module calculus for Pure Type Systems. Pages 112 – 128
of: Typed lambda calculi and applications 97. Lecture Notes in Computer Science, vol.
1210. Springer-Verlag.

Crary, Karl, Harper, Robert, & Puri, Sidd. (1999). What is a recursive module? Pages
50–63 of: Programming Language Design and Implementation 1999. ACM Press.

Crégut, Pierre, & MacQueen, David B. (1994). An implementation of higher-order func-
tors. Pages 13–21 of: Proc. 1994 workshop on ML and its applications. Research report
2265, INRIA.

Curtis, P., & Rauen, J. (1990). A module system for Scheme. Pages 13–19 of: Lisp and
Functional Programming 1990. ACM Press.

Duggan, Dominic, & Sourelis, Constantinos. (1996). Mixin modules. Pages 262–273 of:
International Conference on Functional Programming 96. ACM Press.

Elsman, Martin. (1999). Program modules, separate compilation, and intermodule optimi-
sation. Ph.D. thesis, Department of Computer Science, University of Copenhagen.

Fisher, Kathleen, & Reppy, John H. (1999). The design of a class mechanism for Moby.
Pages 37–49 of: Programming Language Design and Implementation 1999. ACM Press.

Flatt, Matthew, & Felleisen, Matthias. (1998). Units: cool modules for HOT languages.
Pages 236–248 of: Programming Language Design and Implementation 1998. ACM
Press.

Glew, Neal, & Morrisett, Greg. (1999). Type-safe linking and modular assembly language.
Pages 250–261 of: 26th symposium Principles of Programming Languages. ACM Press.

Guttag, John V., & Horning, James J. (1993). Larch: languages and tools for formal
specification. Springer-Verlag.

Harper, Robert, & Lillibridge, Mark. (1994). A type-theoretic approach to higher-order
modules with sharing. Pages 123–137 of: 21st symposium Principles of Programming
Languages. ACM Press.

32 Xavier Leroy

Harper, Robert, & Stone, Chris. (1998). A type-theoretic interpretation of Standard ML.
Plotkin, Gordon, Stirling, Colin, & Tofte, Mads (eds), Robin Milner Festschrifft. MIT
Press. A preliminary version is available as technical report CMU-CS-97-147, Carnegie
Mellon University.

Harper, Robert, Mitchell, John C., & Moggi, Eugenio. (1990). Higher-order modules and
the phase distinction. Pages 341–354 of: 17th symposium Principles of Programming
Languages. ACM Press.

Leroy, Xavier. (1992). Unboxed objects and polymorphic typing. Pages 177–188 of: 19th
symposium Principles of Programming Languages. ACM Press.

Leroy, Xavier. (1994). Manifest types, modules, and separate compilation. Pages 109–122
of: 21st symposium Principles of Programming Languages. ACM Press.

Leroy, Xavier. (1995). Applicative functors and fully transparent higher-order modules.
Pages 142–153 of: 22nd symposium Principles of Programming Languages. ACM Press.

Leroy, Xavier. (1996). A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5), 667–698.

Leroy, Xavier, Vouillon, Jérôme, Doligez, Damien, et al. . (1996). The Objective Caml
system. Software and documentation available on the Web, http://caml.inria.fr/
ocaml/.

Lillibridge, Mark. (1997). Translucent sums: a foundation for higher-order module systems.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

MacQueen, David B. (1986). Modules for Standard ML. Harper, Robert, MacQueen,
David B., & Milner, Robin (eds), Standard ML. University of Edinburgh, technical
report ECS LFCS 86-2.

MacQueen, David B. (1988). The implementation of Standard ML modules. Pages 212–
223 of: Lisp and Functional Programming 1988. ACM Press.

MacQueen, David B., & Tofte, Mads. (1994). A semantics for higher-order functors. Pages
409–423 of: Sannella, D. (ed), Programming languages and systems – ESOP ’94. Lecture
Notes in Computer Science, vol. 788. Springer-Verlag.

Mauny, Michel, & de Rauglaudre, Daniel. (1994). A complete and realistic implementation
of quotations in ML. Pages 70–78 of: Proc. 1994 workshop on ML and its applications.
Research report 2265, INRIA.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The definition
of Standard ML (revised). The MIT Press.

Nelson, Greg (ed). (1991). Systems programming in Modula-3. Prentice-Hall.

Nowak, David, Talpin, Jean-Pierre, Gautier, Thierry, & Le Guernic, Paul. (1997). An ML-
like module system for the synchronous language Signal. Pages 1244–1253 of: European
conference on parallel processing (Euro-Par’97). Lecture Notes in Computer Science,
no. 1300. Springer-Verlag.

Parnas, David L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), 1053–1058.

Peyton-Jones, Simon L. (1987). The implementation of functional programming languages.
Prentice-Hall.

Peyton-Jones, Simon L., & Launchbury, John. (1991). Unboxed values as first-class cit-
izens in a non-strict functional language. Pages 636–666 of: Functional programming
languages and computer architecture 1991. Lecture Notes in Computer Science, vol.
523. Springer-Verlag.

Rémy, Didier. (1992). Extending ML type system with a sorted equational theory. Research
report 1766. INRIA.

Russo, Claudio V. (1998). Types for modules. Ph.D. thesis, LFCS, University of Edinburgh.

A modular module system 33

Sannella, D. T., & Wallen, L. A. (1992). A calculus for the construction of modular Prolog
programs. Journal of logic programming, 12, 147–177.

Sannella, Donald, & Tarlecki, Andrzej. (1991). Extended ML: past, present and future.
Technical report ECS-LFCS-91-138. Laboratory for Foundations of Computer Science,
University of Edinburgh.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., & Lee, P. (1996). TIL: a
type-directed optimizing compiler for ML. Pages 181–192 of: Programming Language
Design and Implementation 1996. ACM Press.

Vouillon, Jérôme. (1998). Using modules as classes. Informal proceedings of the FOOL’5
workshop.

Weis, Pierre, & Leroy, Xavier. (1999). Le langage Caml. Dunod.

Wirsing, Martin. (1990). Algebraic specifications. Pages 675–788 of: van Leeuwen, Jan
(ed), Handbook of theoretical computer science, volume B. The MIT Press/Elsevier.

Wright, Andrew K. (1995). Simple imperative polymorphism. Lisp and symbolic compu-
tation, 8(4), 343–356.

A Typing rules for the module system

Notations:

Module expressions: m ::= p | struct s end | (m : M)
| functor(Xi : M) m | m(p)

Structures: s ::= ε | c; s

Structure components: c ::= val vi = e | type ti :: κ = τd | module Xi = m

Module types: M ::= sig S end | functor(Xi : M)M ′

Signatures: S ::= ε | C; S

Signature components: C ::= val vi : τv | type ti :: κ | type ti :: κ = τd

| module Xi : M

Typing environments: E ::= ε | E; C

Core expressions: e ::= vi | p.v | . . .
Core value types: τv ::= . . .

Core definable types: τd ::= . . .

Core kinds: κ ::= . . .

Access paths: p ::= Xi | p.X

We write Dom(S) and Dom(E) for the set of identifiers bound in the structure S

or the environment E. Identifiers vi, ti, Xi are bound by struct, sig and functor

constructs, and can be alpha-converted provided their name part v, t, X do not
change. We assume given the following typing judgements for the core language:

E ` e : τv expression e has value type τv

E ` τd :: κ definable type τd has kind κ

E ` κ wf kind κ is well-formed
E ` τv wf value type τv is well-formed
E ` τv <: τ ′v value type τv is a subtype of τ ′v
E ` κ <: κ′ kind κ is a subkind of κ′

E ` τd ≈ τ ′d :: κ definable types τd and τ ′d are equivalent at kind κ

34 Xavier Leroy

Typing of modules E ` m : M and structures E ` s : S

E = E1; module Xi : M ; E2

E ` Xi : M
(1)

E ` p : sig S1; module Xi : M ; S2 end

E ` p.X : M{zj ← p.z | zj ∈ Dom(S1)}
(2)

E ` s : S components of s have distinct names

E ` (struct s end) : (sig S end)
(3)

E `M ′ wf Xi /∈ Dom(E) E; module Xi : M ′ ` m : M

E ` (functor(Xi : M ′) m) : (functor(Xi : M ′) M)
(4)

E ` m : functor(Xi : M ′) M E ` p : M ′

E ` m(p) : M{Xi ← p}
(5)

E `M wf E ` m : M

E ` (m : M) : M
(6)

E `M wf E `M ′ <: M E ` m : M ′

E ` m : M
(7)

E ` p : M

E ` p : M/p
(8)

E ` ε : ε (9)
E ` e : τv vi /∈ Dom(E) E; val vi : τv ` s : S

E ` (val vi = e; s) : (val vi : τv; S)
(10)

E ` κ wf E ` τd :: κ ti /∈ Dom(E) E; type ti :: κ = τd ` s : S

E ` (type ti :: κ = τd; s) : (type ti :: κ = τd; S)
(11)

E ` m : M E; module Xi : M ` s : S

E ` (module Xi = m; s) : (module Xi : M ; S)
(12)

Well-formedness of module types E `M wf and signatures E ` S wf

E ` S wf components of S have distinct names

E ` (sig S end) wf
(13)

E `M1 wf E; module Xi : M1 `M2 wf

E ` (functor(Xi : M1) M2) wf
(14) E ` ε wf (15)

E ` τv wf E ` S wf

E ` (val vi : τv; S) wf
(16)

E ` κ wf E; type ti :: κ ` S wf

E ` (type ti :: κ; S) wf
(17)

E ` κ wf E ` τd :: κ E; type ti :: κ = τd ` S wf

E ` (type ti :: κ = τd; S) wf
(18)

E `M wf E; module Xi : M ` S wf

E ` (module Xi : M ; S) wf
(19)

A modular module system 35

Subtyping between module types E ` M <: M ′ and between signature
components E ` C <: C ′

σ : {1 . . .m} → {1 . . . n} Dom(C1; . . . ; Cn) ∩Dom(E) = ∅
E; C1; . . . ; Cn ` Cσ(i) <: C ′i for i = 1 . . . m

E ` (sig C1; . . . ; Cn; ε end) <: (sig C ′1; . . . ; C ′m; ε end)

(20)

E `M ′
1 <: M1 E; module Yj : M1 `M2{Xi ← Yj} <: M ′

2

E ` (functor(Xi : M1)M2) <: (functor(Yj : M ′
1) M ′

2)
(21)

E ` τv <: τ ′v

E ` (val vi : τv) <: (val vi : τ ′v)
(22)

E `M <: M ′

E ` (module Xi : M) <: (module Xi : M ′)
(23)

E ` κ <: κ′

E ` (type ti :: κ) <: (type ti :: κ′)
(24)

E ` κ <: κ′

E ` (type ti :: κ = τd) <: (type ti :: κ′)
(25)

E ` κ <: κ′ E ` τd ≈ τ ′d :: κ′

E ` (type ti :: κ = τd) <: (type ti :: κ′ = τ ′d)
(26)

E ` κ <: κ′ E ` ti ≈ τd :: κ′

E ` (type ti :: κ) <: (type ti :: κ′ = τd)
(27)

Strengthening of module types M/p and signatures S/p

(sig S end)/p = sig S/p end

(functor(Xi : M1)M2)/p = functor(Xi : M1)M2

ε/p = ε

(val vi : τv; S)/p = val vi : τv; S/p

(type ti :: κ; S)/p = type ti :: κ = p.t; S/p

(type ti :: κ = τ ; S)/p = type ti :: κ = τ ; S/p

(module Xi : M ; S)/p = module Xi : M/p.X; S/p

