Module Set

module Set: sig .. end
Sets over ordered types.

This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.

The Make functor constructs implementations for any type, given a compare function. For instance:

     module IntPairs =
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match x0 x1 with
               0 -> y0 y1
             | c -> c

     module PairsSet = Set.Make(IntPairs)

     let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))

This creates a new module PairsSet, with a new type PairsSet.t of sets of int * int.

module type OrderedType = sig .. end
Input signature of the functor Set.Make.
module type S = sig .. end
Output signature of the functor Set.Make.
module Make: 
functor (Ord : OrderedType) -> S with type elt = Ord.t
Functor building an implementation of the set structure given a totally ordered type.